| /* |
| * Copyright (C) 2024 Niklas Haas |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <math.h> |
| #include <string.h> |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/avassert.h" |
| #include "libavutil/csp.h" |
| #include "libavutil/slicethread.h" |
| |
| #include "cms.h" |
| #include "csputils.h" |
| #include "libswscale/swscale.h" |
| #include "format.h" |
| |
| bool ff_sws_color_map_noop(const SwsColorMap *map) |
| { |
| /* If the encoding space is different, we must go through a conversion */ |
| if (map->src.prim != map->dst.prim || map->src.trc != map->dst.trc) |
| return false; |
| |
| /* If the black point changes, we have to perform black point compensation */ |
| if (av_cmp_q(map->src.min_luma, map->dst.min_luma)) |
| return false; |
| |
| switch (map->intent) { |
| case SWS_INTENT_ABSOLUTE_COLORIMETRIC: |
| case SWS_INTENT_RELATIVE_COLORIMETRIC: |
| return ff_prim_superset(&map->dst.gamut, &map->src.gamut) && |
| av_cmp_q(map->src.max_luma, map->dst.max_luma) <= 0; |
| case SWS_INTENT_PERCEPTUAL: |
| case SWS_INTENT_SATURATION: |
| return ff_prim_equal(&map->dst.gamut, &map->src.gamut) && |
| !av_cmp_q(map->src.max_luma, map->dst.max_luma); |
| default: |
| av_assert0(!"Invalid gamut mapping intent?"); |
| return true; |
| } |
| } |
| |
| /* Approximation of gamut hull at a given intensity level */ |
| static const float hull(float I) |
| { |
| return ((I - 6.0f) * I + 9.0f) * I; |
| } |
| |
| /* For some minimal type safety, and code cleanliness */ |
| typedef struct RGB { |
| float R, G, B; /* nits */ |
| } RGB; |
| |
| typedef struct IPT { |
| float I, P, T; |
| } IPT; |
| |
| typedef struct ICh { |
| float I, C, h; |
| } ICh; |
| |
| static av_always_inline ICh ipt2ich(IPT c) |
| { |
| return (ICh) { |
| .I = c.I, |
| .C = sqrtf(c.P * c.P + c.T * c.T), |
| .h = atan2f(c.T, c.P), |
| }; |
| } |
| |
| static av_always_inline IPT ich2ipt(ICh c) |
| { |
| return (IPT) { |
| .I = c.I, |
| .P = c.C * cosf(c.h), |
| .T = c.C * sinf(c.h), |
| }; |
| } |
| |
| /* Helper struct containing pre-computed cached values describing a gamut */ |
| typedef struct Gamut { |
| SwsMatrix3x3 encoding2lms; |
| SwsMatrix3x3 lms2encoding; |
| SwsMatrix3x3 lms2content; |
| SwsMatrix3x3 content2lms; |
| av_csp_eotf_function eotf; |
| av_csp_eotf_function eotf_inv; |
| float Iavg_frame; |
| float Imax_frame; |
| float Imin, Imax; |
| float Lb, Lw; |
| AVCIExy wp; |
| ICh peak; /* updated as needed in loop body when hue changes */ |
| } Gamut; |
| |
| static Gamut gamut_from_colorspace(SwsColor fmt) |
| { |
| const AVColorPrimariesDesc *encoding = av_csp_primaries_desc_from_id(fmt.prim); |
| const AVColorPrimariesDesc content = { |
| .prim = fmt.gamut, |
| .wp = encoding->wp, |
| }; |
| |
| const float Lw = av_q2d(fmt.max_luma), Lb = av_q2d(fmt.min_luma); |
| const float Imax = pq_oetf(Lw); |
| |
| return (Gamut) { |
| .encoding2lms = ff_sws_ipt_rgb2lms(encoding), |
| .lms2encoding = ff_sws_ipt_lms2rgb(encoding), |
| .lms2content = ff_sws_ipt_lms2rgb(&content), |
| .content2lms = ff_sws_ipt_rgb2lms(&content), |
| .eotf = av_csp_itu_eotf(fmt.trc), |
| .eotf_inv = av_csp_itu_eotf_inv(fmt.trc), |
| .wp = encoding->wp, |
| .Imin = pq_oetf(Lb), |
| .Imax = Imax, |
| .Imax_frame = fmt.frame_peak.den ? pq_oetf(av_q2d(fmt.frame_peak)) : Imax, |
| .Iavg_frame = fmt.frame_avg.den ? pq_oetf(av_q2d(fmt.frame_avg)) : 0.0f, |
| .Lb = Lb, |
| .Lw = Lw, |
| }; |
| } |
| |
| static av_always_inline IPT rgb2ipt(RGB c, const SwsMatrix3x3 rgb2lms) |
| { |
| const float L = rgb2lms.m[0][0] * c.R + |
| rgb2lms.m[0][1] * c.G + |
| rgb2lms.m[0][2] * c.B; |
| const float M = rgb2lms.m[1][0] * c.R + |
| rgb2lms.m[1][1] * c.G + |
| rgb2lms.m[1][2] * c.B; |
| const float S = rgb2lms.m[2][0] * c.R + |
| rgb2lms.m[2][1] * c.G + |
| rgb2lms.m[2][2] * c.B; |
| const float Lp = pq_oetf(L); |
| const float Mp = pq_oetf(M); |
| const float Sp = pq_oetf(S); |
| return (IPT) { |
| .I = 0.4000f * Lp + 0.4000f * Mp + 0.2000f * Sp, |
| .P = 4.4550f * Lp - 4.8510f * Mp + 0.3960f * Sp, |
| .T = 0.8056f * Lp + 0.3572f * Mp - 1.1628f * Sp, |
| }; |
| } |
| |
| static av_always_inline RGB ipt2rgb(IPT c, const SwsMatrix3x3 lms2rgb) |
| { |
| const float Lp = c.I + 0.0975689f * c.P + 0.205226f * c.T; |
| const float Mp = c.I - 0.1138760f * c.P + 0.133217f * c.T; |
| const float Sp = c.I + 0.0326151f * c.P - 0.676887f * c.T; |
| const float L = pq_eotf(Lp); |
| const float M = pq_eotf(Mp); |
| const float S = pq_eotf(Sp); |
| return (RGB) { |
| .R = lms2rgb.m[0][0] * L + |
| lms2rgb.m[0][1] * M + |
| lms2rgb.m[0][2] * S, |
| .G = lms2rgb.m[1][0] * L + |
| lms2rgb.m[1][1] * M + |
| lms2rgb.m[1][2] * S, |
| .B = lms2rgb.m[2][0] * L + |
| lms2rgb.m[2][1] * M + |
| lms2rgb.m[2][2] * S, |
| }; |
| } |
| |
| static inline bool ingamut(IPT c, Gamut gamut) |
| { |
| const float min_rgb = gamut.Lb - 1e-4f; |
| const float max_rgb = gamut.Lw + 1e-2f; |
| const float Lp = c.I + 0.0975689f * c.P + 0.205226f * c.T; |
| const float Mp = c.I - 0.1138760f * c.P + 0.133217f * c.T; |
| const float Sp = c.I + 0.0326151f * c.P - 0.676887f * c.T; |
| if (Lp < gamut.Imin || Lp > gamut.Imax || |
| Mp < gamut.Imin || Mp > gamut.Imax || |
| Sp < gamut.Imin || Sp > gamut.Imax) |
| { |
| /* Values outside legal LMS range */ |
| return false; |
| } else { |
| const float L = pq_eotf(Lp); |
| const float M = pq_eotf(Mp); |
| const float S = pq_eotf(Sp); |
| RGB rgb = { |
| .R = gamut.lms2content.m[0][0] * L + |
| gamut.lms2content.m[0][1] * M + |
| gamut.lms2content.m[0][2] * S, |
| .G = gamut.lms2content.m[1][0] * L + |
| gamut.lms2content.m[1][1] * M + |
| gamut.lms2content.m[1][2] * S, |
| .B = gamut.lms2content.m[2][0] * L + |
| gamut.lms2content.m[2][1] * M + |
| gamut.lms2content.m[2][2] * S, |
| }; |
| return rgb.R >= min_rgb && rgb.R <= max_rgb && |
| rgb.G >= min_rgb && rgb.G <= max_rgb && |
| rgb.B >= min_rgb && rgb.B <= max_rgb; |
| } |
| } |
| |
| static const float maxDelta = 5e-5f; |
| |
| // Find gamut intersection using specified bounds |
| static inline ICh |
| desat_bounded(float I, float h, float Cmin, float Cmax, Gamut gamut) |
| { |
| if (I <= gamut.Imin) |
| return (ICh) { .I = gamut.Imin, .C = 0, .h = h }; |
| else if (I >= gamut.Imax) |
| return (ICh) { .I = gamut.Imax, .C = 0, .h = h }; |
| else { |
| const float maxDI = I * maxDelta; |
| ICh res = { .I = I, .C = (Cmin + Cmax) / 2, .h = h }; |
| do { |
| if (ingamut(ich2ipt(res), gamut)) { |
| Cmin = res.C; |
| } else { |
| Cmax = res.C; |
| } |
| res.C = (Cmin + Cmax) / 2; |
| } while (Cmax - Cmin > maxDI); |
| |
| return res; |
| } |
| } |
| |
| // Finds maximally saturated in-gamut color (for given hue) |
| static inline ICh saturate(float hue, Gamut gamut) |
| { |
| static const float invphi = 0.6180339887498948f; |
| static const float invphi2 = 0.38196601125010515f; |
| |
| ICh lo = { .I = gamut.Imin, .h = hue }; |
| ICh hi = { .I = gamut.Imax, .h = hue }; |
| float de = hi.I - lo.I; |
| ICh a = { .I = lo.I + invphi2 * de }; |
| ICh b = { .I = lo.I + invphi * de }; |
| a = desat_bounded(a.I, hue, 0.0f, 0.5f, gamut); |
| b = desat_bounded(b.I, hue, 0.0f, 0.5f, gamut); |
| |
| while (de > maxDelta) { |
| de *= invphi; |
| if (a.C > b.C) { |
| hi = b; |
| b = a; |
| a.I = lo.I + invphi2 * de; |
| a = desat_bounded(a.I, hue, lo.C - maxDelta, 0.5f, gamut); |
| } else { |
| lo = a; |
| a = b; |
| b.I = lo.I + invphi * de; |
| b = desat_bounded(b.I, hue, hi.C - maxDelta, 0.5f, gamut); |
| } |
| } |
| |
| return a.C > b.C ? a : b; |
| } |
| |
| static float softclip(float value, float source, float target) |
| { |
| const float j = SOFTCLIP_KNEE; |
| float peak, x, a, b, scale; |
| if (!target) |
| return 0.0f; |
| |
| peak = source / target; |
| x = fminf(value / target, peak); |
| if (x <= j || peak <= 1.0) |
| return value; |
| |
| /* Apply simple mobius function */ |
| a = -j*j * (peak - 1.0f) / (j*j - 2.0f * j + peak); |
| b = (j*j - 2.0f * j * peak + peak) / fmaxf(1e-6f, peak - 1.0f); |
| scale = (b*b + 2.0f * b*j + j*j) / (b - a); |
| |
| return scale * (x + a) / (x + b) * target; |
| } |
| |
| /** |
| * Something like fmixf(base, c, x) but follows an exponential curve, note |
| * that this can be used to extend 'c' outwards for x > 1 |
| */ |
| static inline ICh mix_exp(ICh c, float x, float gamma, float base) |
| { |
| return (ICh) { |
| .I = base + (c.I - base) * powf(x, gamma), |
| .C = c.C * x, |
| .h = c.h, |
| }; |
| } |
| |
| /** |
| * Drop gamma for colors approaching black and achromatic to avoid numerical |
| * instabilities, and excessive brightness boosting of grain, while also |
| * strongly boosting gamma for values exceeding the target peak |
| */ |
| static inline float scale_gamma(float gamma, ICh ich, Gamut gamut) |
| { |
| const float Imin = gamut.Imin; |
| const float Irel = fmaxf((ich.I - Imin) / (gamut.peak.I - Imin), 0.0f); |
| return gamma * powf(Irel, 3) * fminf(ich.C / gamut.peak.C, 1.0f); |
| } |
| |
| /* Clip a color along the exponential curve given by `gamma` */ |
| static inline IPT clip_gamma(IPT ipt, float gamma, Gamut gamut) |
| { |
| float lo = 0.0f, hi = 1.0f, x = 0.5f; |
| const float maxDI = fmaxf(ipt.I * maxDelta, 1e-7f); |
| ICh ich; |
| |
| if (ipt.I <= gamut.Imin) |
| return (IPT) { .I = gamut.Imin }; |
| if (ingamut(ipt, gamut)) |
| return ipt; |
| |
| ich = ipt2ich(ipt); |
| if (!gamma) |
| return ich2ipt(desat_bounded(ich.I, ich.h, 0.0f, ich.C, gamut)); |
| |
| gamma = scale_gamma(gamma, ich, gamut); |
| do { |
| ICh test = mix_exp(ich, x, gamma, gamut.peak.I); |
| if (ingamut(ich2ipt(test), gamut)) { |
| lo = x; |
| } else { |
| hi = x; |
| } |
| x = (lo + hi) / 2.0f; |
| } while (hi - lo > maxDI); |
| |
| return ich2ipt(mix_exp(ich, x, gamma, gamut.peak.I)); |
| } |
| |
| typedef struct CmsCtx CmsCtx; |
| struct CmsCtx { |
| /* Tone mapping parameters */ |
| float Qa, Qb, Qc, Pa, Pb, src_knee, dst_knee; /* perceptual */ |
| float I_scale, I_offset; /* linear methods */ |
| |
| /* Colorspace parameters */ |
| Gamut src; |
| Gamut tmp; /* after tone mapping */ |
| Gamut dst; |
| SwsMatrix3x3 adaptation; /* for absolute intent */ |
| |
| /* Invocation parameters */ |
| SwsColorMap map; |
| float (*tone_map)(const CmsCtx *ctx, float I); |
| IPT (*adapt_colors)(const CmsCtx *ctx, IPT ipt); |
| v3u16_t *input; |
| v3u16_t *output; |
| |
| /* Threading parameters */ |
| int slice_size; |
| int size_input; |
| int size_output_I; |
| int size_output_PT; |
| }; |
| |
| /** |
| * Helper function to pick a knee point based on the * HDR10+ brightness |
| * metadata and scene brightness average matching. |
| * |
| * Inspired by SMPTE ST2094-10, with some modifications |
| */ |
| static void st2094_pick_knee(float src_max, float src_min, float src_avg, |
| float dst_max, float dst_min, |
| float *out_src_knee, float *out_dst_knee) |
| { |
| const float min_knee = PERCEPTUAL_KNEE_MIN; |
| const float max_knee = PERCEPTUAL_KNEE_MAX; |
| const float def_knee = PERCEPTUAL_KNEE_DEF; |
| const float src_knee_min = fmixf(src_min, src_max, min_knee); |
| const float src_knee_max = fmixf(src_min, src_max, max_knee); |
| const float dst_knee_min = fmixf(dst_min, dst_max, min_knee); |
| const float dst_knee_max = fmixf(dst_min, dst_max, max_knee); |
| float src_knee, target, adapted, tuning, adaptation, dst_knee; |
| |
| /* Choose source knee based on dynamic source scene brightness */ |
| src_knee = src_avg ? src_avg : fmixf(src_min, src_max, def_knee); |
| src_knee = av_clipf(src_knee, src_knee_min, src_knee_max); |
| |
| /* Choose target adaptation point based on linearly re-scaling source knee */ |
| target = (src_knee - src_min) / (src_max - src_min); |
| adapted = fmixf(dst_min, dst_max, target); |
| |
| /** |
| * Choose the destination knee by picking the perceptual adaptation point |
| * between the source knee and the desired target. This moves the knee |
| * point, on the vertical axis, closer to the 1:1 (neutral) line. |
| * |
| * Adjust the adaptation strength towards 1 based on how close the knee |
| * point is to its extreme values (min/max knee) |
| */ |
| tuning = smoothstepf(max_knee, def_knee, target) * |
| smoothstepf(min_knee, def_knee, target); |
| adaptation = fmixf(1.0f, PERCEPTUAL_ADAPTATION, tuning); |
| dst_knee = fmixf(src_knee, adapted, adaptation); |
| dst_knee = av_clipf(dst_knee, dst_knee_min, dst_knee_max); |
| |
| *out_src_knee = src_knee; |
| *out_dst_knee = dst_knee; |
| } |
| |
| static void tone_map_setup(CmsCtx *ctx, bool dynamic) |
| { |
| const float dst_min = ctx->dst.Imin; |
| const float dst_max = ctx->dst.Imax; |
| const float src_min = ctx->src.Imin; |
| const float src_max = dynamic ? ctx->src.Imax_frame : ctx->src.Imax; |
| const float src_avg = dynamic ? ctx->src.Iavg_frame : 0.0f; |
| float slope, ratio, in_min, in_max, out_min, out_max, t; |
| |
| switch (ctx->map.intent) { |
| case SWS_INTENT_PERCEPTUAL: |
| st2094_pick_knee(src_max, src_min, src_avg, dst_max, dst_min, |
| &ctx->src_knee, &ctx->dst_knee); |
| |
| /* Solve for linear knee (Pa = 0) */ |
| slope = (ctx->dst_knee - dst_min) / (ctx->src_knee - src_min); |
| |
| /** |
| * Tune the slope at the knee point slightly: raise it to a user-provided |
| * gamma exponent, multiplied by an extra tuning coefficient designed to |
| * make the slope closer to 1.0 when the difference in peaks is low, and |
| * closer to linear when the difference between peaks is high. |
| */ |
| ratio = src_max / dst_max - 1.0f; |
| ratio = av_clipf(SLOPE_TUNING * ratio, SLOPE_OFFSET, 1.0f + SLOPE_OFFSET); |
| slope = powf(slope, (1.0f - PERCEPTUAL_CONTRAST) * ratio); |
| |
| /* Normalize everything the pivot to make the math easier */ |
| in_min = src_min - ctx->src_knee; |
| in_max = src_max - ctx->src_knee; |
| out_min = dst_min - ctx->dst_knee; |
| out_max = dst_max - ctx->dst_knee; |
| |
| /** |
| * Solve P of order 2 for: |
| * P(in_min) = out_min |
| * P'(0.0) = slope |
| * P(0.0) = 0.0 |
| */ |
| ctx->Pa = (out_min - slope * in_min) / (in_min * in_min); |
| ctx->Pb = slope; |
| |
| /** |
| * Solve Q of order 3 for: |
| * Q(in_max) = out_max |
| * Q''(in_max) = 0.0 |
| * Q(0.0) = 0.0 |
| * Q'(0.0) = slope |
| */ |
| t = 2 * in_max * in_max; |
| ctx->Qa = (slope * in_max - out_max) / (in_max * t); |
| ctx->Qb = -3 * (slope * in_max - out_max) / t; |
| ctx->Qc = slope; |
| break; |
| case SWS_INTENT_SATURATION: |
| /* Linear stretch */ |
| ctx->I_scale = (dst_max - dst_min) / (src_max - src_min); |
| ctx->I_offset = dst_min - src_min * ctx->I_scale; |
| break; |
| case SWS_INTENT_RELATIVE_COLORIMETRIC: |
| /* Pure black point adaptation */ |
| ctx->I_scale = src_max / (src_max - src_min) / |
| (dst_max / (dst_max - dst_min)); |
| ctx->I_offset = dst_min - src_min * ctx->I_scale; |
| break; |
| case SWS_INTENT_ABSOLUTE_COLORIMETRIC: |
| /* Hard clip */ |
| ctx->I_scale = 1.0f; |
| ctx->I_offset = 0.0f; |
| break; |
| } |
| } |
| |
| static av_always_inline IPT tone_map_apply(const CmsCtx *ctx, IPT ipt) |
| { |
| float I = ipt.I, desat; |
| |
| if (ctx->map.intent == SWS_INTENT_PERCEPTUAL) { |
| const float Pa = ctx->Pa, Pb = ctx->Pb; |
| const float Qa = ctx->Qa, Qb = ctx->Qb, Qc = ctx->Qc; |
| I -= ctx->src_knee; |
| I = I > 0 ? ((Qa * I + Qb) * I + Qc) * I : (Pa * I + Pb) * I; |
| I += ctx->dst_knee; |
| } else { |
| I = ctx->I_scale * I + ctx->I_offset; |
| } |
| |
| /** |
| * Avoids raising saturation excessively when raising brightness, and |
| * also desaturates when reducing brightness greatly to account for the |
| * reduction in gamut volume. |
| */ |
| desat = fminf(ipt.I / I, hull(I) / hull(ipt.I)); |
| return (IPT) { |
| .I = I, |
| .P = ipt.P * desat, |
| .T = ipt.T * desat, |
| }; |
| } |
| |
| static IPT perceptual(const CmsCtx *ctx, IPT ipt) |
| { |
| ICh ich = ipt2ich(ipt); |
| IPT mapped = rgb2ipt(ipt2rgb(ipt, ctx->tmp.lms2content), ctx->dst.content2lms); |
| RGB rgb; |
| float maxRGB; |
| |
| /* Protect in gamut region */ |
| const float maxC = fmaxf(ctx->tmp.peak.C, ctx->dst.peak.C); |
| float k = smoothstepf(PERCEPTUAL_DEADZONE, 1.0f, ich.C / maxC); |
| k *= PERCEPTUAL_STRENGTH; |
| ipt.I = fmixf(ipt.I, mapped.I, k); |
| ipt.P = fmixf(ipt.P, mapped.P, k); |
| ipt.T = fmixf(ipt.T, mapped.T, k); |
| |
| rgb = ipt2rgb(ipt, ctx->dst.lms2content); |
| maxRGB = fmaxf(rgb.R, fmaxf(rgb.G, rgb.B)); |
| rgb.R = fmaxf(softclip(rgb.R, maxRGB, ctx->dst.Lw), ctx->dst.Lb); |
| rgb.G = fmaxf(softclip(rgb.G, maxRGB, ctx->dst.Lw), ctx->dst.Lb); |
| rgb.B = fmaxf(softclip(rgb.B, maxRGB, ctx->dst.Lw), ctx->dst.Lb); |
| |
| return rgb2ipt(rgb, ctx->dst.content2lms); |
| } |
| |
| static IPT relative(const CmsCtx *ctx, IPT ipt) |
| { |
| return clip_gamma(ipt, COLORIMETRIC_GAMMA, ctx->dst); |
| } |
| |
| static IPT absolute(const CmsCtx *ctx, IPT ipt) |
| { |
| RGB rgb = ipt2rgb(ipt, ctx->dst.lms2encoding); |
| float c[3] = { rgb.R, rgb.G, rgb.B }; |
| ff_sws_matrix3x3_apply(&ctx->adaptation, c); |
| ipt = rgb2ipt((RGB) { c[0], c[1], c[2] }, ctx->dst.encoding2lms); |
| |
| return clip_gamma(ipt, COLORIMETRIC_GAMMA, ctx->dst); |
| } |
| |
| static IPT saturation(const CmsCtx * ctx, IPT ipt) |
| { |
| RGB rgb = ipt2rgb(ipt, ctx->tmp.lms2content); |
| return rgb2ipt(rgb, ctx->dst.content2lms); |
| } |
| |
| static av_always_inline av_const uint16_t av_round16f(float x) |
| { |
| return av_clip_uint16(x * (UINT16_MAX - 1) + 0.5f); |
| } |
| |
| /* Call this whenever the hue changes inside the loop body */ |
| static av_always_inline void update_hue_peaks(CmsCtx *ctx, float P, float T) |
| { |
| const float hue = atan2f(T, P); |
| switch (ctx->map.intent) { |
| case SWS_INTENT_PERCEPTUAL: |
| ctx->tmp.peak = saturate(hue, ctx->tmp); |
| /* fall through */ |
| case SWS_INTENT_RELATIVE_COLORIMETRIC: |
| case SWS_INTENT_ABSOLUTE_COLORIMETRIC: |
| ctx->dst.peak = saturate(hue, ctx->dst); |
| return; |
| default: |
| return; |
| } |
| } |
| |
| static void generate_slice(void *priv, int jobnr, int threadnr, int nb_jobs, |
| int nb_threads) |
| { |
| CmsCtx ctx = *(const CmsCtx *) priv; |
| |
| const int slice_start = jobnr * ctx.slice_size; |
| const int slice_stride = ctx.size_input * ctx.size_input; |
| const int slice_end = FFMIN((jobnr + 1) * ctx.slice_size, ctx.size_input); |
| v3u16_t *input = &ctx.input[slice_start * slice_stride]; |
| |
| const int output_slice_h = (ctx.size_output_PT + nb_jobs - 1) / nb_jobs; |
| const int output_start = jobnr * output_slice_h; |
| const int output_stride = ctx.size_output_PT * ctx.size_output_I; |
| const int output_end = FFMIN((jobnr + 1) * output_slice_h, ctx.size_output_PT); |
| v3u16_t *output = ctx.output ? &ctx.output[output_start * output_stride] : NULL; |
| |
| const float I_scale = 1.0f / (ctx.src.Imax - ctx.src.Imin); |
| const float I_offset = -ctx.src.Imin * I_scale; |
| const float PT_offset = (float) (1 << 15) / (UINT16_MAX - 1); |
| |
| const float input_scale = 1.0f / (ctx.size_input - 1); |
| const float output_scale_PT = 1.0f / (ctx.size_output_PT - 1); |
| const float output_scale_I = (ctx.tmp.Imax - ctx.tmp.Imin) / |
| (ctx.size_output_I - 1); |
| |
| for (int Bx = slice_start; Bx < slice_end; Bx++) { |
| const float B = input_scale * Bx; |
| for (int Gx = 0; Gx < ctx.size_input; Gx++) { |
| const float G = input_scale * Gx; |
| for (int Rx = 0; Rx < ctx.size_input; Rx++) { |
| double c[3] = { input_scale * Rx, G, B }; |
| RGB rgb; |
| IPT ipt; |
| |
| ctx.src.eotf(ctx.src.Lw, ctx.src.Lb, c); |
| rgb = (RGB) { c[0], c[1], c[2] }; |
| ipt = rgb2ipt(rgb, ctx.src.encoding2lms); |
| |
| if (output) { |
| /* Save intermediate value to 3DLUT */ |
| *input++ = (v3u16_t) { |
| av_round16f(I_scale * ipt.I + I_offset), |
| av_round16f(ipt.P + PT_offset), |
| av_round16f(ipt.T + PT_offset), |
| }; |
| } else { |
| update_hue_peaks(&ctx, ipt.P, ipt.T); |
| |
| ipt = tone_map_apply(&ctx, ipt); |
| ipt = ctx.adapt_colors(&ctx, ipt); |
| rgb = ipt2rgb(ipt, ctx.dst.lms2encoding); |
| |
| c[0] = rgb.R; |
| c[1] = rgb.G; |
| c[2] = rgb.B; |
| ctx.dst.eotf_inv(ctx.dst.Lw, ctx.dst.Lb, c); |
| *input++ = (v3u16_t) { |
| av_round16f(c[0]), |
| av_round16f(c[1]), |
| av_round16f(c[2]), |
| }; |
| } |
| } |
| } |
| } |
| |
| if (!output) |
| return; |
| |
| /* Generate split gamut mapping LUT */ |
| for (int Tx = output_start; Tx < output_end; Tx++) { |
| const float T = output_scale_PT * Tx - PT_offset; |
| for (int Px = 0; Px < ctx.size_output_PT; Px++) { |
| const float P = output_scale_PT * Px - PT_offset; |
| update_hue_peaks(&ctx, P, T); |
| |
| for (int Ix = 0; Ix < ctx.size_output_I; Ix++) { |
| const float I = output_scale_I * Ix + ctx.tmp.Imin; |
| IPT ipt = ctx.adapt_colors(&ctx, (IPT) { I, P, T }); |
| RGB rgb = ipt2rgb(ipt, ctx.dst.lms2encoding); |
| double c[3] = { rgb.R, rgb.G, rgb.B }; |
| ctx.dst.eotf_inv(ctx.dst.Lw, ctx.dst.Lb, c); |
| *output++ = (v3u16_t) { |
| av_round16f(c[0]), |
| av_round16f(c[1]), |
| av_round16f(c[2]), |
| }; |
| } |
| } |
| } |
| } |
| |
| int ff_sws_color_map_generate_static(v3u16_t *lut, int size, const SwsColorMap *map) |
| { |
| return ff_sws_color_map_generate_dynamic(lut, NULL, size, 1, 1, map); |
| } |
| |
| int ff_sws_color_map_generate_dynamic(v3u16_t *input, v3u16_t *output, |
| int size_input, int size_I, int size_PT, |
| const SwsColorMap *map) |
| { |
| AVSliceThread *slicethread; |
| int ret, num_slices; |
| |
| CmsCtx ctx = { |
| .map = *map, |
| .input = input, |
| .output = output, |
| .size_input = size_input, |
| .size_output_I = size_I, |
| .size_output_PT = size_PT, |
| .src = gamut_from_colorspace(map->src), |
| .dst = gamut_from_colorspace(map->dst), |
| }; |
| |
| switch (ctx.map.intent) { |
| case SWS_INTENT_PERCEPTUAL: ctx.adapt_colors = perceptual; break; |
| case SWS_INTENT_RELATIVE_COLORIMETRIC: ctx.adapt_colors = relative; break; |
| case SWS_INTENT_SATURATION: ctx.adapt_colors = saturation; break; |
| case SWS_INTENT_ABSOLUTE_COLORIMETRIC: ctx.adapt_colors = absolute; break; |
| default: return AVERROR(EINVAL); |
| } |
| |
| if (!output) { |
| /* Tone mapping is handled in a separate step when using dynamic TM */ |
| tone_map_setup(&ctx, false); |
| } |
| |
| /* Intermediate color space after tone mapping */ |
| ctx.tmp = ctx.src; |
| ctx.tmp.Lb = ctx.dst.Lb; |
| ctx.tmp.Lw = ctx.dst.Lw; |
| ctx.tmp.Imin = ctx.dst.Imin; |
| ctx.tmp.Imax = ctx.dst.Imax; |
| |
| if (ctx.map.intent == SWS_INTENT_ABSOLUTE_COLORIMETRIC) { |
| /** |
| * The IPT transform already implies an explicit white point adaptation |
| * from src to dst, so to get absolute colorimetric semantics we have |
| * to explicitly undo this adaptation with a * corresponding inverse. |
| */ |
| ctx.adaptation = ff_sws_get_adaptation(&ctx.map.dst.gamut, |
| ctx.dst.wp, ctx.src.wp); |
| } |
| |
| ret = avpriv_slicethread_create(&slicethread, &ctx, generate_slice, NULL, 0); |
| if (ret < 0) |
| return ret; |
| |
| ctx.slice_size = (ctx.size_input + ret - 1) / ret; |
| num_slices = (ctx.size_input + ctx.slice_size - 1) / ctx.slice_size; |
| avpriv_slicethread_execute(slicethread, num_slices, 0); |
| avpriv_slicethread_free(&slicethread); |
| return 0; |
| } |
| |
| void ff_sws_tone_map_generate(v2u16_t *lut, int size, const SwsColorMap *map) |
| { |
| CmsCtx ctx = { |
| .map = *map, |
| .src = gamut_from_colorspace(map->src), |
| .dst = gamut_from_colorspace(map->dst), |
| }; |
| |
| const float src_scale = (ctx.src.Imax - ctx.src.Imin) / (size - 1); |
| const float src_offset = ctx.src.Imin; |
| const float dst_scale = 1.0f / (ctx.dst.Imax - ctx.dst.Imin); |
| const float dst_offset = -ctx.dst.Imin * dst_scale; |
| |
| tone_map_setup(&ctx, true); |
| |
| for (int i = 0; i < size; i++) { |
| const float I = src_scale * i + src_offset; |
| IPT ipt = tone_map_apply(&ctx, (IPT) { I, 1.0f }); |
| lut[i] = (v2u16_t) { |
| av_round16f(dst_scale * ipt.I + dst_offset), |
| av_clip_uint16(ipt.P * (1 << 15) + 0.5f), |
| }; |
| } |
| } |