| /* |
| * Common parts of the AAC decoders |
| * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) |
| * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) |
| * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com> |
| * |
| * AAC LATM decoder |
| * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz> |
| * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net> |
| * |
| * AAC decoder fixed-point implementation |
| * Copyright (c) 2013 |
| * MIPS Technologies, Inc., California. |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /* We use several quantization functions here (Q31, Q30), |
| * for which we need this to be defined for them to work as expected. */ |
| #define USE_FIXED 1 |
| |
| #include "config_components.h" |
| |
| #include <limits.h> |
| #include <stddef.h> |
| |
| #include "aacdec.h" |
| #include "aacdec_tab.h" |
| #include "aacdec_usac.h" |
| |
| #include "libavcodec/aac.h" |
| #include "libavcodec/aac_defines.h" |
| #include "libavcodec/aacsbr.h" |
| #include "libavcodec/aactab.h" |
| #include "libavcodec/adts_header.h" |
| |
| #include "libavcodec/avcodec.h" |
| #include "libavcodec/internal.h" |
| #include "libavcodec/codec_internal.h" |
| #include "libavcodec/decode.h" |
| #include "libavcodec/profiles.h" |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/error.h" |
| #include "libavutil/log.h" |
| #include "libavutil/macros.h" |
| #include "libavutil/mem.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/tx.h" |
| #include "libavutil/version.h" |
| #include "libavutil/refstruct.h" |
| |
| /* |
| * supported tools |
| * |
| * Support? Name |
| * N (code in SoC repo) gain control |
| * Y block switching |
| * Y window shapes - standard |
| * N window shapes - Low Delay |
| * Y filterbank - standard |
| * N (code in SoC repo) filterbank - Scalable Sample Rate |
| * Y Temporal Noise Shaping |
| * Y Long Term Prediction |
| * Y intensity stereo |
| * Y channel coupling |
| * Y frequency domain prediction |
| * Y Perceptual Noise Substitution |
| * Y Mid/Side stereo |
| * N Scalable Inverse AAC Quantization |
| * N Frequency Selective Switch |
| * N upsampling filter |
| * Y quantization & coding - AAC |
| * N quantization & coding - TwinVQ |
| * N quantization & coding - BSAC |
| * N AAC Error Resilience tools |
| * N Error Resilience payload syntax |
| * N Error Protection tool |
| * N CELP |
| * N Silence Compression |
| * N HVXC |
| * N HVXC 4kbits/s VR |
| * N Structured Audio tools |
| * N Structured Audio Sample Bank Format |
| * N MIDI |
| * N Harmonic and Individual Lines plus Noise |
| * N Text-To-Speech Interface |
| * Y Spectral Band Replication |
| * Y (not in this code) Layer-1 |
| * Y (not in this code) Layer-2 |
| * Y (not in this code) Layer-3 |
| * N SinuSoidal Coding (Transient, Sinusoid, Noise) |
| * Y Parametric Stereo |
| * N Direct Stream Transfer |
| * Y (not in fixed point code) Enhanced AAC Low Delay (ER AAC ELD) |
| * |
| * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. |
| * - HE AAC v2 comprises LC AAC with Spectral Band Replication and |
| Parametric Stereo. |
| */ |
| |
| #define overread_err "Input buffer exhausted before END element found\n" |
| |
| static int count_channels(uint8_t (*layout)[3], int tags) |
| { |
| int i, sum = 0; |
| for (i = 0; i < tags; i++) { |
| int syn_ele = layout[i][0]; |
| int pos = layout[i][2]; |
| sum += (1 + (syn_ele == TYPE_CPE)) * |
| (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC); |
| } |
| return sum; |
| } |
| |
| /** |
| * Check for the channel element in the current channel position configuration. |
| * If it exists, make sure the appropriate element is allocated and map the |
| * channel order to match the internal FFmpeg channel layout. |
| * |
| * @param che_pos current channel position configuration |
| * @param type channel element type |
| * @param id channel element id |
| * @param channels count of the number of channels in the configuration |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static av_cold int che_configure(AACDecContext *ac, |
| enum ChannelPosition che_pos, |
| int type, int id, int *channels) |
| { |
| if (*channels >= MAX_CHANNELS) |
| return AVERROR_INVALIDDATA; |
| if (che_pos) { |
| if (!ac->che[type][id]) { |
| int ret = ac->proc.sbr_ctx_alloc_init(ac, &ac->che[type][id], type); |
| if (ret < 0) |
| return ret; |
| } |
| if (type != TYPE_CCE) { |
| if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) { |
| av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0]; |
| if (type == TYPE_CPE || |
| (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) { |
| ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1]; |
| } |
| } |
| } else { |
| if (ac->che[type][id]) { |
| for (int i = 0; i < FF_ARRAY_ELEMS(ac->tag_che_map); i++) { |
| for (int j = 0; j < MAX_ELEM_ID; j++) { |
| if (ac->tag_che_map[i][j] == ac->che[type][id]) |
| ac->tag_che_map[i][j] = NULL; |
| } |
| } |
| ac->proc.sbr_ctx_close(ac->che[type][id]); |
| } |
| av_freep(&ac->che[type][id]); |
| memset(ac->output_element, 0, sizeof(ac->output_element)); |
| } |
| return 0; |
| } |
| |
| static int frame_configure_elements(AVCodecContext *avctx) |
| { |
| AACDecContext *ac = avctx->priv_data; |
| int type, id, ch, ret; |
| |
| /* set channel pointers to internal buffers by default */ |
| for (type = 0; type < 4; type++) { |
| for (id = 0; id < MAX_ELEM_ID; id++) { |
| ChannelElement *che = ac->che[type][id]; |
| if (che) { |
| che->ch[0].output = che->ch[0].ret_buf; |
| che->ch[1].output = che->ch[1].ret_buf; |
| } |
| } |
| } |
| |
| /* get output buffer */ |
| av_frame_unref(ac->frame); |
| if (!avctx->ch_layout.nb_channels) |
| return 1; |
| |
| ac->frame->nb_samples = 2048; |
| if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0) |
| return ret; |
| |
| /* map output channel pointers to AVFrame data */ |
| for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) { |
| if (ac->output_element[ch]) |
| ac->output_element[ch]->output = (void *)ac->frame->extended_data[ch]; |
| } |
| |
| return 0; |
| } |
| |
| struct elem_to_channel { |
| uint64_t av_position; |
| uint8_t syn_ele; |
| uint8_t elem_id; |
| uint8_t aac_position; |
| }; |
| |
| static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], |
| uint8_t (*layout_map)[3], int offset, uint64_t left, |
| uint64_t right, int pos, uint64_t *layout) |
| { |
| if (layout_map[offset][0] == TYPE_CPE) { |
| e2c_vec[offset] = (struct elem_to_channel) { |
| .av_position = left | right, |
| .syn_ele = TYPE_CPE, |
| .elem_id = layout_map[offset][1], |
| .aac_position = pos |
| }; |
| if (e2c_vec[offset].av_position != UINT64_MAX) |
| *layout |= e2c_vec[offset].av_position; |
| |
| return 1; |
| } else { |
| e2c_vec[offset] = (struct elem_to_channel) { |
| .av_position = left, |
| .syn_ele = TYPE_SCE, |
| .elem_id = layout_map[offset][1], |
| .aac_position = pos |
| }; |
| e2c_vec[offset + 1] = (struct elem_to_channel) { |
| .av_position = right, |
| .syn_ele = TYPE_SCE, |
| .elem_id = layout_map[offset + 1][1], |
| .aac_position = pos |
| }; |
| if (left != UINT64_MAX) |
| *layout |= left; |
| |
| if (right != UINT64_MAX) |
| *layout |= right; |
| |
| return 2; |
| } |
| } |
| |
| static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, |
| int current) |
| { |
| int num_pos_channels = 0; |
| int first_cpe = 0; |
| int sce_parity = 0; |
| int i; |
| for (i = current; i < tags; i++) { |
| if (layout_map[i][2] != pos) |
| break; |
| if (layout_map[i][0] == TYPE_CPE) { |
| if (sce_parity) { |
| if (pos == AAC_CHANNEL_FRONT && !first_cpe) { |
| sce_parity = 0; |
| } else { |
| return -1; |
| } |
| } |
| num_pos_channels += 2; |
| first_cpe = 1; |
| } else { |
| num_pos_channels++; |
| sce_parity ^= (pos != AAC_CHANNEL_LFE); |
| } |
| } |
| if (sce_parity && |
| (pos == AAC_CHANNEL_FRONT && first_cpe)) |
| return -1; |
| |
| return num_pos_channels; |
| } |
| |
| static int assign_channels(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t (*layout_map)[3], |
| uint64_t *layout, int tags, int layer, int pos, int *current) |
| { |
| int i = *current, j = 0; |
| int nb_channels = count_paired_channels(layout_map, tags, pos, i); |
| |
| if (nb_channels < 0 || nb_channels > 5) |
| return 0; |
| |
| if (pos == AAC_CHANNEL_LFE) { |
| while (nb_channels) { |
| if (ff_aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE) |
| return -1; |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = 1ULL << ff_aac_channel_map[layer][pos - 1][j], |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = pos |
| }; |
| *layout |= e2c_vec[i].av_position; |
| i++; |
| j++; |
| nb_channels--; |
| } |
| *current = i; |
| |
| return 0; |
| } |
| |
| while (nb_channels & 1) { |
| if (ff_aac_channel_map[layer][pos - 1][0] == AV_CHAN_NONE) |
| return -1; |
| if (ff_aac_channel_map[layer][pos - 1][0] == AV_CHAN_UNUSED) |
| break; |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = 1ULL << ff_aac_channel_map[layer][pos - 1][0], |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = pos |
| }; |
| *layout |= e2c_vec[i].av_position; |
| i++; |
| nb_channels--; |
| } |
| |
| j = (pos != AAC_CHANNEL_SIDE) && nb_channels <= 3 ? 3 : 1; |
| while (nb_channels >= 2) { |
| if (ff_aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE || |
| ff_aac_channel_map[layer][pos - 1][j+1] == AV_CHAN_NONE) |
| return -1; |
| i += assign_pair(e2c_vec, layout_map, i, |
| 1ULL << ff_aac_channel_map[layer][pos - 1][j], |
| 1ULL << ff_aac_channel_map[layer][pos - 1][j+1], |
| pos, layout); |
| j += 2; |
| nb_channels -= 2; |
| } |
| while (nb_channels & 1) { |
| if (ff_aac_channel_map[layer][pos - 1][5] == AV_CHAN_NONE) |
| return -1; |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = 1ULL << ff_aac_channel_map[layer][pos - 1][5], |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = pos |
| }; |
| *layout |= e2c_vec[i].av_position; |
| i++; |
| nb_channels--; |
| } |
| if (nb_channels) |
| return -1; |
| |
| *current = i; |
| |
| return 0; |
| } |
| |
| static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) |
| { |
| int i, n, total_non_cc_elements; |
| struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } }; |
| uint64_t layout = 0; |
| |
| if (FF_ARRAY_ELEMS(e2c_vec) < tags) |
| return 0; |
| |
| for (n = 0, i = 0; n < 3 && i < tags; n++) { |
| int ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_FRONT, &i); |
| if (ret < 0) |
| return 0; |
| ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_SIDE, &i); |
| if (ret < 0) |
| return 0; |
| ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_BACK, &i); |
| if (ret < 0) |
| return 0; |
| ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_LFE, &i); |
| if (ret < 0) |
| return 0; |
| } |
| |
| total_non_cc_elements = n = i; |
| |
| if (layout == AV_CH_LAYOUT_22POINT2) { |
| // For 22.2 reorder the result as needed |
| FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[0]); // FL & FR first (final), FC third |
| FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[1]); // FC second (final), FLc & FRc third |
| FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[2]); // LFE1 third (final), FLc & FRc seventh |
| FFSWAP(struct elem_to_channel, e2c_vec[4], e2c_vec[3]); // BL & BR fourth (final), SiL & SiR fifth |
| FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[4]); // FLc & FRc fifth (final), SiL & SiR seventh |
| FFSWAP(struct elem_to_channel, e2c_vec[7], e2c_vec[6]); // LFE2 seventh (final), SiL & SiR eight (final) |
| FFSWAP(struct elem_to_channel, e2c_vec[9], e2c_vec[8]); // TpFL & TpFR ninth (final), TFC tenth (final) |
| FFSWAP(struct elem_to_channel, e2c_vec[11], e2c_vec[10]); // TC eleventh (final), TpSiL & TpSiR twelfth |
| FFSWAP(struct elem_to_channel, e2c_vec[12], e2c_vec[11]); // TpBL & TpBR twelfth (final), TpSiL & TpSiR thirteenth (final) |
| } else { |
| // For everything else, utilize the AV channel position define as a |
| // stable sort. |
| do { |
| int next_n = 0; |
| for (i = 1; i < n; i++) |
| if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) { |
| FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]); |
| next_n = i; |
| } |
| n = next_n; |
| } while (n > 0); |
| |
| } |
| |
| for (i = 0; i < total_non_cc_elements; i++) { |
| layout_map[i][0] = e2c_vec[i].syn_ele; |
| layout_map[i][1] = e2c_vec[i].elem_id; |
| layout_map[i][2] = e2c_vec[i].aac_position; |
| } |
| |
| return layout; |
| } |
| |
| static void copy_oc(OutputConfiguration *dst, OutputConfiguration *src) |
| { |
| int i; |
| |
| for (i = 0; i < src->usac.nb_elems; i++) { |
| AACUsacElemConfig *src_e = &src->usac.elems[i]; |
| AACUsacElemConfig *dst_e = &dst->usac.elems[i]; |
| /* dst_e->ext.pl_buf is guaranteed to be set to src_e->ext.pl_buf |
| * upon this function's return */ |
| av_refstruct_replace(&dst_e->ext.pl_buf, src_e->ext.pl_buf); |
| } |
| |
| /* Unref all additional buffers to close leaks */ |
| for (; i < dst->usac.nb_elems; i++) |
| av_refstruct_unref(&dst->usac.elems[i].ext.pl_buf); |
| |
| /* Set all other properties */ |
| *dst = *src; |
| } |
| |
| /** |
| * Save current output configuration if and only if it has been locked. |
| */ |
| static int push_output_configuration(AACDecContext *ac) |
| { |
| int pushed = 0; |
| |
| if (ac->oc[1].status == OC_LOCKED || ac->oc[0].status == OC_NONE) { |
| copy_oc(&ac->oc[0], &ac->oc[1]); |
| pushed = 1; |
| } |
| ac->oc[1].status = OC_NONE; |
| return pushed; |
| } |
| |
| /** |
| * Restore the previous output configuration if and only if the current |
| * configuration is unlocked. |
| */ |
| static void pop_output_configuration(AACDecContext *ac) |
| { |
| if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) { |
| copy_oc(&ac->oc[1], &ac->oc[0]); |
| |
| ac->avctx->ch_layout = ac->oc[1].ch_layout; |
| ff_aac_output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, |
| ac->oc[1].status, 0); |
| } |
| } |
| |
| /** |
| * Configure output channel order based on the current program |
| * configuration element. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| int ff_aac_output_configure(AACDecContext *ac, |
| uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags, |
| enum OCStatus oc_type, int get_new_frame) |
| { |
| AVCodecContext *avctx = ac->avctx; |
| int i, channels = 0, ret; |
| uint64_t layout = 0; |
| uint8_t id_map[TYPE_END][MAX_ELEM_ID] = {{ 0 }}; |
| uint8_t type_counts[TYPE_END] = { 0 }; |
| |
| if (get_new_frame && !ac->frame) |
| return AVERROR_INVALIDDATA; |
| |
| if (ac->oc[1].layout_map != layout_map) { |
| memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0])); |
| ac->oc[1].layout_map_tags = tags; |
| } |
| for (i = 0; i < tags; i++) { |
| int type = layout_map[i][0]; |
| int id = layout_map[i][1]; |
| id_map[type][id] = type_counts[type]++; |
| if (id_map[type][id] >= MAX_ELEM_ID) { |
| avpriv_request_sample(ac->avctx, "Too large remapped id"); |
| return AVERROR_PATCHWELCOME; |
| } |
| } |
| // Try to sniff a reasonable channel order, otherwise output the |
| // channels in the order the PCE declared them. |
| if (ac->output_channel_order == CHANNEL_ORDER_DEFAULT) |
| layout = sniff_channel_order(layout_map, tags); |
| for (i = 0; i < tags; i++) { |
| int type = layout_map[i][0]; |
| int id = layout_map[i][1]; |
| int iid = id_map[type][id]; |
| int position = layout_map[i][2]; |
| // Allocate or free elements depending on if they are in the |
| // current program configuration. |
| ret = che_configure(ac, position, type, iid, &channels); |
| if (ret < 0) |
| return ret; |
| ac->tag_che_map[type][id] = ac->che[type][iid]; |
| } |
| if (ac->oc[1].m4ac.ps == 1 && channels == 2) { |
| if (layout == AV_CH_FRONT_CENTER) { |
| layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT; |
| } else { |
| layout = 0; |
| } |
| } |
| |
| av_channel_layout_uninit(&ac->oc[1].ch_layout); |
| if (layout) |
| av_channel_layout_from_mask(&ac->oc[1].ch_layout, layout); |
| else { |
| ac->oc[1].ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; |
| ac->oc[1].ch_layout.nb_channels = channels; |
| } |
| |
| av_channel_layout_copy(&avctx->ch_layout, &ac->oc[1].ch_layout); |
| ac->oc[1].status = oc_type; |
| |
| if (get_new_frame) { |
| if ((ret = frame_configure_elements(ac->avctx)) < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static av_cold void flush(AVCodecContext *avctx) |
| { |
| AACDecContext *ac= avctx->priv_data; |
| int type, i, j; |
| |
| for (type = 3; type >= 0; type--) { |
| for (i = 0; i < MAX_ELEM_ID; i++) { |
| ChannelElement *che = ac->che[type][i]; |
| if (che) { |
| for (j = 0; j <= 1; j++) { |
| memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved)); |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_AAC_DECODER |
| ff_aac_usac_reset_state(ac, &ac->oc[1]); |
| #endif |
| } |
| |
| /** |
| * Set up channel positions based on a default channel configuration |
| * as specified in table 1.17. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| int ff_aac_set_default_channel_config(AACDecContext *ac, AVCodecContext *avctx, |
| uint8_t (*layout_map)[3], |
| int *tags, |
| int channel_config) |
| { |
| if (channel_config < 1 || (channel_config > 7 && channel_config < 11) || |
| channel_config > 14) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid default channel configuration (%d)\n", |
| channel_config); |
| return AVERROR_INVALIDDATA; |
| } |
| *tags = ff_tags_per_config[channel_config]; |
| memcpy(layout_map, ff_aac_channel_layout_map[channel_config - 1], |
| *tags * sizeof(*layout_map)); |
| |
| /* |
| * AAC specification has 7.1(wide) as a default layout for 8-channel streams. |
| * However, at least Nero AAC encoder encodes 7.1 streams using the default |
| * channel config 7, mapping the side channels of the original audio stream |
| * to the second AAC_CHANNEL_FRONT pair in the AAC stream. Similarly, e.g. FAAD |
| * decodes the second AAC_CHANNEL_FRONT pair as side channels, therefore decoding |
| * the incorrect streams as if they were correct (and as the encoder intended). |
| * |
| * As actual intended 7.1(wide) streams are very rare, default to assuming a |
| * 7.1 layout was intended. |
| */ |
| if (channel_config == 7 && avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) { |
| layout_map[2][2] = AAC_CHANNEL_BACK; |
| |
| if (!ac || !ac->warned_71_wide++) { |
| av_log(avctx, AV_LOG_INFO, "Assuming an incorrectly encoded 7.1 channel layout" |
| " instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode" |
| " according to the specification instead.\n", FF_COMPLIANCE_STRICT); |
| } |
| } |
| |
| return 0; |
| } |
| |
| ChannelElement *ff_aac_get_che(AACDecContext *ac, int type, int elem_id) |
| { |
| /* For PCE based channel configurations map the channels solely based |
| * on tags. */ |
| if (!ac->oc[1].m4ac.chan_config) { |
| return ac->tag_che_map[type][elem_id]; |
| } |
| // Allow single CPE stereo files to be signalled with mono configuration. |
| if (!ac->tags_mapped && type == TYPE_CPE && |
| ac->oc[1].m4ac.chan_config == 1) { |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int layout_map_tags; |
| push_output_configuration(ac); |
| |
| av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n"); |
| |
| if (ff_aac_set_default_channel_config(ac, ac->avctx, layout_map, |
| &layout_map_tags, 2) < 0) |
| return NULL; |
| if (ff_aac_output_configure(ac, layout_map, layout_map_tags, |
| OC_TRIAL_FRAME, 1) < 0) |
| return NULL; |
| |
| ac->oc[1].m4ac.chan_config = 2; |
| ac->oc[1].m4ac.ps = 0; |
| } |
| // And vice-versa |
| if (!ac->tags_mapped && type == TYPE_SCE && |
| ac->oc[1].m4ac.chan_config == 2) { |
| uint8_t layout_map[MAX_ELEM_ID * 4][3]; |
| int layout_map_tags; |
| push_output_configuration(ac); |
| |
| av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n"); |
| |
| layout_map_tags = 2; |
| layout_map[0][0] = layout_map[1][0] = TYPE_SCE; |
| layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; |
| layout_map[0][1] = 0; |
| layout_map[1][1] = 1; |
| if (ff_aac_output_configure(ac, layout_map, layout_map_tags, |
| OC_TRIAL_FRAME, 1) < 0) |
| return NULL; |
| |
| if (ac->oc[1].m4ac.sbr) |
| ac->oc[1].m4ac.ps = -1; |
| } |
| /* For indexed channel configurations map the channels solely based |
| * on position. */ |
| switch (ac->oc[1].m4ac.chan_config) { |
| case 14: |
| if (ac->tags_mapped > 2 && ((type == TYPE_CPE && elem_id < 3) || |
| (type == TYPE_LFE && elem_id < 1))) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; |
| } |
| case 13: |
| if (ac->tags_mapped > 3 && ((type == TYPE_CPE && elem_id < 8) || |
| (type == TYPE_SCE && elem_id < 6) || |
| (type == TYPE_LFE && elem_id < 2))) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; |
| } |
| case 12: |
| case 7: |
| if (ac->tags_mapped == 3 && type == TYPE_CPE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; |
| } |
| case 11: |
| if (ac->tags_mapped == 3 && type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| case 6: |
| /* Some streams incorrectly code 5.1 audio as |
| * SCE[0] CPE[0] CPE[1] SCE[1] |
| * instead of |
| * SCE[0] CPE[0] CPE[1] LFE[0]. |
| * If we seem to have encountered such a stream, transfer |
| * the LFE[0] element to the SCE[1]'s mapping */ |
| if (ac->tags_mapped == ff_tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
| if (!ac->warned_remapping_once && (type != TYPE_LFE || elem_id != 0)) { |
| av_log(ac->avctx, AV_LOG_WARNING, |
| "This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n", |
| type == TYPE_SCE ? "SCE" : "LFE", elem_id); |
| ac->warned_remapping_once++; |
| } |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; |
| } |
| case 5: |
| if (ac->tags_mapped == 2 && type == TYPE_CPE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; |
| } |
| case 4: |
| /* Some streams incorrectly code 4.0 audio as |
| * SCE[0] CPE[0] LFE[0] |
| * instead of |
| * SCE[0] CPE[0] SCE[1]. |
| * If we seem to have encountered such a stream, transfer |
| * the SCE[1] element to the LFE[0]'s mapping */ |
| if (ac->tags_mapped == ff_tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
| if (!ac->warned_remapping_once && (type != TYPE_SCE || elem_id != 1)) { |
| av_log(ac->avctx, AV_LOG_WARNING, |
| "This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n", |
| type == TYPE_SCE ? "SCE" : "LFE", elem_id); |
| ac->warned_remapping_once++; |
| } |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| if (ac->tags_mapped == 2 && |
| ac->oc[1].m4ac.chan_config == 4 && |
| type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| case 3: |
| case 2: |
| if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && |
| type == TYPE_CPE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; |
| } else if (ac->tags_mapped == 1 && ac->oc[1].m4ac.chan_config == 2 && |
| type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| case 1: |
| if (!ac->tags_mapped && type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; |
| } |
| default: |
| return NULL; |
| } |
| } |
| |
| /** |
| * Decode an array of 4 bit element IDs, optionally interleaved with a |
| * stereo/mono switching bit. |
| * |
| * @param type speaker type/position for these channels |
| */ |
| static void decode_channel_map(uint8_t layout_map[][3], |
| enum ChannelPosition type, |
| GetBitContext *gb, int n) |
| { |
| while (n--) { |
| enum RawDataBlockType syn_ele; |
| switch (type) { |
| case AAC_CHANNEL_FRONT: |
| case AAC_CHANNEL_BACK: |
| case AAC_CHANNEL_SIDE: |
| syn_ele = get_bits1(gb); |
| break; |
| case AAC_CHANNEL_CC: |
| skip_bits1(gb); |
| syn_ele = TYPE_CCE; |
| break; |
| case AAC_CHANNEL_LFE: |
| syn_ele = TYPE_LFE; |
| break; |
| default: |
| // AAC_CHANNEL_OFF has no channel map |
| av_assert0(0); |
| } |
| layout_map[0][0] = syn_ele; |
| layout_map[0][1] = get_bits(gb, 4); |
| layout_map[0][2] = type; |
| layout_map++; |
| } |
| } |
| |
| static inline void relative_align_get_bits(GetBitContext *gb, |
| int reference_position) { |
| int n = (reference_position - get_bits_count(gb) & 7); |
| if (n) |
| skip_bits(gb, n); |
| } |
| |
| /** |
| * Decode program configuration element; reference: table 4.2. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, |
| uint8_t (*layout_map)[3], |
| GetBitContext *gb, int byte_align_ref) |
| { |
| int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc; |
| int sampling_index; |
| int comment_len; |
| int tags; |
| |
| skip_bits(gb, 2); // object_type |
| |
| sampling_index = get_bits(gb, 4); |
| if (m4ac->sampling_index != sampling_index) |
| av_log(avctx, AV_LOG_WARNING, |
| "Sample rate index in program config element does not " |
| "match the sample rate index configured by the container.\n"); |
| |
| num_front = get_bits(gb, 4); |
| num_side = get_bits(gb, 4); |
| num_back = get_bits(gb, 4); |
| num_lfe = get_bits(gb, 2); |
| num_assoc_data = get_bits(gb, 3); |
| num_cc = get_bits(gb, 4); |
| |
| if (get_bits1(gb)) |
| skip_bits(gb, 4); // mono_mixdown_tag |
| if (get_bits1(gb)) |
| skip_bits(gb, 4); // stereo_mixdown_tag |
| |
| if (get_bits1(gb)) |
| skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround |
| |
| if (get_bits_left(gb) < 5 * (num_front + num_side + num_back + num_cc) + 4 *(num_lfe + num_assoc_data + num_cc)) { |
| av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); |
| return -1; |
| } |
| decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front); |
| tags = num_front; |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side); |
| tags += num_side; |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back); |
| tags += num_back; |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe); |
| tags += num_lfe; |
| |
| skip_bits_long(gb, 4 * num_assoc_data); |
| |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc); |
| tags += num_cc; |
| |
| relative_align_get_bits(gb, byte_align_ref); |
| |
| /* comment field, first byte is length */ |
| comment_len = get_bits(gb, 8) * 8; |
| if (get_bits_left(gb) < comment_len) { |
| av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits_long(gb, comment_len); |
| return tags; |
| } |
| |
| /** |
| * Decode GA "General Audio" specific configuration; reference: table 4.1. |
| * |
| * @param ac pointer to AACDecContext, may be null |
| * @param avctx pointer to AVCCodecContext, used for logging |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_ga_specific_config(AACDecContext *ac, AVCodecContext *avctx, |
| GetBitContext *gb, |
| int get_bit_alignment, |
| MPEG4AudioConfig *m4ac, |
| int channel_config) |
| { |
| int extension_flag, ret, ep_config, res_flags; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int tags = 0; |
| |
| m4ac->frame_length_short = get_bits1(gb); |
| if (m4ac->frame_length_short && m4ac->sbr == 1) { |
| avpriv_report_missing_feature(avctx, "SBR with 960 frame length"); |
| if (ac) ac->warned_960_sbr = 1; |
| m4ac->sbr = 0; |
| m4ac->ps = 0; |
| } |
| |
| if (get_bits1(gb)) // dependsOnCoreCoder |
| skip_bits(gb, 14); // coreCoderDelay |
| extension_flag = get_bits1(gb); |
| |
| if (m4ac->object_type == AOT_AAC_SCALABLE || |
| m4ac->object_type == AOT_ER_AAC_SCALABLE) |
| skip_bits(gb, 3); // layerNr |
| |
| if (channel_config == 0) { |
| skip_bits(gb, 4); // element_instance_tag |
| tags = decode_pce(avctx, m4ac, layout_map, gb, get_bit_alignment); |
| if (tags < 0) |
| return tags; |
| } else { |
| if ((ret = ff_aac_set_default_channel_config(ac, avctx, layout_map, |
| &tags, channel_config))) |
| return ret; |
| } |
| |
| if (count_channels(layout_map, tags) > 1) { |
| m4ac->ps = 0; |
| } else if (m4ac->sbr == 1 && m4ac->ps == -1) |
| m4ac->ps = 1; |
| |
| if (ac && (ret = ff_aac_output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) |
| return ret; |
| |
| if (extension_flag) { |
| switch (m4ac->object_type) { |
| case AOT_ER_BSAC: |
| skip_bits(gb, 5); // numOfSubFrame |
| skip_bits(gb, 11); // layer_length |
| break; |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LTP: |
| case AOT_ER_AAC_SCALABLE: |
| case AOT_ER_AAC_LD: |
| res_flags = get_bits(gb, 3); |
| if (res_flags) { |
| avpriv_report_missing_feature(avctx, |
| "AAC data resilience (flags %x)", |
| res_flags); |
| return AVERROR_PATCHWELCOME; |
| } |
| break; |
| } |
| skip_bits1(gb); // extensionFlag3 (TBD in version 3) |
| } |
| switch (m4ac->object_type) { |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LTP: |
| case AOT_ER_AAC_SCALABLE: |
| case AOT_ER_AAC_LD: |
| ep_config = get_bits(gb, 2); |
| if (ep_config) { |
| avpriv_report_missing_feature(avctx, |
| "epConfig %d", ep_config); |
| return AVERROR_PATCHWELCOME; |
| } |
| } |
| return 0; |
| } |
| |
| static int decode_eld_specific_config(AACDecContext *ac, AVCodecContext *avctx, |
| GetBitContext *gb, |
| MPEG4AudioConfig *m4ac, |
| int channel_config) |
| { |
| int ret, ep_config, res_flags; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int tags = 0; |
| const int ELDEXT_TERM = 0; |
| |
| m4ac->ps = 0; |
| m4ac->sbr = 0; |
| m4ac->frame_length_short = get_bits1(gb); |
| |
| res_flags = get_bits(gb, 3); |
| if (res_flags) { |
| avpriv_report_missing_feature(avctx, |
| "AAC data resilience (flags %x)", |
| res_flags); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (get_bits1(gb)) { // ldSbrPresentFlag |
| avpriv_report_missing_feature(avctx, |
| "Low Delay SBR"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| while (get_bits(gb, 4) != ELDEXT_TERM) { |
| int len = get_bits(gb, 4); |
| if (len == 15) |
| len += get_bits(gb, 8); |
| if (len == 15 + 255) |
| len += get_bits(gb, 16); |
| if (get_bits_left(gb) < len * 8 + 4) { |
| av_log(avctx, AV_LOG_ERROR, overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits_long(gb, 8 * len); |
| } |
| |
| if ((ret = ff_aac_set_default_channel_config(ac, avctx, layout_map, |
| &tags, channel_config))) |
| return ret; |
| |
| if (ac && (ret = ff_aac_output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) |
| return ret; |
| |
| ep_config = get_bits(gb, 2); |
| if (ep_config) { |
| avpriv_report_missing_feature(avctx, |
| "epConfig %d", ep_config); |
| return AVERROR_PATCHWELCOME; |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode audio specific configuration; reference: table 1.13. |
| * |
| * @param ac pointer to AACDecContext, may be null |
| * @param avctx pointer to AVCCodecContext, used for logging |
| * @param m4ac pointer to MPEG4AudioConfig, used for parsing |
| * @param gb buffer holding an audio specific config |
| * @param get_bit_alignment relative alignment for byte align operations |
| * @param sync_extension look for an appended sync extension |
| * |
| * @return Returns error status or number of consumed bits. <0 - error |
| */ |
| static int decode_audio_specific_config_gb(AACDecContext *ac, |
| AVCodecContext *avctx, |
| OutputConfiguration *oc, |
| GetBitContext *gb, |
| int get_bit_alignment, |
| int sync_extension) |
| { |
| int i, ret; |
| GetBitContext gbc = *gb; |
| MPEG4AudioConfig *m4ac = &oc->m4ac; |
| MPEG4AudioConfig m4ac_bak = *m4ac; |
| |
| if ((i = ff_mpeg4audio_get_config_gb(m4ac, &gbc, sync_extension, avctx)) < 0) { |
| *m4ac = m4ac_bak; |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (m4ac->sampling_index > 12) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid sampling rate index %d\n", |
| m4ac->sampling_index); |
| *m4ac = m4ac_bak; |
| return AVERROR_INVALIDDATA; |
| } |
| if (m4ac->object_type == AOT_ER_AAC_LD && |
| (m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid low delay sampling rate index %d\n", |
| m4ac->sampling_index); |
| *m4ac = m4ac_bak; |
| return AVERROR_INVALIDDATA; |
| } |
| |
| skip_bits_long(gb, i); |
| |
| switch (m4ac->object_type) { |
| case AOT_AAC_MAIN: |
| case AOT_AAC_LC: |
| case AOT_AAC_SSR: |
| case AOT_AAC_LTP: |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LD: |
| if ((ret = decode_ga_specific_config(ac, avctx, gb, get_bit_alignment, |
| &oc->m4ac, m4ac->chan_config)) < 0) |
| return ret; |
| break; |
| case AOT_ER_AAC_ELD: |
| if ((ret = decode_eld_specific_config(ac, avctx, gb, |
| &oc->m4ac, m4ac->chan_config)) < 0) |
| return ret; |
| break; |
| #if CONFIG_AAC_DECODER |
| case AOT_USAC: |
| if ((ret = ff_aac_usac_config_decode(ac, avctx, gb, |
| oc, m4ac->chan_config)) < 0) |
| return ret; |
| break; |
| #endif |
| default: |
| avpriv_report_missing_feature(avctx, |
| "Audio object type %s%d", |
| m4ac->sbr == 1 ? "SBR+" : "", |
| m4ac->object_type); |
| return AVERROR(ENOSYS); |
| } |
| |
| ff_dlog(avctx, |
| "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", |
| m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, |
| m4ac->sample_rate, m4ac->sbr, |
| m4ac->ps); |
| |
| return get_bits_count(gb); |
| } |
| |
| static int decode_audio_specific_config(AACDecContext *ac, |
| AVCodecContext *avctx, |
| OutputConfiguration *oc, |
| const uint8_t *data, int64_t bit_size, |
| int sync_extension) |
| { |
| int i, ret; |
| GetBitContext gb; |
| |
| if (bit_size < 0 || bit_size > INT_MAX) { |
| av_log(avctx, AV_LOG_ERROR, "Audio specific config size is invalid\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ff_dlog(avctx, "audio specific config size %d\n", (int)bit_size >> 3); |
| for (i = 0; i < bit_size >> 3; i++) |
| ff_dlog(avctx, "%02x ", data[i]); |
| ff_dlog(avctx, "\n"); |
| |
| if ((ret = init_get_bits(&gb, data, bit_size)) < 0) |
| return ret; |
| |
| return decode_audio_specific_config_gb(ac, avctx, oc, &gb, 0, |
| sync_extension); |
| } |
| |
| static av_cold int decode_close(AVCodecContext *avctx) |
| { |
| AACDecContext *ac = avctx->priv_data; |
| |
| for (int i = 0; i < 2; i++) { |
| OutputConfiguration *oc = &ac->oc[i]; |
| AACUSACConfig *usac = &oc->usac; |
| for (int j = 0; j < usac->nb_elems; j++) { |
| AACUsacElemConfig *ec = &usac->elems[j]; |
| av_refstruct_unref(&ec->ext.pl_buf); |
| } |
| |
| av_channel_layout_uninit(&ac->oc[i].ch_layout); |
| } |
| |
| for (int type = 0; type < FF_ARRAY_ELEMS(ac->che); type++) { |
| for (int i = 0; i < MAX_ELEM_ID; i++) { |
| if (ac->che[type][i]) { |
| ac->proc.sbr_ctx_close(ac->che[type][i]); |
| av_freep(&ac->che[type][i]); |
| } |
| } |
| } |
| |
| av_tx_uninit(&ac->mdct96); |
| av_tx_uninit(&ac->mdct120); |
| av_tx_uninit(&ac->mdct128); |
| av_tx_uninit(&ac->mdct480); |
| av_tx_uninit(&ac->mdct512); |
| av_tx_uninit(&ac->mdct768); |
| av_tx_uninit(&ac->mdct960); |
| av_tx_uninit(&ac->mdct1024); |
| av_tx_uninit(&ac->mdct_ltp); |
| |
| // Compiler will optimize this branch away. |
| if (ac->is_fixed) |
| av_freep(&ac->RENAME_FIXED(fdsp)); |
| else |
| av_freep(&ac->fdsp); |
| |
| return 0; |
| } |
| |
| static av_cold int init_dsp(AVCodecContext *avctx) |
| { |
| AACDecContext *ac = avctx->priv_data; |
| int is_fixed = ac->is_fixed, ret; |
| float scale_fixed, scale_float; |
| const float *const scalep = is_fixed ? &scale_fixed : &scale_float; |
| enum AVTXType tx_type = is_fixed ? AV_TX_INT32_MDCT : AV_TX_FLOAT_MDCT; |
| |
| #define MDCT_INIT(s, fn, len, sval) \ |
| scale_fixed = (sval) * 128.0f; \ |
| scale_float = (sval) / 32768.0f; \ |
| ret = av_tx_init(&s, &fn, tx_type, 1, len, scalep, 0); \ |
| if (ret < 0) \ |
| return ret |
| |
| MDCT_INIT(ac->mdct96, ac->mdct96_fn, 96, 1.0/96); |
| MDCT_INIT(ac->mdct120, ac->mdct120_fn, 120, 1.0/120); |
| MDCT_INIT(ac->mdct128, ac->mdct128_fn, 128, 1.0/128); |
| MDCT_INIT(ac->mdct480, ac->mdct480_fn, 480, 1.0/480); |
| MDCT_INIT(ac->mdct512, ac->mdct512_fn, 512, 1.0/512); |
| MDCT_INIT(ac->mdct768, ac->mdct768_fn, 768, 1.0/768); |
| MDCT_INIT(ac->mdct960, ac->mdct960_fn, 960, 1.0/960); |
| MDCT_INIT(ac->mdct1024, ac->mdct1024_fn, 1024, 1.0/1024); |
| #undef MDCT_INIT |
| |
| /* LTP forward MDCT */ |
| scale_fixed = -1.0; |
| scale_float = -32786.0*2 + 36; |
| ret = av_tx_init(&ac->mdct_ltp, &ac->mdct_ltp_fn, tx_type, 0, 1024, scalep, 0); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| av_cold int ff_aac_decode_init(AVCodecContext *avctx) |
| { |
| AACDecContext *ac = avctx->priv_data; |
| int ret; |
| |
| if (avctx->sample_rate > 96000) |
| return AVERROR_INVALIDDATA; |
| |
| ff_aacdec_common_init_once(); |
| |
| ac->avctx = avctx; |
| ac->oc[1].m4ac.sample_rate = avctx->sample_rate; |
| |
| if (avctx->extradata_size > 0) { |
| if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1], |
| avctx->extradata, |
| avctx->extradata_size * 8LL, |
| 1)) < 0) |
| return ret; |
| } else { |
| int sr, i; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int layout_map_tags; |
| |
| sr = ff_aac_sample_rate_idx(avctx->sample_rate); |
| ac->oc[1].m4ac.sampling_index = sr; |
| ac->oc[1].m4ac.channels = avctx->ch_layout.nb_channels; |
| ac->oc[1].m4ac.sbr = -1; |
| ac->oc[1].m4ac.ps = -1; |
| |
| for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++) |
| if (ff_mpeg4audio_channels[i] == avctx->ch_layout.nb_channels) |
| break; |
| if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) { |
| i = 0; |
| } |
| ac->oc[1].m4ac.chan_config = i; |
| |
| if (ac->oc[1].m4ac.chan_config) { |
| int ret = ff_aac_set_default_channel_config(ac, avctx, layout_map, |
| &layout_map_tags, |
| ac->oc[1].m4ac.chan_config); |
| if (!ret) |
| ff_aac_output_configure(ac, layout_map, layout_map_tags, |
| OC_GLOBAL_HDR, 0); |
| else if (avctx->err_recognition & AV_EF_EXPLODE) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| if (avctx->ch_layout.nb_channels > MAX_CHANNELS) { |
| av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ac->random_state = 0x1f2e3d4c; |
| |
| return init_dsp(avctx); |
| } |
| |
| /** |
| * Skip data_stream_element; reference: table 4.10. |
| */ |
| static int skip_data_stream_element(AACDecContext *ac, GetBitContext *gb) |
| { |
| int byte_align = get_bits1(gb); |
| int count = get_bits(gb, 8); |
| if (count == 255) |
| count += get_bits(gb, 8); |
| if (byte_align) |
| align_get_bits(gb); |
| |
| if (get_bits_left(gb) < 8 * count) { |
| av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits_long(gb, 8 * count); |
| return 0; |
| } |
| |
| static int decode_prediction(AACDecContext *ac, IndividualChannelStream *ics, |
| GetBitContext *gb) |
| { |
| int sfb; |
| if (get_bits1(gb)) { |
| ics->predictor_reset_group = get_bits(gb, 5); |
| if (ics->predictor_reset_group == 0 || |
| ics->predictor_reset_group > 30) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Invalid Predictor Reset Group.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) { |
| ics->prediction_used[sfb] = get_bits1(gb); |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode Long Term Prediction data; reference: table 4.xx. |
| */ |
| static void decode_ltp(AACDecContext *ac, LongTermPrediction *ltp, |
| GetBitContext *gb, uint8_t max_sfb) |
| { |
| int sfb; |
| |
| ltp->lag = get_bits(gb, 11); |
| if (CONFIG_AAC_FIXED_DECODER && ac->is_fixed) |
| ltp->coef_fixed = Q30(ff_ltp_coef[get_bits(gb, 3)]); |
| else if (CONFIG_AAC_DECODER) |
| ltp->coef = ff_ltp_coef[get_bits(gb, 3)]; |
| |
| for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++) |
| ltp->used[sfb] = get_bits1(gb); |
| } |
| |
| /** |
| * Decode Individual Channel Stream info; reference: table 4.6. |
| */ |
| static int decode_ics_info(AACDecContext *ac, IndividualChannelStream *ics, |
| GetBitContext *gb) |
| { |
| const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; |
| const int aot = m4ac->object_type; |
| const int sampling_index = m4ac->sampling_index; |
| int ret_fail = AVERROR_INVALIDDATA; |
| |
| if (aot != AOT_ER_AAC_ELD) { |
| if (get_bits1(gb)) { |
| av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n"); |
| if (ac->avctx->err_recognition & AV_EF_BITSTREAM) |
| return AVERROR_INVALIDDATA; |
| } |
| ics->window_sequence[1] = ics->window_sequence[0]; |
| ics->window_sequence[0] = get_bits(gb, 2); |
| if (aot == AOT_ER_AAC_LD && |
| ics->window_sequence[0] != ONLY_LONG_SEQUENCE) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "AAC LD is only defined for ONLY_LONG_SEQUENCE but " |
| "window sequence %d found.\n", ics->window_sequence[0]); |
| ics->window_sequence[0] = ONLY_LONG_SEQUENCE; |
| return AVERROR_INVALIDDATA; |
| } |
| ics->use_kb_window[1] = ics->use_kb_window[0]; |
| ics->use_kb_window[0] = get_bits1(gb); |
| } |
| ics->prev_num_window_groups = FFMAX(ics->num_window_groups, 1); |
| ics->num_window_groups = 1; |
| ics->group_len[0] = 1; |
| if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
| int i; |
| ics->max_sfb = get_bits(gb, 4); |
| for (i = 0; i < 7; i++) { |
| if (get_bits1(gb)) { |
| ics->group_len[ics->num_window_groups - 1]++; |
| } else { |
| ics->num_window_groups++; |
| ics->group_len[ics->num_window_groups - 1] = 1; |
| } |
| } |
| ics->num_windows = 8; |
| if (m4ac->frame_length_short) { |
| ics->swb_offset = ff_swb_offset_120[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_120[sampling_index]; |
| } else { |
| ics->swb_offset = ff_swb_offset_128[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_128[sampling_index]; |
| } |
| ics->tns_max_bands = ff_tns_max_bands_128[sampling_index]; |
| ics->predictor_present = 0; |
| } else { |
| ics->max_sfb = get_bits(gb, 6); |
| ics->num_windows = 1; |
| if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) { |
| if (m4ac->frame_length_short) { |
| ics->swb_offset = ff_swb_offset_480[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_480[sampling_index]; |
| ics->tns_max_bands = ff_tns_max_bands_480[sampling_index]; |
| } else { |
| ics->swb_offset = ff_swb_offset_512[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_512[sampling_index]; |
| ics->tns_max_bands = ff_tns_max_bands_512[sampling_index]; |
| } |
| if (!ics->num_swb || !ics->swb_offset) { |
| ret_fail = AVERROR_BUG; |
| goto fail; |
| } |
| } else { |
| if (m4ac->frame_length_short) { |
| ics->num_swb = ff_aac_num_swb_960[sampling_index]; |
| ics->swb_offset = ff_swb_offset_960[sampling_index]; |
| } else { |
| ics->num_swb = ff_aac_num_swb_1024[sampling_index]; |
| ics->swb_offset = ff_swb_offset_1024[sampling_index]; |
| } |
| ics->tns_max_bands = ff_tns_max_bands_1024[sampling_index]; |
| } |
| if (aot != AOT_ER_AAC_ELD) { |
| ics->predictor_present = get_bits1(gb); |
| ics->predictor_reset_group = 0; |
| } |
| if (ics->predictor_present) { |
| if (aot == AOT_AAC_MAIN) { |
| if (decode_prediction(ac, ics, gb)) { |
| goto fail; |
| } |
| } else if (aot == AOT_AAC_LC || |
| aot == AOT_ER_AAC_LC) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Prediction is not allowed in AAC-LC.\n"); |
| goto fail; |
| } else { |
| if (aot == AOT_ER_AAC_LD) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "LTP in ER AAC LD not yet implemented.\n"); |
| ret_fail = AVERROR_PATCHWELCOME; |
| goto fail; |
| } |
| if ((ics->ltp.present = get_bits(gb, 1))) |
| decode_ltp(ac, &ics->ltp, gb, ics->max_sfb); |
| } |
| } |
| } |
| |
| if (ics->max_sfb > ics->num_swb) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Number of scalefactor bands in group (%d) " |
| "exceeds limit (%d).\n", |
| ics->max_sfb, ics->num_swb); |
| goto fail; |
| } |
| |
| return 0; |
| fail: |
| ics->max_sfb = 0; |
| return ret_fail; |
| } |
| |
| /** |
| * Decode band types (section_data payload); reference: table 4.46. |
| * |
| * @param band_type array of the used band type |
| * @param band_type_run_end array of the last scalefactor band of a band type run |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_band_types(AACDecContext *ac, SingleChannelElement *sce, |
| GetBitContext *gb) |
| { |
| IndividualChannelStream *ics = &sce->ics; |
| const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; |
| |
| for (int g = 0; g < ics->num_window_groups; g++) { |
| int k = 0; |
| while (k < ics->max_sfb) { |
| uint8_t sect_end = k; |
| int sect_len_incr; |
| int sect_band_type = get_bits(gb, 4); |
| if (sect_band_type == 12) { |
| av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| do { |
| sect_len_incr = get_bits(gb, bits); |
| sect_end += sect_len_incr; |
| if (get_bits_left(gb) < 0) { |
| av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| if (sect_end > ics->max_sfb) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Number of bands (%d) exceeds limit (%d).\n", |
| sect_end, ics->max_sfb); |
| return AVERROR_INVALIDDATA; |
| } |
| } while (sect_len_incr == (1 << bits) - 1); |
| for (; k < sect_end; k++) |
| sce->band_type[g*ics->max_sfb + k] = sect_band_type; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode scalefactors; reference: table 4.47. |
| * |
| * @param global_gain first scalefactor value as scalefactors are differentially coded |
| * @param band_type array of the used band type |
| * @param band_type_run_end array of the last scalefactor band of a band type run |
| * @param sf array of scalefactors or intensity stereo positions |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_scalefactors(AACDecContext *ac, SingleChannelElement *sce, |
| GetBitContext *gb, unsigned int global_gain) |
| { |
| IndividualChannelStream *ics = &sce->ics; |
| int offset[3] = { global_gain, global_gain - NOISE_OFFSET, 0 }; |
| int clipped_offset; |
| int noise_flag = 1; |
| |
| for (int g = 0; g < ics->num_window_groups; g++) { |
| for (int sfb = 0; sfb < ics->max_sfb; sfb++) { |
| switch (sce->band_type[g*ics->max_sfb + sfb]) { |
| case ZERO_BT: |
| sce->sfo[g*ics->max_sfb + sfb] = 0; |
| break; |
| case INTENSITY_BT: /* fallthrough */ |
| case INTENSITY_BT2: |
| offset[2] += get_vlc2(gb, ff_vlc_scalefactors, 7, 3) - SCALE_DIFF_ZERO; |
| clipped_offset = av_clip(offset[2], -155, 100); |
| if (offset[2] != clipped_offset) { |
| avpriv_request_sample(ac->avctx, |
| "If you heard an audible artifact, there may be a bug in the decoder. " |
| "Clipped intensity stereo position (%d -> %d)", |
| offset[2], clipped_offset); |
| } |
| sce->sfo[g*ics->max_sfb + sfb] = clipped_offset - 100; |
| break; |
| case NOISE_BT: |
| if (noise_flag-- > 0) |
| offset[1] += get_bits(gb, NOISE_PRE_BITS) - NOISE_PRE; |
| else |
| offset[1] += get_vlc2(gb, ff_vlc_scalefactors, 7, 3) - SCALE_DIFF_ZERO; |
| clipped_offset = av_clip(offset[1], -100, 155); |
| if (offset[1] != clipped_offset) { |
| avpriv_request_sample(ac->avctx, |
| "If you heard an audible artifact, there may be a bug in the decoder. " |
| "Clipped noise gain (%d -> %d)", |
| offset[1], clipped_offset); |
| } |
| sce->sfo[g*ics->max_sfb + sfb] = clipped_offset; |
| break; |
| default: |
| offset[0] += get_vlc2(gb, ff_vlc_scalefactors, 7, 3) - SCALE_DIFF_ZERO; |
| if (offset[0] > 255U) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Scalefactor (%d) out of range.\n", offset[0]); |
| return AVERROR_INVALIDDATA; |
| } |
| sce->sfo[g*ics->max_sfb + sfb] = offset[0] - 100; |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Decode pulse data; reference: table 4.7. |
| */ |
| static int decode_pulses(Pulse *pulse, GetBitContext *gb, |
| const uint16_t *swb_offset, int num_swb) |
| { |
| int i, pulse_swb; |
| pulse->num_pulse = get_bits(gb, 2) + 1; |
| pulse_swb = get_bits(gb, 6); |
| if (pulse_swb >= num_swb) |
| return -1; |
| pulse->pos[0] = swb_offset[pulse_swb]; |
| pulse->pos[0] += get_bits(gb, 5); |
| if (pulse->pos[0] >= swb_offset[num_swb]) |
| return -1; |
| pulse->amp[0] = get_bits(gb, 4); |
| for (i = 1; i < pulse->num_pulse; i++) { |
| pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; |
| if (pulse->pos[i] >= swb_offset[num_swb]) |
| return -1; |
| pulse->amp[i] = get_bits(gb, 4); |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode Temporal Noise Shaping data; reference: table 4.48. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| int ff_aac_decode_tns(AACDecContext *ac, TemporalNoiseShaping *tns, |
| GetBitContext *gb, const IndividualChannelStream *ics) |
| { |
| int tns_max_order = INT32_MAX; |
| const int is_usac = ac->oc[1].m4ac.object_type == AOT_USAC; |
| int w, filt, i, coef_len, coef_res, coef_compress; |
| const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; |
| |
| /* USAC doesn't seem to have a limit */ |
| if (!is_usac) |
| tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; |
| |
| for (w = 0; w < ics->num_windows; w++) { |
| if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { |
| coef_res = get_bits1(gb); |
| |
| for (filt = 0; filt < tns->n_filt[w]; filt++) { |
| int tmp2_idx; |
| tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); |
| |
| if (is_usac) |
| tns->order[w][filt] = get_bits(gb, 4 - is8); |
| else |
| tns->order[w][filt] = get_bits(gb, 5 - (2 * is8)); |
| |
| if (tns->order[w][filt] > tns_max_order) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "TNS filter order %d is greater than maximum %d.\n", |
| tns->order[w][filt], tns_max_order); |
| tns->order[w][filt] = 0; |
| return AVERROR_INVALIDDATA; |
| } |
| if (tns->order[w][filt]) { |
| tns->direction[w][filt] = get_bits1(gb); |
| coef_compress = get_bits1(gb); |
| coef_len = coef_res + 3 - coef_compress; |
| tmp2_idx = 2 * coef_compress + coef_res; |
| |
| for (i = 0; i < tns->order[w][filt]; i++) { |
| if (CONFIG_AAC_FIXED_DECODER && ac->is_fixed) |
| tns->coef_fixed[w][filt][i] = Q31(ff_tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]); |
| else if (CONFIG_AAC_DECODER) |
| tns->coef[w][filt][i] = ff_tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; |
| } |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode Mid/Side data; reference: table 4.54. |
| * |
| * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
| * [1] mask is decoded from bitstream; [2] mask is all 1s; |
| * [3] reserved for scalable AAC |
| */ |
| static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, |
| int ms_present) |
| { |
| int idx; |
| int max_idx = cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; |
| cpe->max_sfb_ste = cpe->ch[0].ics.max_sfb; |
| if (ms_present == 1) { |
| for (idx = 0; idx < max_idx; idx++) |
| cpe->ms_mask[idx] = get_bits1(gb); |
| } else if (ms_present == 2) { |
| memset(cpe->ms_mask, 1, max_idx * sizeof(cpe->ms_mask[0])); |
| } |
| } |
| |
| static void decode_gain_control(SingleChannelElement * sce, GetBitContext * gb) |
| { |
| // wd_num, wd_test, aloc_size |
| static const uint8_t gain_mode[4][3] = { |
| {1, 0, 5}, // ONLY_LONG_SEQUENCE = 0, |
| {2, 1, 2}, // LONG_START_SEQUENCE, |
| {8, 0, 2}, // EIGHT_SHORT_SEQUENCE, |
| {2, 1, 5}, // LONG_STOP_SEQUENCE |
| }; |
| |
| const int mode = sce->ics.window_sequence[0]; |
| uint8_t bd, wd, ad; |
| |
| // FIXME: Store the gain control data on |sce| and do something with it. |
| uint8_t max_band = get_bits(gb, 2); |
| for (bd = 0; bd < max_band; bd++) { |
| for (wd = 0; wd < gain_mode[mode][0]; wd++) { |
| uint8_t adjust_num = get_bits(gb, 3); |
| for (ad = 0; ad < adjust_num; ad++) { |
| skip_bits(gb, 4 + ((wd == 0 && gain_mode[mode][1]) |
| ? 4 |
| : gain_mode[mode][2])); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Decode an individual_channel_stream payload; reference: table 4.44. |
| * |
| * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. |
| * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| int ff_aac_decode_ics(AACDecContext *ac, SingleChannelElement *sce, |
| GetBitContext *gb, int common_window, int scale_flag) |
| { |
| Pulse pulse; |
| TemporalNoiseShaping *tns = &sce->tns; |
| IndividualChannelStream *ics = &sce->ics; |
| int global_gain, eld_syntax, er_syntax, pulse_present = 0; |
| int ret; |
| |
| eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
| er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC || |
| ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP || |
| ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD || |
| ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
| |
| /* This assignment is to silence a GCC warning about the variable being used |
| * uninitialized when in fact it always is. |
| */ |
| pulse.num_pulse = 0; |
| |
| global_gain = get_bits(gb, 8); |
| |
| if (!common_window && !scale_flag) { |
| ret = decode_ics_info(ac, ics, gb); |
| if (ret < 0) |
| goto fail; |
| } |
| |
| if ((ret = decode_band_types(ac, sce, gb)) < 0) |
| goto fail; |
| if ((ret = decode_scalefactors(ac, sce, gb, global_gain)) < 0) |
| goto fail; |
| |
| ac->dsp.dequant_scalefactors(sce); |
| |
| pulse_present = 0; |
| if (!scale_flag) { |
| if (!eld_syntax && (pulse_present = get_bits1(gb))) { |
| if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Pulse tool not allowed in eight short sequence.\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Pulse data corrupt or invalid.\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| } |
| tns->present = get_bits1(gb); |
| if (tns->present && !er_syntax) { |
| ret = ff_aac_decode_tns(ac, tns, gb, ics); |
| if (ret < 0) |
| goto fail; |
| } |
| if (!eld_syntax && get_bits1(gb)) { |
| decode_gain_control(sce, gb); |
| if (!ac->warned_gain_control) { |
| avpriv_report_missing_feature(ac->avctx, "Gain control"); |
| ac->warned_gain_control = 1; |
| } |
| } |
| // I see no textual basis in the spec for this occurring after SSR gain |
| // control, but this is what both reference and real implementations do |
| if (tns->present && er_syntax) { |
| ret = ff_aac_decode_tns(ac, tns, gb, ics); |
| if (ret < 0) |
| goto fail; |
| } |
| } |
| |
| ret = ac->proc.decode_spectrum_and_dequant(ac, gb, |
| pulse_present ? &pulse : NULL, |
| sce); |
| if (ret < 0) |
| goto fail; |
| |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window) |
| ac->dsp.apply_prediction(ac, sce); |
| |
| return 0; |
| fail: |
| memset(sce->sfo, 0, sizeof(sce->sfo)); |
| tns->present = 0; |
| return ret; |
| } |
| |
| /** |
| * Decode a channel_pair_element; reference: table 4.4. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_cpe(AACDecContext *ac, GetBitContext *gb, ChannelElement *cpe) |
| { |
| int i, ret, common_window, ms_present = 0; |
| int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
| |
| common_window = eld_syntax || get_bits1(gb); |
| if (common_window) { |
| if (decode_ics_info(ac, &cpe->ch[0].ics, gb)) |
| return AVERROR_INVALIDDATA; |
| i = cpe->ch[1].ics.use_kb_window[0]; |
| cpe->ch[1].ics = cpe->ch[0].ics; |
| cpe->ch[1].ics.use_kb_window[1] = i; |
| if (cpe->ch[1].ics.predictor_present && |
| (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN)) |
| if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1))) |
| decode_ltp(ac, &cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb); |
| ms_present = get_bits(gb, 2); |
| if (ms_present == 3) { |
| av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); |
| return AVERROR_INVALIDDATA; |
| } else if (ms_present) |
| decode_mid_side_stereo(cpe, gb, ms_present); |
| } |
| if ((ret = ff_aac_decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) |
| return ret; |
| if ((ret = ff_aac_decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) |
| return ret; |
| |
| if (common_window) { |
| if (ms_present) |
| ac->dsp.apply_mid_side_stereo(ac, cpe); |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { |
| ac->dsp.apply_prediction(ac, &cpe->ch[0]); |
| ac->dsp.apply_prediction(ac, &cpe->ch[1]); |
| } |
| } |
| |
| ac->dsp.apply_intensity_stereo(ac, cpe, ms_present); |
| return 0; |
| } |
| |
| /** |
| * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. |
| * |
| * @return Returns number of bytes consumed. |
| */ |
| static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, |
| GetBitContext *gb) |
| { |
| int i; |
| int num_excl_chan = 0; |
| |
| do { |
| for (i = 0; i < 7; i++) |
| che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); |
| } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); |
| |
| return num_excl_chan / 7; |
| } |
| |
| /** |
| * Decode dynamic range information; reference: table 4.52. |
| * |
| * @return Returns number of bytes consumed. |
| */ |
| static int decode_dynamic_range(DynamicRangeControl *che_drc, |
| GetBitContext *gb) |
| { |
| int n = 1; |
| int drc_num_bands = 1; |
| int i; |
| |
| /* pce_tag_present? */ |
| if (get_bits1(gb)) { |
| che_drc->pce_instance_tag = get_bits(gb, 4); |
| skip_bits(gb, 4); // tag_reserved_bits |
| n++; |
| } |
| |
| /* excluded_chns_present? */ |
| if (get_bits1(gb)) { |
| n += decode_drc_channel_exclusions(che_drc, gb); |
| } |
| |
| /* drc_bands_present? */ |
| if (get_bits1(gb)) { |
| che_drc->band_incr = get_bits(gb, 4); |
| che_drc->interpolation_scheme = get_bits(gb, 4); |
| n++; |
| drc_num_bands += che_drc->band_incr; |
| for (i = 0; i < drc_num_bands; i++) { |
| che_drc->band_top[i] = get_bits(gb, 8); |
| n++; |
| } |
| } |
| |
| /* prog_ref_level_present? */ |
| if (get_bits1(gb)) { |
| che_drc->prog_ref_level = get_bits(gb, 7); |
| skip_bits1(gb); // prog_ref_level_reserved_bits |
| n++; |
| } |
| |
| for (i = 0; i < drc_num_bands; i++) { |
| che_drc->dyn_rng_sgn[i] = get_bits1(gb); |
| che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); |
| n++; |
| } |
| |
| return n; |
| } |
| |
| static int decode_fill(AACDecContext *ac, GetBitContext *gb, int len) { |
| uint8_t buf[256]; |
| int i, major, minor; |
| |
| if (len < 13+7*8) |
| goto unknown; |
| |
| get_bits(gb, 13); len -= 13; |
| |
| for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8) |
| buf[i] = get_bits(gb, 8); |
| |
| buf[i] = 0; |
| if (ac->avctx->debug & FF_DEBUG_PICT_INFO) |
| av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf); |
| |
| if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){ |
| ac->avctx->internal->skip_samples = 1024; |
| } |
| |
| unknown: |
| skip_bits_long(gb, len); |
| |
| return 0; |
| } |
| |
| /** |
| * Decode extension data (incomplete); reference: table 4.51. |
| * |
| * @param cnt length of TYPE_FIL syntactic element in bytes |
| * |
| * @return Returns number of bytes consumed |
| */ |
| static int decode_extension_payload(AACDecContext *ac, GetBitContext *gb, int cnt, |
| ChannelElement *che, enum RawDataBlockType elem_type) |
| { |
| int crc_flag = 0; |
| int res = cnt; |
| int type = get_bits(gb, 4); |
| |
| if (ac->avctx->debug & FF_DEBUG_STARTCODE) |
| av_log(ac->avctx, AV_LOG_DEBUG, "extension type: %d len:%d\n", type, cnt); |
| |
| switch (type) { // extension type |
| case EXT_SBR_DATA_CRC: |
| crc_flag++; |
| case EXT_SBR_DATA: |
| if (!che) { |
| av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n"); |
| return res; |
| } else if (ac->oc[1].m4ac.frame_length_short) { |
| if (!ac->warned_960_sbr) |
| avpriv_report_missing_feature(ac->avctx, |
| "SBR with 960 frame length"); |
| ac->warned_960_sbr = 1; |
| skip_bits_long(gb, 8 * cnt - 4); |
| return res; |
| } else if (!ac->oc[1].m4ac.sbr) { |
| av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n"); |
| skip_bits_long(gb, 8 * cnt - 4); |
| return res; |
| } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) { |
| av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n"); |
| skip_bits_long(gb, 8 * cnt - 4); |
| return res; |
| } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && |
| ac->avctx->ch_layout.nb_channels == 1) { |
| ac->oc[1].m4ac.sbr = 1; |
| ac->oc[1].m4ac.ps = 1; |
| ac->avctx->profile = AV_PROFILE_AAC_HE_V2; |
| ff_aac_output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, |
| ac->oc[1].status, 1); |
| } else { |
| ac->oc[1].m4ac.sbr = 1; |
| ac->avctx->profile = AV_PROFILE_AAC_HE; |
| } |
| |
| ac->proc.sbr_decode_extension(ac, che, gb, crc_flag, cnt, elem_type); |
| |
| if (ac->oc[1].m4ac.ps == 1 && !ac->warned_he_aac_mono) { |
| av_log(ac->avctx, AV_LOG_VERBOSE, "Treating HE-AAC mono as stereo.\n"); |
| ac->warned_he_aac_mono = 1; |
| } |
| break; |
| case EXT_DYNAMIC_RANGE: |
| res = decode_dynamic_range(&ac->che_drc, gb); |
| break; |
| case EXT_FILL: |
| decode_fill(ac, gb, 8 * cnt - 4); |
| break; |
| case EXT_FILL_DATA: |
| case EXT_DATA_ELEMENT: |
| default: |
| skip_bits_long(gb, 8 * cnt - 4); |
| break; |
| }; |
| return res; |
| } |
| |
| /** |
| * channel coupling transformation interface |
| * |
| * @param apply_coupling_method pointer to (in)dependent coupling function |
| */ |
| static void apply_channel_coupling(AACDecContext *ac, ChannelElement *cc, |
| enum RawDataBlockType type, int elem_id, |
| enum CouplingPoint coupling_point, |
| void (*apply_coupling_method)(AACDecContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)) |
| { |
| int i, c; |
| |
| for (i = 0; i < MAX_ELEM_ID; i++) { |
| ChannelElement *cce = ac->che[TYPE_CCE][i]; |
| int index = 0; |
| |
| if (cce && cce->coup.coupling_point == coupling_point) { |
| ChannelCoupling *coup = &cce->coup; |
| |
| for (c = 0; c <= coup->num_coupled; c++) { |
| if (coup->type[c] == type && coup->id_select[c] == elem_id) { |
| if (coup->ch_select[c] != 1) { |
| apply_coupling_method(ac, &cc->ch[0], cce, index); |
| if (coup->ch_select[c] != 0) |
| index++; |
| } |
| if (coup->ch_select[c] != 2) |
| apply_coupling_method(ac, &cc->ch[1], cce, index++); |
| } else |
| index += 1 + (coup->ch_select[c] == 3); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Convert spectral data to samples, applying all supported tools as appropriate. |
| */ |
| static void spectral_to_sample(AACDecContext *ac, int samples) |
| { |
| int i, type; |
| void (*imdct_and_window)(AACDecContext *ac, SingleChannelElement *sce); |
| switch (ac->oc[1].m4ac.object_type) { |
| case AOT_ER_AAC_LD: |
| imdct_and_window = ac->dsp.imdct_and_windowing_ld; |
| break; |
| case AOT_ER_AAC_ELD: |
| imdct_and_window = ac->dsp.imdct_and_windowing_eld; |
| break; |
| default: |
| if (ac->oc[1].m4ac.frame_length_short) |
| imdct_and_window = ac->dsp.imdct_and_windowing_960; |
| else |
| imdct_and_window = ac->dsp.imdct_and_windowing; |
| } |
| for (type = 3; type >= 0; type--) { |
| for (i = 0; i < MAX_ELEM_ID; i++) { |
| ChannelElement *che = ac->che[type][i]; |
| if (che && che->present) { |
| if (type <= TYPE_CPE) |
| apply_channel_coupling(ac, che, type, i, BEFORE_TNS, ac->dsp.apply_dependent_coupling); |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { |
| if (che->ch[0].ics.predictor_present) { |
| if (che->ch[0].ics.ltp.present) |
| ac->dsp.apply_ltp(ac, &che->ch[0]); |
| if (che->ch[1].ics.ltp.present && type == TYPE_CPE) |
| ac->dsp.apply_ltp(ac, &che->ch[1]); |
| } |
| } |
| if (che->ch[0].tns.present) |
| ac->dsp.apply_tns(che->ch[0].coeffs, |
| &che->ch[0].tns, &che->ch[0].ics, 1); |
| if (che->ch[1].tns.present) |
| ac->dsp.apply_tns(che->ch[1].coeffs, |
| &che->ch[1].tns, &che->ch[1].ics, 1); |
| if (type <= TYPE_CPE) |
| apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, ac->dsp.apply_dependent_coupling); |
| if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) { |
| imdct_and_window(ac, &che->ch[0]); |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) |
| ac->dsp.update_ltp(ac, &che->ch[0]); |
| if (type == TYPE_CPE) { |
| imdct_and_window(ac, &che->ch[1]); |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) |
| ac->dsp.update_ltp(ac, &che->ch[1]); |
| } |
| if (ac->oc[1].m4ac.sbr > 0) { |
| ac->proc.sbr_apply(ac, che, type, |
| che->ch[0].output, |
| che->ch[1].output); |
| } |
| } |
| if (type <= TYPE_CCE) |
| apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, ac->dsp.apply_independent_coupling); |
| ac->dsp.clip_output(ac, che, type, samples); |
| che->present = 0; |
| } else if (che) { |
| av_log(ac->avctx, AV_LOG_VERBOSE, "ChannelElement %d.%d missing \n", type, i); |
| } |
| } |
| } |
| } |
| |
| static int parse_adts_frame_header(AACDecContext *ac, GetBitContext *gb) |
| { |
| int size; |
| AACADTSHeaderInfo hdr_info; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int layout_map_tags, ret; |
| |
| size = ff_adts_header_parse(gb, &hdr_info); |
| if (size > 0) { |
| if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) { |
| // This is 2 for "VLB " audio in NSV files. |
| // See samples/nsv/vlb_audio. |
| avpriv_report_missing_feature(ac->avctx, |
| "More than one AAC RDB per ADTS frame"); |
| ac->warned_num_aac_frames = 1; |
| } |
| push_output_configuration(ac); |
| if (hdr_info.chan_config) { |
| ac->oc[1].m4ac.chan_config = hdr_info.chan_config; |
| if ((ret = ff_aac_set_default_channel_config(ac, ac->avctx, |
| layout_map, |
| &layout_map_tags, |
| hdr_info.chan_config)) < 0) |
| return ret; |
| if ((ret = ff_aac_output_configure(ac, layout_map, layout_map_tags, |
| FFMAX(ac->oc[1].status, |
| OC_TRIAL_FRAME), 0)) < 0) |
| return ret; |
| } else { |
| ac->oc[1].m4ac.chan_config = 0; |
| /** |
| * dual mono frames in Japanese DTV can have chan_config 0 |
| * WITHOUT specifying PCE. |
| * thus, set dual mono as default. |
| */ |
| if (ac->dmono_mode && ac->oc[0].status == OC_NONE) { |
| layout_map_tags = 2; |
| layout_map[0][0] = layout_map[1][0] = TYPE_SCE; |
| layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; |
| layout_map[0][1] = 0; |
| layout_map[1][1] = 1; |
| if (ff_aac_output_configure(ac, layout_map, layout_map_tags, |
| OC_TRIAL_FRAME, 0)) |
| return -7; |
| } |
| } |
| ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate; |
| ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index; |
| ac->oc[1].m4ac.object_type = hdr_info.object_type; |
| ac->oc[1].m4ac.frame_length_short = 0; |
| if (ac->oc[0].status != OC_LOCKED || |
| ac->oc[0].m4ac.chan_config != hdr_info.chan_config || |
| ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) { |
| ac->oc[1].m4ac.sbr = -1; |
| ac->oc[1].m4ac.ps = -1; |
| } |
| if (!hdr_info.crc_absent) |
| skip_bits(gb, 16); |
| } |
| return size; |
| } |
| |
| static int aac_decode_er_frame(AVCodecContext *avctx, AVFrame *frame, |
| int *got_frame_ptr, GetBitContext *gb) |
| { |
| AACDecContext *ac = avctx->priv_data; |
| const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; |
| ChannelElement *che; |
| int err, i; |
| int samples = m4ac->frame_length_short ? 960 : 1024; |
| int chan_config = m4ac->chan_config; |
| int aot = m4ac->object_type; |
| |
| if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) |
| samples >>= 1; |
| |
| ac->frame = frame; |
| |
| if ((err = frame_configure_elements(avctx)) < 0) |
| return err; |
| |
| // The AV_PROFILE_AAC_* defines are all object_type - 1 |
| // This may lead to an undefined profile being signaled |
| ac->avctx->profile = aot - 1; |
| |
| ac->tags_mapped = 0; |
| |
| if (chan_config < 0 || (chan_config >= 8 && chan_config < 11) || chan_config >= 13) { |
| avpriv_request_sample(avctx, "Unknown ER channel configuration %d", |
| chan_config); |
| return AVERROR_INVALIDDATA; |
| } |
| for (i = 0; i < ff_tags_per_config[chan_config]; i++) { |
| const int elem_type = ff_aac_channel_layout_map[chan_config-1][i][0]; |
| const int elem_id = ff_aac_channel_layout_map[chan_config-1][i][1]; |
| if (!(che=ff_aac_get_che(ac, elem_type, elem_id))) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "channel element %d.%d is not allocated\n", |
| elem_type, elem_id); |
| return AVERROR_INVALIDDATA; |
| } |
| che->present = 1; |
| if (aot != AOT_ER_AAC_ELD) |
| skip_bits(gb, 4); |
| switch (elem_type) { |
| case TYPE_SCE: |
| err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0); |
| break; |
| case TYPE_CPE: |
| err = decode_cpe(ac, gb, che); |
| break; |
| case TYPE_LFE: |
| err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0); |
| break; |
| } |
| if (err < 0) |
| return err; |
| } |
| |
| spectral_to_sample(ac, samples); |
| |
| if (!ac->frame->data[0] && samples) { |
| av_log(avctx, AV_LOG_ERROR, "no frame data found\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ac->frame->nb_samples = samples; |
| ac->frame->sample_rate = avctx->sample_rate; |
| ac->frame->flags |= AV_FRAME_FLAG_KEY; |
| *got_frame_ptr = 1; |
| |
| skip_bits_long(gb, get_bits_left(gb)); |
| return 0; |
| } |
| |
| static int decode_frame_ga(AVCodecContext *avctx, AACDecContext *ac, |
| GetBitContext *gb, int *got_frame_ptr) |
| { |
| int err; |
| int is_dmono; |
| int elem_id; |
| enum RawDataBlockType elem_type, che_prev_type = TYPE_END; |
| uint8_t che_presence[4][MAX_ELEM_ID] = {{0}}; |
| ChannelElement *che = NULL, *che_prev = NULL; |
| int samples = 0, multiplier, audio_found = 0, pce_found = 0, sce_count = 0; |
| AVFrame *frame = ac->frame; |
| |
| int payload_alignment = get_bits_count(gb); |
| // parse |
| while ((elem_type = get_bits(gb, 3)) != TYPE_END) { |
| elem_id = get_bits(gb, 4); |
| |
| if (avctx->debug & FF_DEBUG_STARTCODE) |
| av_log(avctx, AV_LOG_DEBUG, "Elem type:%x id:%x\n", elem_type, elem_id); |
| |
| if (!avctx->ch_layout.nb_channels && elem_type != TYPE_PCE) |
| return AVERROR_INVALIDDATA; |
| |
| if (elem_type < TYPE_DSE) { |
| if (che_presence[elem_type][elem_id]) { |
| int error = che_presence[elem_type][elem_id] > 1; |
| av_log(ac->avctx, error ? AV_LOG_ERROR : AV_LOG_DEBUG, "channel element %d.%d duplicate\n", |
| elem_type, elem_id); |
| if (error) |
| return AVERROR_INVALIDDATA; |
| } |
| che_presence[elem_type][elem_id]++; |
| |
| if (!(che=ff_aac_get_che(ac, elem_type, elem_id))) { |
| av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", |
| elem_type, elem_id); |
| return AVERROR_INVALIDDATA; |
| } |
| samples = ac->oc[1].m4ac.frame_length_short ? 960 : 1024; |
| che->present = 1; |
| } |
| |
| switch (elem_type) { |
| |
| case TYPE_SCE: |
| err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0); |
| audio_found = 1; |
| sce_count++; |
| break; |
| |
| case TYPE_CPE: |
| err = decode_cpe(ac, gb, che); |
| audio_found = 1; |
| break; |
| |
| case TYPE_CCE: |
| err = ac->proc.decode_cce(ac, gb, che); |
| break; |
| |
| case TYPE_LFE: |
| err = ff_aac_decode_ics(ac, &che->ch[0], gb, 0, 0); |
| audio_found = 1; |
| break; |
| |
| case TYPE_DSE: |
| err = skip_data_stream_element(ac, gb); |
| break; |
| |
| case TYPE_PCE: { |
| uint8_t layout_map[MAX_ELEM_ID*4][3] = {{0}}; |
| int tags; |
| |
| int pushed = push_output_configuration(ac); |
| if (pce_found && !pushed) |
| return AVERROR_INVALIDDATA; |
| |
| tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb, |
| payload_alignment); |
| if (tags < 0) { |
| err = tags; |
| break; |
| } |
| if (pce_found) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Not evaluating a further program_config_element as this construct is dubious at best.\n"); |
| pop_output_configuration(ac); |
| } else { |
| err = ff_aac_output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1); |
| if (!err) |
| ac->oc[1].m4ac.chan_config = 0; |
| pce_found = 1; |
| } |
| break; |
| } |
| |
| case TYPE_FIL: |
| if (elem_id == 15) |
| elem_id += get_bits(gb, 8) - 1; |
| if (get_bits_left(gb) < 8 * elem_id) { |
| av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| err = 0; |
| while (elem_id > 0) { |
| int ret = decode_extension_payload(ac, gb, elem_id, che_prev, che_prev_type); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| elem_id -= ret; |
| } |
| break; |
| |
| default: |
| err = AVERROR_BUG; /* should not happen, but keeps compiler happy */ |
| break; |
| } |
| |
| if (elem_type < TYPE_DSE) { |
| che_prev = che; |
| che_prev_type = elem_type; |
| } |
| |
| if (err) |
| return err; |
| |
| if (get_bits_left(gb) < 3) { |
| av_log(avctx, AV_LOG_ERROR, overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| if (!avctx->ch_layout.nb_channels) |
| return 0; |
| |
| multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0; |
| samples <<= multiplier; |
| |
| spectral_to_sample(ac, samples); |
| |
| if (ac->oc[1].status && audio_found) { |
| avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier; |
| avctx->frame_size = samples; |
| ac->oc[1].status = OC_LOCKED; |
| } |
| |
| if (!ac->frame->data[0] && samples) { |
| av_log(avctx, AV_LOG_ERROR, "no frame data found\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (samples) { |
| ac->frame->nb_samples = samples; |
| ac->frame->sample_rate = avctx->sample_rate; |
| ac->frame->flags |= AV_FRAME_FLAG_KEY; |
| *got_frame_ptr = 1; |
| } else { |
| av_frame_unref(ac->frame); |
| *got_frame_ptr = 0; |
| } |
| |
| /* for dual-mono audio (SCE + SCE) */ |
| is_dmono = ac->dmono_mode && sce_count == 2 && |
| !av_channel_layout_compare(&ac->oc[1].ch_layout, |
| &(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO); |
| if (is_dmono) { |
| if (ac->dmono_mode == 1) |
| frame->data[1] = frame->data[0]; |
| else if (ac->dmono_mode == 2) |
| frame->data[0] = frame->data[1]; |
| } |
| |
| return 0; |
| } |
| |
| static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame, |
| int *got_frame_ptr, GetBitContext *gb, |
| const AVPacket *avpkt) |
| { |
| int err; |
| AACDecContext *ac = avctx->priv_data; |
| |
| ac->frame = frame; |
| *got_frame_ptr = 0; |
| |
| // USAC can't be packed into ADTS due to field size limitations. |
| if (show_bits(gb, 12) == 0xfff && ac->oc[1].m4ac.object_type != AOT_USAC) { |
| if ((err = parse_adts_frame_header(ac, gb)) < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); |
| goto fail; |
| } |
| if (ac->oc[1].m4ac.sampling_index > 12) { |
| av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index); |
| err = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| } |
| |
| if ((err = frame_configure_elements(avctx)) < 0) |
| goto fail; |
| |
| // The AV_PROFILE_AAC_* defines are all object_type - 1 |
| // This may lead to an undefined profile being signaled |
| ac->avctx->profile = ac->oc[1].m4ac.object_type - 1; |
| |
| ac->tags_mapped = 0; |
| |
| if (ac->oc[1].m4ac.object_type == AOT_USAC) { |
| if (ac->is_fixed) { |
| avpriv_report_missing_feature(ac->avctx, |
| "AAC USAC fixed-point decoding"); |
| return AVERROR_PATCHWELCOME; |
| } |
| #if CONFIG_AAC_DECODER |
| err = ff_aac_usac_decode_frame(avctx, ac, gb, got_frame_ptr); |
| if (err < 0) |
| goto fail; |
| #endif |
| } else { |
| err = decode_frame_ga(avctx, ac, gb, got_frame_ptr); |
| if (err < 0) |
| goto fail; |
| } |
| |
| return err; |
| |
| fail: |
| pop_output_configuration(ac); |
| return err; |
| } |
| |
| static int aac_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| AACDecContext *ac = avctx->priv_data; |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| GetBitContext gb; |
| int buf_consumed; |
| int buf_offset; |
| int err; |
| size_t new_extradata_size; |
| const uint8_t *new_extradata = av_packet_get_side_data(avpkt, |
| AV_PKT_DATA_NEW_EXTRADATA, |
| &new_extradata_size); |
| size_t jp_dualmono_size; |
| const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt, |
| AV_PKT_DATA_JP_DUALMONO, |
| &jp_dualmono_size); |
| |
| if (new_extradata) { |
| /* discard previous configuration */ |
| ac->oc[1].status = OC_NONE; |
| err = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1], |
| new_extradata, |
| new_extradata_size * 8LL, 1); |
| if (err < 0) { |
| return err; |
| } |
| } |
| |
| ac->dmono_mode = 0; |
| if (jp_dualmono && jp_dualmono_size > 0) |
| ac->dmono_mode = 1 + *jp_dualmono; |
| if (ac->force_dmono_mode >= 0) |
| ac->dmono_mode = ac->force_dmono_mode; |
| |
| if (INT_MAX / 8 <= buf_size) |
| return AVERROR_INVALIDDATA; |
| |
| if ((err = init_get_bits8(&gb, buf, buf_size)) < 0) |
| return err; |
| |
| switch (ac->oc[1].m4ac.object_type) { |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LTP: |
| case AOT_ER_AAC_LD: |
| case AOT_ER_AAC_ELD: |
| err = aac_decode_er_frame(avctx, frame, got_frame_ptr, &gb); |
| break; |
| default: |
| err = aac_decode_frame_int(avctx, frame, got_frame_ptr, &gb, avpkt); |
| } |
| if (err < 0) |
| return err; |
| |
| buf_consumed = (get_bits_count(&gb) + 7) >> 3; |
| for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++) |
| if (buf[buf_offset]) |
| break; |
| |
| return buf_size > buf_offset ? buf_consumed : buf_size; |
| } |
| |
| #if CONFIG_AAC_LATM_DECODER |
| #include "aacdec_latm.h" |
| #endif |
| |
| #define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
| #define OFF(field) offsetof(AACDecContext, field) |
| static const AVOption options[] = { |
| /** |
| * AVOptions for Japanese DTV specific extensions (ADTS only) |
| */ |
| {"dual_mono_mode", "Select the channel to decode for dual mono", |
| OFF(force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2, |
| AACDEC_FLAGS, .unit = "dual_mono_mode"}, |
| |
| {"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"}, |
| {"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"}, |
| {"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"}, |
| {"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, .unit = "dual_mono_mode"}, |
| |
| { "channel_order", "Order in which the channels are to be exported", |
| OFF(output_channel_order), AV_OPT_TYPE_INT, |
| { .i64 = CHANNEL_ORDER_DEFAULT }, 0, 1, AACDEC_FLAGS, .unit = "channel_order" }, |
| { "default", "normal libavcodec channel order", 0, AV_OPT_TYPE_CONST, |
| { .i64 = CHANNEL_ORDER_DEFAULT }, .flags = AACDEC_FLAGS, .unit = "channel_order" }, |
| { "coded", "order in which the channels are coded in the bitstream", |
| 0, AV_OPT_TYPE_CONST, { .i64 = CHANNEL_ORDER_CODED }, .flags = AACDEC_FLAGS, .unit = "channel_order" }, |
| |
| {NULL}, |
| }; |
| |
| static const AVClass decoder_class = { |
| .class_name = "AAC decoder", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| #if CONFIG_AAC_DECODER |
| const FFCodec ff_aac_decoder = { |
| .p.name = "aac", |
| CODEC_LONG_NAME("AAC (Advanced Audio Coding)"), |
| .p.type = AVMEDIA_TYPE_AUDIO, |
| .p.id = AV_CODEC_ID_AAC, |
| .p.priv_class = &decoder_class, |
| .priv_data_size = sizeof(AACDecContext), |
| .init = ff_aac_decode_init_float, |
| .close = decode_close, |
| FF_CODEC_DECODE_CB(aac_decode_frame), |
| CODEC_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP), |
| .p.capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1, |
| .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
| CODEC_CH_LAYOUTS_ARRAY(ff_aac_ch_layout), |
| .flush = flush, |
| .p.profiles = NULL_IF_CONFIG_SMALL(ff_aac_profiles), |
| }; |
| #endif |
| |
| #if CONFIG_AAC_FIXED_DECODER |
| const FFCodec ff_aac_fixed_decoder = { |
| .p.name = "aac_fixed", |
| CODEC_LONG_NAME("AAC (Advanced Audio Coding)"), |
| .p.type = AVMEDIA_TYPE_AUDIO, |
| .p.id = AV_CODEC_ID_AAC, |
| .p.priv_class = &decoder_class, |
| .priv_data_size = sizeof(AACDecContext), |
| .init = ff_aac_decode_init_fixed, |
| .close = decode_close, |
| FF_CODEC_DECODE_CB(aac_decode_frame), |
| CODEC_SAMPLEFMTS(AV_SAMPLE_FMT_S32P), |
| .p.capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1, |
| .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
| CODEC_CH_LAYOUTS_ARRAY(ff_aac_ch_layout), |
| .p.profiles = NULL_IF_CONFIG_SMALL(ff_aac_profiles), |
| .flush = flush, |
| }; |
| #endif |