blob: 558401c4595e3f9ff8589d6e689527181cba23da [file] [log] [blame]
/*
* audio resampling
* Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio resampling
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/log.h"
#include "libavutil/avassert.h"
#include "swresample_internal.h"
#define WINDOW_TYPE 9
typedef struct ResampleContext {
const AVClass *av_class;
uint8_t *filter_bank;
int filter_length;
int ideal_dst_incr;
int dst_incr;
int index;
int frac;
int src_incr;
int compensation_distance;
int phase_shift;
int phase_mask;
int linear;
double factor;
enum AVSampleFormat format;
int felem_size;
int filter_shift;
} ResampleContext;
/**
* 0th order modified bessel function of the first kind.
*/
static double bessel(double x){
double v=1;
double lastv=0;
double t=1;
int i;
static const double inv[100]={
1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
};
x= x*x/4;
for(i=0; v != lastv; i++){
lastv=v;
t *= x*inv[i];
v += t;
}
return v;
}
/**
* builds a polyphase filterbank.
* @param factor resampling factor
* @param scale wanted sum of coefficients for each filter
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
* @return 0 on success, negative on error
*/
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int phase_count, int scale, int type){
int ph, i;
double x, y, w;
double *tab = av_malloc(tap_count * sizeof(*tab));
const int center= (tap_count-1)/2;
if (!tab)
return AVERROR(ENOMEM);
/* if upsampling, only need to interpolate, no filter */
if (factor > 1.0)
factor = 1.0;
for(ph=0;ph<phase_count;ph++) {
double norm = 0;
for(i=0;i<tap_count;i++) {
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
if (x == 0) y = 1.0;
else y = sin(x) / x;
switch(type){
case 0:{
const float d= -0.5; //first order derivative = -0.5
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
break;}
case 1:
w = 2.0*x / (factor*tap_count) + M_PI;
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
break;
default:
w = 2.0*x / (factor*tap_count*M_PI);
y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
break;
}
tab[i] = y;
norm += y;
}
/* normalize so that an uniform color remains the same */
switch(c->format){
case AV_SAMPLE_FMT_S16P:
for(i=0;i<tap_count;i++)
((int16_t*)filter)[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
break;
case AV_SAMPLE_FMT_S32P:
for(i=0;i<tap_count;i++)
((int32_t*)filter)[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), INT32_MIN, INT32_MAX);
break;
case AV_SAMPLE_FMT_FLTP:
for(i=0;i<tap_count;i++)
((float*)filter)[ph * tap_count + i] = tab[i] * scale / norm;
break;
case AV_SAMPLE_FMT_DBLP:
for(i=0;i<tap_count;i++)
((double*)filter)[ph * tap_count + i] = tab[i] * scale / norm;
break;
}
}
#if 0
{
#define LEN 1024
int j,k;
double sine[LEN + tap_count];
double filtered[LEN];
double maxff=-2, minff=2, maxsf=-2, minsf=2;
for(i=0; i<LEN; i++){
double ss=0, sf=0, ff=0;
for(j=0; j<LEN+tap_count; j++)
sine[j]= cos(i*j*M_PI/LEN);
for(j=0; j<LEN; j++){
double sum=0;
ph=0;
for(k=0; k<tap_count; k++)
sum += filter[ph * tap_count + k] * sine[k+j];
filtered[j]= sum / (1<<FILTER_SHIFT);
ss+= sine[j + center] * sine[j + center];
ff+= filtered[j] * filtered[j];
sf+= sine[j + center] * filtered[j];
}
ss= sqrt(2*ss/LEN);
ff= sqrt(2*ff/LEN);
sf= 2*sf/LEN;
maxff= FFMAX(maxff, ff);
minff= FFMIN(minff, ff);
maxsf= FFMAX(maxsf, sf);
minsf= FFMIN(minsf, sf);
if(i%11==0){
av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
minff=minsf= 2;
maxff=maxsf= -2;
}
}
}
#endif
av_free(tab);
return 0;
}
ResampleContext *swri_resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff, enum AVSampleFormat format){
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
int phase_count= 1<<phase_shift;
if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
|| c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format) {
c = av_mallocz(sizeof(*c));
if (!c)
return NULL;
c->format= format;
c->felem_size= av_get_bytes_per_sample(c->format);
switch(c->format){
case AV_SAMPLE_FMT_S16P:
c->filter_shift = 15;
break;
case AV_SAMPLE_FMT_S32P:
c->filter_shift = 30;
break;
case AV_SAMPLE_FMT_FLTP:
case AV_SAMPLE_FMT_DBLP:
c->filter_shift = 0;
break;
default:
av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
return NULL;
}
c->phase_shift = phase_shift;
c->phase_mask = phase_count - 1;
c->linear = linear;
c->factor = factor;
c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
c->filter_bank = av_mallocz(c->filter_length*(phase_count+1)*c->felem_size);
if (!c->filter_bank)
goto error;
if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, phase_count, 1<<c->filter_shift, WINDOW_TYPE))
goto error;
memcpy(c->filter_bank + (c->filter_length*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_length-1)*c->felem_size);
memcpy(c->filter_bank + (c->filter_length*phase_count )*c->felem_size, c->filter_bank + (c->filter_length - 1)*c->felem_size, c->felem_size);
}
c->compensation_distance= 0;
if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
goto error;
c->ideal_dst_incr= c->dst_incr;
c->index= -phase_count*((c->filter_length-1)/2);
c->frac= 0;
return c;
error:
av_free(c->filter_bank);
av_free(c);
return NULL;
}
void swri_resample_free(ResampleContext **c){
if(!*c)
return;
av_freep(&(*c)->filter_bank);
av_freep(c);
}
int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
ResampleContext *c;
int ret;
if (!s || compensation_distance < 0)
return AVERROR(EINVAL);
if (!compensation_distance && sample_delta)
return AVERROR(EINVAL);
if (!s->resample) {
s->flags |= SWR_FLAG_RESAMPLE;
ret = swr_init(s);
if (ret < 0)
return ret;
}
c= s->resample;
c->compensation_distance= compensation_distance;
if (compensation_distance)
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
else
c->dst_incr = c->ideal_dst_incr;
return 0;
}
#define RENAME(N) N ## _int16
#define FILTER_SHIFT 15
#define DELEM int16_t
#define FELEM int16_t
#define FELEM2 int32_t
#define FELEML int64_t
#define FELEM_MAX INT16_MAX
#define FELEM_MIN INT16_MIN
#define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\
d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v
#include "resample_template.c"
#undef RENAME
#undef FELEM
#undef FELEM2
#undef DELEM
#undef FELEML
#undef OUT
#undef FELEM_MIN
#undef FELEM_MAX
#undef FILTER_SHIFT
#define RENAME(N) N ## _int32
#define FILTER_SHIFT 30
#define DELEM int32_t
#define FELEM int32_t
#define FELEM2 int64_t
#define FELEML int64_t
#define FELEM_MAX INT32_MAX
#define FELEM_MIN INT32_MIN
#define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\
d = (uint64_t)(v + 0x80000000) > 0xFFFFFFFF ? (v>>63) ^ 0x7FFFFFFF : v
#include "resample_template.c"
#undef RENAME
#undef FELEM
#undef FELEM2
#undef DELEM
#undef FELEML
#undef OUT
#undef FELEM_MIN
#undef FELEM_MAX
#undef FILTER_SHIFT
#define RENAME(N) N ## _float
#define FILTER_SHIFT 0
#define DELEM float
#define FELEM float
#define FELEM2 float
#define FELEML float
#define OUT(d, v) d = v
#include "resample_template.c"
#undef RENAME
#undef FELEM
#undef FELEM2
#undef DELEM
#undef FELEML
#undef OUT
#undef FELEM_MIN
#undef FELEM_MAX
#undef FILTER_SHIFT
#define RENAME(N) N ## _double
#define FILTER_SHIFT 0
#define DELEM double
#define FELEM double
#define FELEM2 double
#define FELEML double
#define OUT(d, v) d = v
#include "resample_template.c"
int swri_multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
int i, ret= -1;
for(i=0; i<dst->ch_count; i++){
if(c->format == AV_SAMPLE_FMT_S16P) ret= swri_resample_int16(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
if(c->format == AV_SAMPLE_FMT_S32P) ret= swri_resample_int32(c, (int32_t*)dst->ch[i], (const int32_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
if(c->format == AV_SAMPLE_FMT_FLTP) ret= swri_resample_float(c, (float *)dst->ch[i], (const float *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
if(c->format == AV_SAMPLE_FMT_DBLP) ret= swri_resample_double(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
}
return ret;
}
int64_t swr_get_delay(struct SwrContext *s, int64_t base){
ResampleContext *c = s->resample;
if(c){
int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
num <<= c->phase_shift;
num -= c->index;
num *= c->src_incr;
num -= c->frac;
return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
}else{
return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
}
}