blob: 82e900bd8c73be5849624bbcecbd27b973886888 [file] [log] [blame]
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "libavutil/avassert.h"
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
InputParams *input_params;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
int cur_width, cur_height, cur_channels;
int32_t layer;
if (network->layers_num <= 0 || network->layers[0].type != INPUT){
return DNN_ERROR;
}
else{
input_params = (InputParams *)network->layers[0].params;
input_params->width = cur_width = input->width;
input_params->height = cur_height = input->height;
input_params->channels = cur_channels = input->channels;
if (input->data){
av_freep(&input->data);
}
av_assert0(input->dt == DNN_FLOAT);
network->layers[0].output = input->data = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
if (!network->layers[0].output){
return DNN_ERROR;
}
}
for (layer = 1; layer < network->layers_num; ++layer){
switch (network->layers[layer].type){
case CONV:
conv_params = (ConvolutionalParams *)network->layers[layer].params;
if (conv_params->input_num != cur_channels){
return DNN_ERROR;
}
cur_channels = conv_params->output_num;
if (conv_params->padding_method == VALID) {
int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
cur_height -= pad_size;
cur_width -= pad_size;
}
break;
case DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){
return DNN_ERROR;
}
cur_channels = cur_channels / (depth_to_space_params->block_size * depth_to_space_params->block_size);
cur_height *= depth_to_space_params->block_size;
cur_width *= depth_to_space_params->block_size;
break;
default:
return DNN_ERROR;
}
if (network->layers[layer].output){
av_freep(&network->layers[layer].output);
}
if (cur_height <= 0 || cur_width <= 0)
return DNN_ERROR;
network->layers[layer].output = av_malloc(cur_height * cur_width * cur_channels * sizeof(float));
if (!network->layers[layer].output){
return DNN_ERROR;
}
}
return DNN_SUCCESS;
}
// Loads model and its parameters that are stored in a binary file with following structure:
// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
// For DEPTH_TO_SPACE layer: block_size
DNNModel *ff_dnn_load_model_native(const char *model_filename)
{
DNNModel *model = NULL;
ConvolutionalNetwork *network = NULL;
AVIOContext *model_file_context;
int file_size, dnn_size, kernel_size, i;
int32_t layer;
DNNLayerType layer_type;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
model = av_malloc(sizeof(DNNModel));
if (!model){
return NULL;
}
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
av_freep(&model);
return NULL;
}
file_size = avio_size(model_file_context);
network = av_malloc(sizeof(ConvolutionalNetwork));
if (!network){
avio_closep(&model_file_context);
av_freep(&model);
return NULL;
}
model->model = (void *)network;
network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
dnn_size = 4;
network->layers = av_malloc(network->layers_num * sizeof(Layer));
if (!network->layers){
av_freep(&network);
avio_closep(&model_file_context);
av_freep(&model);
return NULL;
}
for (layer = 0; layer < network->layers_num; ++layer){
network->layers[layer].output = NULL;
network->layers[layer].params = NULL;
}
network->layers[0].type = INPUT;
network->layers[0].params = av_malloc(sizeof(InputParams));
if (!network->layers[0].params){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
for (layer = 1; layer < network->layers_num; ++layer){
layer_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
switch (layer_type){
case CONV:
conv_params = av_malloc(sizeof(ConvolutionalParams));
if (!conv_params){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
conv_params->dilation = (int32_t)avio_rl32(model_file_context);
conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
conv_params->activation = (int32_t)avio_rl32(model_file_context);
conv_params->input_num = (int32_t)avio_rl32(model_file_context);
conv_params->output_num = (int32_t)avio_rl32(model_file_context);
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
kernel_size = conv_params->input_num * conv_params->output_num *
conv_params->kernel_size * conv_params->kernel_size;
dnn_size += 24 + (kernel_size + conv_params->output_num << 2);
if (dnn_size > file_size || conv_params->input_num <= 0 ||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
conv_params->kernel = av_malloc(kernel_size * sizeof(float));
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
if (!conv_params->kernel || !conv_params->biases){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
for (i = 0; i < kernel_size; ++i){
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
}
for (i = 0; i < conv_params->output_num; ++i){
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
}
network->layers[layer].type = CONV;
network->layers[layer].params = conv_params;
break;
case DEPTH_TO_SPACE:
depth_to_space_params = av_malloc(sizeof(DepthToSpaceParams));
if (!depth_to_space_params){
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
network->layers[layer].type = DEPTH_TO_SPACE;
network->layers[layer].params = depth_to_space_params;
break;
default:
avio_closep(&model_file_context);
ff_dnn_free_model_native(&model);
return NULL;
}
}
avio_closep(&model_file_context);
if (dnn_size != file_size){
ff_dnn_free_model_native(&model);
return NULL;
}
model->set_input_output = &set_input_output_native;
return model;
}
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
{
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
for (int y = pad_size; y < height - pad_size; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
output[n_filter] = conv_params->biases[n_filter];
for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
float input_pel;
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
} else {
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
}
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
switch (conv_params->activation){
case RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0);
break;
case TANH:
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
break;
case SIGMOID:
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
break;
case NONE:
break;
case LEAKY_RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
}
}
output += conv_params->output_num;
}
}
}
static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels)
{
int y, x, by, bx, ch;
int new_channels = channels / (block_size * block_size);
int output_linesize = width * channels;
int by_linesize = output_linesize / block_size;
int x_linesize = new_channels * block_size;
for (y = 0; y < height; ++y){
for (x = 0; x < width; ++x){
for (by = 0; by < block_size; ++by){
for (bx = 0; bx < block_size; ++bx){
for (ch = 0; ch < new_channels; ++ch){
output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch];
}
input += new_channels;
}
}
}
output += output_linesize;
}
}
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
int cur_width, cur_height, cur_channels;
int32_t layer;
InputParams *input_params;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
return DNN_ERROR;
}
else{
input_params = (InputParams *)network->layers[0].params;
cur_width = input_params->width;
cur_height = input_params->height;
cur_channels = input_params->channels;
}
for (layer = 1; layer < network->layers_num; ++layer){
if (!network->layers[layer].output){
return DNN_ERROR;
}
switch (network->layers[layer].type){
case CONV:
conv_params = (ConvolutionalParams *)network->layers[layer].params;
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
cur_channels = conv_params->output_num;
if (conv_params->padding_method == VALID) {
int pad_size = (conv_params->kernel_size - 1) * conv_params->dilation;
cur_height -= pad_size;
cur_width -= pad_size;
}
break;
case DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
depth_to_space(network->layers[layer - 1].output, network->layers[layer].output,
depth_to_space_params->block_size, cur_width, cur_height, cur_channels);
cur_height *= depth_to_space_params->block_size;
cur_width *= depth_to_space_params->block_size;
cur_channels /= depth_to_space_params->block_size * depth_to_space_params->block_size;
break;
case INPUT:
return DNN_ERROR;
}
}
// native mode does not support multiple outputs yet
if (nb_output > 1)
return DNN_ERROR;
outputs[0].data = network->layers[network->layers_num - 1].output;
outputs[0].height = cur_height;
outputs[0].width = cur_width;
outputs[0].channels = cur_channels;
return DNN_SUCCESS;
}
void ff_dnn_free_model_native(DNNModel **model)
{
ConvolutionalNetwork *network;
ConvolutionalParams *conv_params;
int32_t layer;
if (*model)
{
network = (ConvolutionalNetwork *)(*model)->model;
for (layer = 0; layer < network->layers_num; ++layer){
av_freep(&network->layers[layer].output);
if (network->layers[layer].type == CONV){
conv_params = (ConvolutionalParams *)network->layers[layer].params;
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
}
av_freep(&network->layers[layer].params);
}
av_freep(&network->layers);
av_freep(&network);
av_freep(model);
}
}