| /* | |
| =============================================================================== | |
| This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
| Arithmetic Package, Release 2a. | |
| Written by John R. Hauser. This work was made possible in part by the | |
| International Computer Science Institute, located at Suite 600, 1947 Center | |
| Street, Berkeley, California 94704. Funding was partially provided by the | |
| National Science Foundation under grant MIP-9311980. The original version | |
| of this code was written as part of a project to build a fixed-point vector | |
| processor in collaboration with the University of California at Berkeley, | |
| overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
| arithmetic/SoftFloat.html'. | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
| TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
| Derivative works are acceptable, even for commercial purposes, so long as | |
| (1) they include prominent notice that the work is derivative, and (2) they | |
| include prominent notice akin to these four paragraphs for those parts of | |
| this code that are retained. | |
| =============================================================================== | |
| */ | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Shifts `a' right by the number of bits given in `count'. If any nonzero | |
| bits are shifted off, they are ``jammed'' into the least significant bit of | |
| the result by setting the least significant bit to 1. The value of `count' | |
| can be arbitrarily large; in particular, if `count' is greater than 32, the | |
| result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
| The result is stored in the location pointed to by `zPtr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) | |
| { | |
| bits32 z; | |
| if ( count == 0 ) { | |
| z = a; | |
| } | |
| else if ( count < 32 ) { | |
| z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); | |
| } | |
| else { | |
| z = ( a != 0 ); | |
| } | |
| *zPtr = z; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the | |
| number of bits given in `count'. Any bits shifted off are lost. The value | |
| of `count' can be arbitrarily large; in particular, if `count' is greater | |
| than 64, the result will be 0. The result is broken into two 32-bit pieces | |
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| shift64Right( | |
| bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) | |
| { | |
| bits32 z0, z1; | |
| int8 negCount = ( - count ) & 31; | |
| if ( count == 0 ) { | |
| z1 = a1; | |
| z0 = a0; | |
| } | |
| else if ( count < 32 ) { | |
| z1 = ( a0<<negCount ) | ( a1>>count ); | |
| z0 = a0>>count; | |
| } | |
| else { | |
| z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0; | |
| z0 = 0; | |
| } | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the | |
| number of bits given in `count'. If any nonzero bits are shifted off, they | |
| are ``jammed'' into the least significant bit of the result by setting the | |
| least significant bit to 1. The value of `count' can be arbitrarily large; | |
| in particular, if `count' is greater than 64, the result will be either 0 | |
| or 1, depending on whether the concatenation of `a0' and `a1' is zero or | |
| nonzero. The result is broken into two 32-bit pieces which are stored at | |
| the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| shift64RightJamming( | |
| bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) | |
| { | |
| bits32 z0, z1; | |
| int8 negCount = ( - count ) & 31; | |
| if ( count == 0 ) { | |
| z1 = a1; | |
| z0 = a0; | |
| } | |
| else if ( count < 32 ) { | |
| z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); | |
| z0 = a0>>count; | |
| } | |
| else { | |
| if ( count == 32 ) { | |
| z1 = a0 | ( a1 != 0 ); | |
| } | |
| else if ( count < 64 ) { | |
| z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); | |
| } | |
| else { | |
| z1 = ( ( a0 | a1 ) != 0 ); | |
| } | |
| z0 = 0; | |
| } | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right | |
| by 32 _plus_ the number of bits given in `count'. The shifted result is | |
| at most 64 nonzero bits; these are broken into two 32-bit pieces which are | |
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted | |
| off form a third 32-bit result as follows: The _last_ bit shifted off is | |
| the most-significant bit of the extra result, and the other 31 bits of the | |
| extra result are all zero if and only if _all_but_the_last_ bits shifted off | |
| were all zero. This extra result is stored in the location pointed to by | |
| `z2Ptr'. The value of `count' can be arbitrarily large. | |
| (This routine makes more sense if `a0', `a1', and `a2' are considered | |
| to form a fixed-point value with binary point between `a1' and `a2'. This | |
| fixed-point value is shifted right by the number of bits given in `count', | |
| and the integer part of the result is returned at the locations pointed to | |
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly | |
| corrupted as described above, and is returned at the location pointed to by | |
| `z2Ptr'.) | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| shift64ExtraRightJamming( | |
| bits32 a0, | |
| bits32 a1, | |
| bits32 a2, | |
| int16 count, | |
| bits32 *z0Ptr, | |
| bits32 *z1Ptr, | |
| bits32 *z2Ptr | |
| ) | |
| { | |
| bits32 z0, z1, z2; | |
| int8 negCount = ( - count ) & 31; | |
| if ( count == 0 ) { | |
| z2 = a2; | |
| z1 = a1; | |
| z0 = a0; | |
| } | |
| else { | |
| if ( count < 32 ) { | |
| z2 = a1<<negCount; | |
| z1 = ( a0<<negCount ) | ( a1>>count ); | |
| z0 = a0>>count; | |
| } | |
| else { | |
| if ( count == 32 ) { | |
| z2 = a1; | |
| z1 = a0; | |
| } | |
| else { | |
| a2 |= a1; | |
| if ( count < 64 ) { | |
| z2 = a0<<negCount; | |
| z1 = a0>>( count & 31 ); | |
| } | |
| else { | |
| z2 = ( count == 64 ) ? a0 : ( a0 != 0 ); | |
| z1 = 0; | |
| } | |
| } | |
| z0 = 0; | |
| } | |
| z2 |= ( a2 != 0 ); | |
| } | |
| *z2Ptr = z2; | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the | |
| number of bits given in `count'. Any bits shifted off are lost. The value | |
| of `count' must be less than 32. The result is broken into two 32-bit | |
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| shortShift64Left( | |
| bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) | |
| { | |
| *z1Ptr = a1<<count; | |
| *z0Ptr = | |
| ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) ); | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left | |
| by the number of bits given in `count'. Any bits shifted off are lost. | |
| The value of `count' must be less than 32. The result is broken into three | |
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
| `z1Ptr', and `z2Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| shortShift96Left( | |
| bits32 a0, | |
| bits32 a1, | |
| bits32 a2, | |
| int16 count, | |
| bits32 *z0Ptr, | |
| bits32 *z1Ptr, | |
| bits32 *z2Ptr | |
| ) | |
| { | |
| bits32 z0, z1, z2; | |
| int8 negCount; | |
| z2 = a2<<count; | |
| z1 = a1<<count; | |
| z0 = a0<<count; | |
| if ( 0 < count ) { | |
| negCount = ( ( - count ) & 31 ); | |
| z1 |= a2>>negCount; | |
| z0 |= a1>>negCount; | |
| } | |
| *z2Ptr = z2; | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit | |
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so | |
| any carry out is lost. The result is broken into two 32-bit pieces which | |
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| add64( | |
| bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) | |
| { | |
| bits32 z1; | |
| z1 = a1 + b1; | |
| *z1Ptr = z1; | |
| *z0Ptr = a0 + b0 + ( z1 < a1 ); | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the | |
| 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is | |
| modulo 2^96, so any carry out is lost. The result is broken into three | |
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
| `z1Ptr', and `z2Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| add96( | |
| bits32 a0, | |
| bits32 a1, | |
| bits32 a2, | |
| bits32 b0, | |
| bits32 b1, | |
| bits32 b2, | |
| bits32 *z0Ptr, | |
| bits32 *z1Ptr, | |
| bits32 *z2Ptr | |
| ) | |
| { | |
| bits32 z0, z1, z2; | |
| int8 carry0, carry1; | |
| z2 = a2 + b2; | |
| carry1 = ( z2 < a2 ); | |
| z1 = a1 + b1; | |
| carry0 = ( z1 < a1 ); | |
| z0 = a0 + b0; | |
| z1 += carry1; | |
| z0 += ( z1 < (bits32)carry1 ); | |
| z0 += carry0; | |
| *z2Ptr = z2; | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the | |
| 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo | |
| 2^64, so any borrow out (carry out) is lost. The result is broken into two | |
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and | |
| `z1Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| sub64( | |
| bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) | |
| { | |
| *z1Ptr = a1 - b1; | |
| *z0Ptr = a0 - b0 - ( a1 < b1 ); | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from | |
| the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction | |
| is modulo 2^96, so any borrow out (carry out) is lost. The result is broken | |
| into three 32-bit pieces which are stored at the locations pointed to by | |
| `z0Ptr', `z1Ptr', and `z2Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| sub96( | |
| bits32 a0, | |
| bits32 a1, | |
| bits32 a2, | |
| bits32 b0, | |
| bits32 b1, | |
| bits32 b2, | |
| bits32 *z0Ptr, | |
| bits32 *z1Ptr, | |
| bits32 *z2Ptr | |
| ) | |
| { | |
| bits32 z0, z1, z2; | |
| int8 borrow0, borrow1; | |
| z2 = a2 - b2; | |
| borrow1 = ( a2 < b2 ); | |
| z1 = a1 - b1; | |
| borrow0 = ( a1 < b1 ); | |
| z0 = a0 - b0; | |
| z0 -= ( z1 < (bits32)borrow1 ); | |
| z1 -= borrow1; | |
| z0 -= borrow0; | |
| *z2Ptr = z2; | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Multiplies `a' by `b' to obtain a 64-bit product. The product is broken | |
| into two 32-bit pieces which are stored at the locations pointed to by | |
| `z0Ptr' and `z1Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr ) | |
| { | |
| bits16 aHigh, aLow, bHigh, bLow; | |
| bits32 z0, zMiddleA, zMiddleB, z1; | |
| aLow = a; | |
| aHigh = a>>16; | |
| bLow = b; | |
| bHigh = b>>16; | |
| z1 = ( (bits32) aLow ) * bLow; | |
| zMiddleA = ( (bits32) aLow ) * bHigh; | |
| zMiddleB = ( (bits32) aHigh ) * bLow; | |
| z0 = ( (bits32) aHigh ) * bHigh; | |
| zMiddleA += zMiddleB; | |
| z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 ); | |
| zMiddleA <<= 16; | |
| z1 += zMiddleA; | |
| z0 += ( z1 < zMiddleA ); | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b' | |
| to obtain a 96-bit product. The product is broken into three 32-bit pieces | |
| which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and | |
| `z2Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| mul64By32To96( | |
| bits32 a0, | |
| bits32 a1, | |
| bits32 b, | |
| bits32 *z0Ptr, | |
| bits32 *z1Ptr, | |
| bits32 *z2Ptr | |
| ) | |
| { | |
| bits32 z0, z1, z2, more1; | |
| mul32To64( a1, b, &z1, &z2 ); | |
| mul32To64( a0, b, &z0, &more1 ); | |
| add64( z0, more1, 0, z1, &z0, &z1 ); | |
| *z2Ptr = z2; | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the | |
| 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit | |
| product. The product is broken into four 32-bit pieces which are stored at | |
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE void | |
| mul64To128( | |
| bits32 a0, | |
| bits32 a1, | |
| bits32 b0, | |
| bits32 b1, | |
| bits32 *z0Ptr, | |
| bits32 *z1Ptr, | |
| bits32 *z2Ptr, | |
| bits32 *z3Ptr | |
| ) | |
| { | |
| bits32 z0, z1, z2, z3; | |
| bits32 more1, more2; | |
| mul32To64( a1, b1, &z2, &z3 ); | |
| mul32To64( a1, b0, &z1, &more2 ); | |
| add64( z1, more2, 0, z2, &z1, &z2 ); | |
| mul32To64( a0, b0, &z0, &more1 ); | |
| add64( z0, more1, 0, z1, &z0, &z1 ); | |
| mul32To64( a0, b1, &more1, &more2 ); | |
| add64( more1, more2, 0, z2, &more1, &z2 ); | |
| add64( z0, z1, 0, more1, &z0, &z1 ); | |
| *z3Ptr = z3; | |
| *z2Ptr = z2; | |
| *z1Ptr = z1; | |
| *z0Ptr = z0; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns an approximation to the 32-bit integer quotient obtained by dividing | |
| `b' into the 64-bit value formed by concatenating `a0' and `a1'. The | |
| divisor `b' must be at least 2^31. If q is the exact quotient truncated | |
| toward zero, the approximation returned lies between q and q + 2 inclusive. | |
| If the exact quotient q is larger than 32 bits, the maximum positive 32-bit | |
| unsigned integer is returned. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b ) | |
| { | |
| bits32 b0, b1; | |
| bits32 rem0, rem1, term0, term1; | |
| bits32 z; | |
| if ( b <= a0 ) return 0xFFFFFFFF; | |
| b0 = b>>16; | |
| z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16; | |
| mul32To64( b, z, &term0, &term1 ); | |
| sub64( a0, a1, term0, term1, &rem0, &rem1 ); | |
| while ( ( (sbits32) rem0 ) < 0 ) { | |
| z -= 0x10000; | |
| b1 = b<<16; | |
| add64( rem0, rem1, b0, b1, &rem0, &rem1 ); | |
| } | |
| rem0 = ( rem0<<16 ) | ( rem1>>16 ); | |
| z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0; | |
| return z; | |
| } | |
| #ifndef SOFTFLOAT_FOR_GCC | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns an approximation to the square root of the 32-bit significand given | |
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of | |
| `aExp' (the least significant bit) is 1, the integer returned approximates | |
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' | |
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either | |
| case, the approximation returned lies strictly within +/-2 of the exact | |
| value. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| static bits32 estimateSqrt32( int16 aExp, bits32 a ) | |
| { | |
| static const bits16 sqrtOddAdjustments[] = { | |
| 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, | |
| 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 | |
| }; | |
| static const bits16 sqrtEvenAdjustments[] = { | |
| 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, | |
| 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 | |
| }; | |
| int8 index; | |
| bits32 z; | |
| index = ( a>>27 ) & 15; | |
| if ( aExp & 1 ) { | |
| z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; | |
| z = ( ( a / z )<<14 ) + ( z<<15 ); | |
| a >>= 1; | |
| } | |
| else { | |
| z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; | |
| z = a / z + z; | |
| z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); | |
| if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); | |
| } | |
| return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 ); | |
| } | |
| #endif | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns the number of leading 0 bits before the most-significant 1 bit of | |
| `a'. If `a' is zero, 32 is returned. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| static int8 countLeadingZeros32( bits32 a ) | |
| { | |
| static const int8 countLeadingZerosHigh[] = { | |
| 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | |
| }; | |
| int8 shiftCount; | |
| shiftCount = 0; | |
| if ( a < 0x10000 ) { | |
| shiftCount += 16; | |
| a <<= 16; | |
| } | |
| if ( a < 0x1000000 ) { | |
| shiftCount += 8; | |
| a <<= 8; | |
| } | |
| shiftCount += countLeadingZerosHigh[ a>>24 ]; | |
| return shiftCount; | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is | |
| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, | |
| returns 0. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) | |
| { | |
| return ( a0 == b0 ) && ( a1 == b1 ); | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less | |
| than or equal to the 64-bit value formed by concatenating `b0' and `b1'. | |
| Otherwise, returns 0. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) | |
| { | |
| return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less | |
| than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, | |
| returns 0. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) | |
| { | |
| return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); | |
| } | |
| /* | |
| ------------------------------------------------------------------------------- | |
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not | |
| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, | |
| returns 0. | |
| ------------------------------------------------------------------------------- | |
| */ | |
| INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) | |
| { | |
| return ( a0 != b0 ) || ( a1 != b1 ); | |
| } | |