blob: f77a012f0964bacb5bd18cc6116f03d59f2fedc1 [file] [log] [blame]
/*
* VVC intra prediction
*
* Copyright (C) 2021 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/frame.h"
#include "libavutil/imgutils.h"
#include "data.h"
#include "inter.h"
#include "intra.h"
#include "itx_1d.h"
static int is_cclm(enum IntraPredMode mode)
{
return mode == INTRA_LT_CCLM || mode == INTRA_L_CCLM || mode == INTRA_T_CCLM;
}
static int derive_ilfnst_pred_mode_intra(const VVCLocalContext *lc, const TransformBlock *tb)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const CodingUnit *cu = lc->cu;
const int x_tb = tb->x0 >> fc->ps.sps->min_cb_log2_size_y;
const int y_tb = tb->y0 >> fc->ps.sps->min_cb_log2_size_y;
const int x_c = (tb->x0 + (tb->tb_width << sps->hshift[1] >> 1) ) >> fc->ps.sps->min_cb_log2_size_y;
const int y_c = (tb->y0 + (tb->tb_height << sps->vshift[1] >> 1)) >> fc->ps.sps->min_cb_log2_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int intra_mip_flag = SAMPLE_CTB(fc->tab.imf, x_tb, y_tb);
int pred_mode_intra = tb->c_idx == 0 ? cu->intra_pred_mode_y : cu->intra_pred_mode_c;
if (intra_mip_flag && !tb->c_idx) {
pred_mode_intra = INTRA_PLANAR;
} else if (is_cclm(pred_mode_intra)) {
int intra_mip_flag_c = SAMPLE_CTB(fc->tab.imf, x_c, y_c);
int cu_pred_mode = SAMPLE_CTB(fc->tab.cpm[0], x_c, y_c);
if (intra_mip_flag_c) {
pred_mode_intra = INTRA_PLANAR;
} else if (cu_pred_mode == MODE_IBC || cu_pred_mode == MODE_PLT) {
pred_mode_intra = INTRA_DC;
} else {
pred_mode_intra = SAMPLE_CTB(fc->tab.ipm, x_c, y_c);
}
}
pred_mode_intra = ff_vvc_wide_angle_mode_mapping(cu, tb->tb_width, tb->tb_height, tb->c_idx, pred_mode_intra);
return pred_mode_intra;
}
//8.7.4 Transformation process for scaled transform coefficients
static void ilfnst_transform(const VVCLocalContext *lc, TransformBlock *tb)
{
const VVCSPS *sps = lc->fc->ps.sps;
const CodingUnit *cu = lc->cu;
const int w = tb->tb_width;
const int h = tb->tb_height;
const int n_lfnst_out_size = (w >= 8 && h >= 8) ? 48 : 16; ///< nLfnstOutSize
const int log2_lfnst_size = (w >= 8 && h >= 8) ? 3 : 2; ///< log2LfnstSize
const int n_lfnst_size = 1 << log2_lfnst_size; ///< nLfnstSize
const int non_zero_size = ((w == 8 && h == 8) || (w == 4 && h == 4)) ? 8 : 16; ///< nonZeroSize
const int pred_mode_intra = derive_ilfnst_pred_mode_intra(lc, tb);
const int transpose = pred_mode_intra > 34;
int u[16], v[48];
for (int x = 0; x < non_zero_size; x++) {
int xc = ff_vvc_diag_scan_x[2][2][x];
int yc = ff_vvc_diag_scan_y[2][2][x];
u[x] = tb->coeffs[w * yc + xc];
}
ff_vvc_inv_lfnst_1d(v, u, non_zero_size, n_lfnst_out_size, pred_mode_intra,
cu->lfnst_idx, sps->log2_transform_range);
if (transpose) {
int *dst = tb->coeffs;
const int *src = v;
if (n_lfnst_size == 4) {
for (int y = 0; y < 4; y++) {
dst[0] = src[0];
dst[1] = src[4];
dst[2] = src[8];
dst[3] = src[12];
src++;
dst += w;
}
} else {
for (int y = 0; y < 8; y++) {
dst[0] = src[0];
dst[1] = src[8];
dst[2] = src[16];
dst[3] = src[24];
if (y < 4) {
dst[4] = src[32];
dst[5] = src[36];
dst[6] = src[40];
dst[7] = src[44];
}
src++;
dst += w;
}
}
} else {
int *dst = tb->coeffs;
const int *src = v;
for (int y = 0; y < n_lfnst_size; y++) {
int size = (y < 4) ? n_lfnst_size : 4;
memcpy(dst, src, size * sizeof(int));
src += size;
dst += w;
}
}
tb->max_scan_x = n_lfnst_size - 1;
tb->max_scan_y = n_lfnst_size - 1;
}
//part of 8.7.4 Transformation process for scaled transform coefficients
static void derive_transform_type(const VVCFrameContext *fc, const VVCLocalContext *lc, const TransformBlock *tb, enum TxType *trh, enum TxType *trv)
{
const CodingUnit *cu = lc->cu;
static const enum TxType mts_to_trh[] = {DCT2, DST7, DCT8, DST7, DCT8};
static const enum TxType mts_to_trv[] = {DCT2, DST7, DST7, DCT8, DCT8};
const VVCSPS *sps = fc->ps.sps;
int implicit_mts_enabled = 0;
if (tb->c_idx || (cu->isp_split_type != ISP_NO_SPLIT && cu->lfnst_idx)) {
*trh = *trv = DCT2;
return;
}
if (sps->r->sps_mts_enabled_flag) {
if (cu->isp_split_type != ISP_NO_SPLIT ||
(cu->sbt_flag && FFMAX(tb->tb_width, tb->tb_height) <= 32) ||
(!sps->r->sps_explicit_mts_intra_enabled_flag && cu->pred_mode == MODE_INTRA &&
!cu->lfnst_idx && !cu->intra_mip_flag)) {
implicit_mts_enabled = 1;
}
}
if (implicit_mts_enabled) {
const int w = tb->tb_width;
const int h = tb->tb_height;
if (cu->sbt_flag) {
*trh = (cu->sbt_horizontal_flag || cu->sbt_pos_flag) ? DST7 : DCT8;
*trv = (!cu->sbt_horizontal_flag || cu->sbt_pos_flag) ? DST7 : DCT8;
} else {
*trh = (w >= 4 && w <= 16) ? DST7 : DCT2;
*trv = (h >= 4 && h <= 16) ? DST7 : DCT2;
}
return;
}
*trh = mts_to_trh[cu->mts_idx];
*trv = mts_to_trv[cu->mts_idx];
}
static void add_residual_for_joint_coding_chroma(VVCLocalContext *lc,
const TransformUnit *tu, TransformBlock *tb, const int chroma_scale)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const int c_sign = 1 - 2 * fc->ps.ph.r->ph_joint_cbcr_sign_flag;
const int shift = tu->coded_flag[1] ^ tu->coded_flag[2];
const int c_idx = 1 + tu->coded_flag[1];
const ptrdiff_t stride = fc->frame->linesize[c_idx];
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
uint8_t *dst = &fc->frame->data[c_idx][(tb->y0 >> vs) * stride +
((tb->x0 >> hs) << fc->ps.sps->pixel_shift)];
if (chroma_scale) {
fc->vvcdsp.itx.pred_residual_joint(tb->coeffs, tb->tb_width, tb->tb_height, c_sign, shift);
fc->vvcdsp.intra.lmcs_scale_chroma(lc, tb->coeffs, tb->coeffs, tb->tb_width, tb->tb_height, cu->x0, cu->y0);
fc->vvcdsp.itx.add_residual(dst, tb->coeffs, tb->tb_width, tb->tb_height, stride);
} else {
fc->vvcdsp.itx.add_residual_joint(dst, tb->coeffs, tb->tb_width, tb->tb_height, stride, c_sign, shift);
}
}
static int add_reconstructed_area(VVCLocalContext *lc, const int ch_type, const int x0, const int y0, const int w, const int h)
{
const VVCSPS *sps = lc->fc->ps.sps;
const int hs = sps->hshift[ch_type];
const int vs = sps->vshift[ch_type];
ReconstructedArea *a;
if (lc->num_ras[ch_type] >= FF_ARRAY_ELEMS(lc->ras[ch_type]))
return AVERROR_INVALIDDATA;
a = &lc->ras[ch_type][lc->num_ras[ch_type]];
a->x = x0 >> hs;
a->y = y0 >> vs;
a->w = w >> hs;
a->h = h >> vs;
lc->num_ras[ch_type]++;
return 0;
}
static void add_tu_area(const TransformUnit *tu, int *x0, int *y0, int *w, int *h)
{
*x0 = tu->x0;
*y0 = tu->y0;
*w = tu->width;
*h = tu->height;
}
#define MIN_ISP_PRED_WIDTH 4
static int get_luma_predict_unit(const CodingUnit *cu, const TransformUnit *tu, const int idx, int *x0, int *y0, int *w, int *h)
{
int has_luma = 1;
add_tu_area(tu, x0, y0, w, h);
if (cu->isp_split_type == ISP_VER_SPLIT && tu->width < MIN_ISP_PRED_WIDTH) {
*w = MIN_ISP_PRED_WIDTH;
has_luma = !(idx % (MIN_ISP_PRED_WIDTH / tu->width));
}
return has_luma;
}
static int get_chroma_predict_unit(const CodingUnit *cu, const TransformUnit *tu, const int idx, int *x0, int *y0, int *w, int *h)
{
if (cu->isp_split_type == ISP_NO_SPLIT) {
add_tu_area(tu, x0, y0, w, h);
return 1;
}
if (idx == cu->num_intra_subpartitions - 1) {
*x0 = cu->x0;
*y0 = cu->y0;
*w = cu->cb_width;
*h = cu->cb_height;
return 1;
}
return 0;
}
//8.4.5.1 General decoding process for intra blocks
static void predict_intra(VVCLocalContext *lc, const TransformUnit *tu, const int idx, const int target_ch_type)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
const VVCTreeType tree_type = cu->tree_type;
int x0, y0, w, h;
if (cu->pred_mode != MODE_INTRA) {
add_reconstructed_area(lc, target_ch_type, tu->x0, tu->y0, tu->width, tu->height);
return;
}
if (!target_ch_type && tree_type != DUAL_TREE_CHROMA) {
if (get_luma_predict_unit(cu, tu, idx, &x0, &y0, &w, &h)) {
ff_vvc_set_neighbour_available(lc, x0, y0, w, h);
fc->vvcdsp.intra.intra_pred(lc, x0, y0, w, h, 0);
add_reconstructed_area(lc, 0, x0, y0, w, h);
}
}
if (target_ch_type && tree_type != DUAL_TREE_LUMA) {
if (get_chroma_predict_unit(cu, tu, idx, &x0, &y0, &w, &h)){
ff_vvc_set_neighbour_available(lc, x0, y0, w, h);
if (is_cclm(cu->intra_pred_mode_c)) {
fc->vvcdsp.intra.intra_cclm_pred(lc, x0, y0, w, h);
} else {
fc->vvcdsp.intra.intra_pred(lc, x0, y0, w, h, 1);
fc->vvcdsp.intra.intra_pred(lc, x0, y0, w, h, 2);
}
add_reconstructed_area(lc, 1, x0, y0, w, h);
}
}
}
static void scale_clip(int *coeff, const int nzw, const int w, const int h,
const int shift, const int log2_transform_range)
{
const int add = 1 << (shift - 1);
for (int y = 0; y < h; y++) {
int *p = coeff + y * w;
for (int x = 0; x < nzw; x++) {
*p = av_clip_intp2((*p + add) >> shift, log2_transform_range);
p++;
}
memset(p, 0, sizeof(*p) * (w - nzw));
}
}
static void scale(int *out, const int *in, const int w, const int h, const int shift)
{
const int add = 1 << (shift - 1);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
int *o = out + y * w + x;
const int *i = in + y * w + x;
*o = (*i + add) >> shift;
}
}
}
// part of 8.7.3 Scaling process for transform coefficients
static void derive_qp(const VVCLocalContext *lc, const TransformUnit *tu, TransformBlock *tb)
{
const VVCSPS *sps = lc->fc->ps.sps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const CodingUnit *cu = lc->cu;
int qp, qp_act_offset;
if (tb->c_idx == 0) {
//fix me
qp = cu->qp[LUMA] + sps->qp_bd_offset;
qp_act_offset = cu->act_enabled_flag ? -5 : 0;
} else {
const int is_jcbcr = tu->joint_cbcr_residual_flag && tu->coded_flag[CB] && tu->coded_flag[CR];
const int idx = is_jcbcr ? JCBCR : tb->c_idx;
qp = cu->qp[idx];
qp_act_offset = cu->act_enabled_flag ? 1 : 0;
}
if (tb->ts) {
const int qp_prime_ts_min = 4 + 6 * sps->r->sps_min_qp_prime_ts;
tb->qp = av_clip(qp + qp_act_offset, qp_prime_ts_min, 63 + sps->qp_bd_offset);
tb->rect_non_ts_flag = 0;
tb->bd_shift = 10;
} else {
const int log_sum = tb->log2_tb_width + tb->log2_tb_height;
const int rect_non_ts_flag = log_sum & 1;
tb->qp = av_clip(qp + qp_act_offset, 0, 63 + sps->qp_bd_offset);
tb->rect_non_ts_flag = rect_non_ts_flag;
tb->bd_shift = sps->bit_depth + rect_non_ts_flag + (log_sum / 2)
+ 10 - sps->log2_transform_range + rsh->sh_dep_quant_used_flag;
}
tb->bd_offset = (1 << tb->bd_shift) >> 1;
}
//8.7.3 Scaling process for transform coefficients
static av_always_inline int derive_scale(const TransformBlock *tb, const int sh_dep_quant_used_flag)
{
static const uint8_t rem6[63 + 8 * 6 + 1] = {
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
};
static const uint8_t div6[63 + 8 * 6 + 1] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15,
16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18,
};
const static int level_scale[2][6] = {
{ 40, 45, 51, 57, 64, 72 },
{ 57, 64, 72, 80, 90, 102 }
};
const int addin = sh_dep_quant_used_flag && !tb->ts;
const int qp = tb->qp + addin;
return level_scale[tb->rect_non_ts_flag][rem6[qp]] << div6[qp];
}
//8.7.3 Scaling process for transform coefficients
static const uint8_t* derive_scale_m(const VVCLocalContext *lc, const TransformBlock *tb, uint8_t *scale_m)
{
//Table 38 – Specification of the scaling matrix identifier variable id according to predMode, cIdx, nTbW, and nTbH
const int ids[2][3][6] = {
{
{ 0, 2, 8, 14, 20, 26 },
{ 0, 3, 9, 15, 21, 21 },
{ 0, 4, 10, 16, 22, 22 }
},
{
{ 0, 5, 11, 17, 23, 27 },
{ 0, 6, 12, 18, 24, 24 },
{ 1, 7, 13, 19, 25, 25 },
}
};
const VVCFrameParamSets *ps = &lc->fc->ps;
const VVCSPS *sps = ps->sps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const CodingUnit *cu = lc->cu;
const VVCScalingList *sl = ps->sl;
const int id = ids[cu->pred_mode != MODE_INTRA][tb->c_idx][FFMAX(tb->log2_tb_height, tb->log2_tb_width) - 1];
const int log2_matrix_size = (id < 2) ? 1 : (id < 8) ? 2 : 3;
uint8_t *p = scale_m;
av_assert0(!sps->r->sps_scaling_matrix_for_alternative_colour_space_disabled_flag);
if (!rsh->sh_explicit_scaling_list_used_flag || tb->ts ||
sps->r->sps_scaling_matrix_for_lfnst_disabled_flag && cu->apply_lfnst_flag[tb->c_idx])
return ff_vvc_default_scale_m;
if (!sl) {
av_log(lc->fc->log_ctx, AV_LOG_WARNING, "bug: no scaling list aps, id = %d", ps->ph.r->ph_scaling_list_aps_id);
return ff_vvc_default_scale_m;
}
for (int y = tb->min_scan_y; y <= tb->max_scan_y; y++) {
const int off = y << log2_matrix_size >> tb->log2_tb_height << log2_matrix_size;
const uint8_t *m = &sl->scaling_matrix_rec[id][off];
for (int x = tb->min_scan_x; x <= tb->max_scan_x; x++)
*p++ = m[x << log2_matrix_size >> tb->log2_tb_width];
}
if (id >= SL_START_16x16 && !tb->min_scan_x && !tb->min_scan_y)
*scale_m = sl->scaling_matrix_dc_rec[id - SL_START_16x16];
return scale_m;
}
//8.7.3 Scaling process for transform coefficients
static av_always_inline int scale_coeff(const TransformBlock *tb, int coeff,
const int scale, const int scale_m, const int log2_transform_range)
{
coeff = ((int64_t) coeff * scale * scale_m + tb->bd_offset) >> tb->bd_shift;
coeff = av_clip_intp2(coeff, log2_transform_range);
return coeff;
}
static void dequant(const VVCLocalContext *lc, const TransformUnit *tu, TransformBlock *tb)
{
uint8_t tmp[MAX_TB_SIZE * MAX_TB_SIZE];
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const VVCSPS *sps = lc->fc->ps.sps;
const uint8_t *scale_m = derive_scale_m(lc, tb, tmp);
int scale;
derive_qp(lc, tu, tb);
scale = derive_scale(tb, rsh->sh_dep_quant_used_flag);
for (int y = tb->min_scan_y; y <= tb->max_scan_y; y++) {
for (int x = tb->min_scan_x; x <= tb->max_scan_x; x++) {
int *coeff = tb->coeffs + y * tb->tb_width + x;
if (*coeff)
*coeff = scale_coeff(tb, *coeff, scale, *scale_m, sps->log2_transform_range);
scale_m++;
}
}
}
//transmatrix[0][0]
#define DCT_A 64
static void itx_2d(const VVCFrameContext *fc, TransformBlock *tb, const enum TxType trh, const enum TxType trv)
{
const VVCSPS *sps = fc->ps.sps;
const int w = tb->tb_width;
const int h = tb->tb_height;
const size_t nzw = tb->max_scan_x + 1;
const size_t nzh = tb->max_scan_y + 1;
const int shift[] = { 7, 5 + sps->log2_transform_range - sps->bit_depth };
if (w == h && nzw == 1 && nzh == 1 && trh == DCT2 && trv == DCT2) {
const int add[] = { 1 << (shift[0] - 1), 1 << (shift[1] - 1) };
const int t = (tb->coeffs[0] * DCT_A + add[0]) >> shift[0];
const int dc = (t * DCT_A + add[1]) >> shift[1];
for (int i = 0; i < w * h; i++)
tb->coeffs[i] = dc;
return;
}
for (int x = 0; x < nzw; x++)
fc->vvcdsp.itx.itx[trv][tb->log2_tb_height - 1](tb->coeffs + x, w, nzh);
scale_clip(tb->coeffs, nzw, w, h, shift[0], sps->log2_transform_range);
for (int y = 0; y < h; y++)
fc->vvcdsp.itx.itx[trh][tb->log2_tb_width - 1](tb->coeffs + y * w, 1, nzw);
scale(tb->coeffs, tb->coeffs, w, h, shift[1]);
}
static void itx_1d(const VVCFrameContext *fc, TransformBlock *tb, const enum TxType trh, const enum TxType trv)
{
const VVCSPS *sps = fc->ps.sps;
const int w = tb->tb_width;
const int h = tb->tb_height;
const size_t nzw = tb->max_scan_x + 1;
const size_t nzh = tb->max_scan_y + 1;
if ((w > 1 && nzw == 1 && trh == DCT2) || (h > 1 && nzh == 1 && trv == DCT2)) {
const int shift = 6 + sps->log2_transform_range - sps->bit_depth;
const int add = 1 << (shift - 1);
const int dc = (tb->coeffs[0] * DCT_A + add) >> shift;
for (int i = 0; i < w * h; i++)
tb->coeffs[i] = dc;
return;
}
if (w > 1)
fc->vvcdsp.itx.itx[trh][tb->log2_tb_width - 1](tb->coeffs, 1, nzw);
else
fc->vvcdsp.itx.itx[trv][tb->log2_tb_height - 1](tb->coeffs, 1, nzh);
scale(tb->coeffs, tb->coeffs, w, h, 6 + sps->log2_transform_range - sps->bit_depth);
}
static void transform_bdpcm(TransformBlock *tb, const VVCLocalContext *lc, const CodingUnit *cu)
{
const VVCSPS *sps = lc->fc->ps.sps;
const IntraPredMode mode = tb->c_idx ? cu->intra_pred_mode_c : cu->intra_pred_mode_y;
const int vertical = mode == INTRA_VERT;
lc->fc->vvcdsp.itx.transform_bdpcm(tb->coeffs, tb->tb_width, tb->tb_height,
vertical, sps->log2_transform_range);
if (vertical)
tb->max_scan_y = tb->tb_height - 1;
else
tb->max_scan_x = tb->tb_width - 1;
}
static void itransform(VVCLocalContext *lc, TransformUnit *tu, const int tu_idx, const int target_ch_type)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCSH *sh = &lc->sc->sh;
const CodingUnit *cu = lc->cu;
const int ps = fc->ps.sps->pixel_shift;
DECLARE_ALIGNED(32, int, temp)[MAX_TB_SIZE * MAX_TB_SIZE];
for (int i = 0; i < tu->nb_tbs; i++) {
TransformBlock *tb = &tu->tbs[i];
const int c_idx = tb->c_idx;
const int ch_type = c_idx > 0;
if (ch_type == target_ch_type && tb->has_coeffs) {
const int w = tb->tb_width;
const int h = tb->tb_height;
const int chroma_scale = ch_type && sh->r->sh_lmcs_used_flag && fc->ps.ph.r->ph_chroma_residual_scale_flag && (w * h > 4);
const ptrdiff_t stride = fc->frame->linesize[c_idx];
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
uint8_t *dst = &fc->frame->data[c_idx][(tb->y0 >> vs) * stride + ((tb->x0 >> hs) << ps)];
if (cu->bdpcm_flag[tb->c_idx])
transform_bdpcm(tb, lc, cu);
dequant(lc, tu, tb);
if (!tb->ts) {
enum TxType trh, trv;
if (cu->apply_lfnst_flag[c_idx])
ilfnst_transform(lc, tb);
derive_transform_type(fc, lc, tb, &trh, &trv);
if (w > 1 && h > 1)
itx_2d(fc, tb, trh, trv);
else
itx_1d(fc, tb, trh, trv);
}
if (chroma_scale)
fc->vvcdsp.intra.lmcs_scale_chroma(lc, temp, tb->coeffs, w, h, cu->x0, cu->y0);
// TODO: Address performance issue here by combining transform, lmcs_scale_chroma, and add_residual into one function.
// Complete this task before implementing ASM code.
fc->vvcdsp.itx.add_residual(dst, chroma_scale ? temp : tb->coeffs, w, h, stride);
if (tu->joint_cbcr_residual_flag && tb->c_idx)
add_residual_for_joint_coding_chroma(lc, tu, tb, chroma_scale);
}
}
}
static int reconstruct(VVCLocalContext *lc)
{
VVCFrameContext *fc = lc->fc;
CodingUnit *cu = lc->cu;
const int start = cu->tree_type == DUAL_TREE_CHROMA;
const int end = fc->ps.sps->r->sps_chroma_format_idc && (cu->tree_type != DUAL_TREE_LUMA);
for (int ch_type = start; ch_type <= end; ch_type++) {
TransformUnit *tu = cu->tus.head;
for (int i = 0; tu; i++) {
predict_intra(lc, tu, i, ch_type);
itransform(lc, tu, i, ch_type);
tu = tu->next;
}
}
return 0;
}
#define POS(c_idx, x, y) \
&fc->frame->data[c_idx][((y) >> fc->ps.sps->vshift[c_idx]) * fc->frame->linesize[c_idx] + \
(((x) >> fc->ps.sps->hshift[c_idx]) << fc->ps.sps->pixel_shift)]
#define IBC_POS(c_idx, x, y) \
(fc->tab.ibc_vir_buf[c_idx] + \
(x << ps) + (y + ((cu->y0 & ~(sps->ctb_size_y - 1)) >> vs)) * ibc_stride)
#define IBC_X(x) ((x) & ((fc->tab.sz.ibc_buffer_width >> hs) - 1))
#define IBC_Y(y) ((y) & ((1 << sps->ctb_log2_size_y >> vs) - 1))
static void intra_block_copy(const VVCLocalContext *lc, const int c_idx)
{
const CodingUnit *cu = lc->cu;
const PredictionUnit *pu = &cu->pu;
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const Mv *bv = &pu->mi.mv[L0][0];
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
const int ps = sps->pixel_shift;
const int ref_x = IBC_X((cu->x0 >> hs) + (bv->x >> (4 + hs)));
const int ref_y = IBC_Y((cu->y0 >> vs) + (bv->y >> (4 + vs)));
const int w = cu->cb_width >> hs;
const int h = cu->cb_height >> vs;
const int ibc_buf_width = fc->tab.sz.ibc_buffer_width >> hs; ///< IbcBufWidthY and IbcBufWidthC
const int rw = FFMIN(w, ibc_buf_width - ref_x);
const int ibc_stride = ibc_buf_width << ps;
const int dst_stride = fc->frame->linesize[c_idx];
const uint8_t *ibc_buf = IBC_POS(c_idx, ref_x, ref_y);
uint8_t *dst = POS(c_idx, cu->x0, cu->y0);
av_image_copy_plane(dst, dst_stride, ibc_buf, ibc_stride, rw << ps, h);
if (w > rw) {
//wrap around, left part
ibc_buf = IBC_POS(c_idx, 0, ref_y);
dst += rw << ps;
av_image_copy_plane(dst, dst_stride, ibc_buf, ibc_stride, (w - rw) << ps, h);
}
}
static void vvc_predict_ibc(const VVCLocalContext *lc)
{
const H266RawSPS *rsps = lc->fc->ps.sps->r;
intra_block_copy(lc, LUMA);
if (lc->cu->tree_type == SINGLE_TREE && rsps->sps_chroma_format_idc) {
intra_block_copy(lc, CB);
intra_block_copy(lc, CR);
}
}
static void ibc_fill_vir_buf(const VVCLocalContext *lc, const CodingUnit *cu)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int has_chroma = sps->r->sps_chroma_format_idc && cu->tree_type != DUAL_TREE_LUMA;
const int start = cu->tree_type == DUAL_TREE_CHROMA;
const int end = has_chroma ? CR : LUMA;
for (int c_idx = start; c_idx <= end; c_idx++) {
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
const int ps = sps->pixel_shift;
const int x = IBC_X(cu->x0 >> hs);
const int y = IBC_Y(cu->y0 >> vs);
const int src_stride = fc->frame->linesize[c_idx];
const int ibc_stride = fc->tab.sz.ibc_buffer_width >> hs << ps;
const uint8_t *src = POS(c_idx, cu->x0, cu->y0);
uint8_t *ibc_buf = IBC_POS(c_idx, x, y);
av_image_copy_plane(ibc_buf, ibc_stride, src, src_stride, cu->cb_width >> hs << ps , cu->cb_height >> vs);
}
}
int ff_vvc_reconstruct(VVCLocalContext *lc, const int rs, const int rx, const int ry)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int x_ctb = rx << sps->ctb_log2_size_y;
const int y_ctb = ry << sps->ctb_log2_size_y;
CTU *ctu = fc->tab.ctus + rs;
CodingUnit *cu = ctu->cus;
int ret = 0;
lc->num_ras[0] = lc->num_ras[1] = 0;
lc->lmcs.x_vpdu = -1;
lc->lmcs.y_vpdu = -1;
ff_vvc_decode_neighbour(lc, x_ctb, y_ctb, rx, ry, rs);
while (cu) {
lc->cu = cu;
if (cu->ciip_flag)
ff_vvc_predict_ciip(lc);
else if (cu->pred_mode == MODE_IBC)
vvc_predict_ibc(lc);
if (cu->coded_flag) {
ret = reconstruct(lc);
} else {
if (cu->tree_type != DUAL_TREE_CHROMA)
add_reconstructed_area(lc, LUMA, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
if (sps->r->sps_chroma_format_idc && cu->tree_type != DUAL_TREE_LUMA)
add_reconstructed_area(lc, CHROMA, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
}
if (sps->r->sps_ibc_enabled_flag)
ibc_fill_vir_buf(lc, cu);
cu = cu->next;
}
ff_vvc_ctu_free_cus(ctu);
return ret;
}