| /* @(#)k_tan.c 5.1 93/09/24 */ | |
| /* | |
| * ==================================================== | |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
| * | |
| * Developed at SunPro, a Sun Microsystems, Inc. business. | |
| * Permission to use, copy, modify, and distribute this | |
| * software is freely granted, provided that this notice | |
| * is preserved. | |
| * ==================================================== | |
| */ | |
| #include <LibConfig.h> | |
| #include <sys/EfiCdefs.h> | |
| #if defined(LIBM_SCCS) && !defined(lint) | |
| __RCSID("$NetBSD: k_tan.c,v 1.12 2004/07/22 18:24:09 drochner Exp $"); | |
| #endif | |
| /* __kernel_tan( x, y, k ) | |
| * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 | |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. | |
| * Input y is the tail of x. | |
| * Input k indicates whether tan (if k=1) or | |
| * -1/tan (if k= -1) is returned. | |
| * | |
| * Algorithm | |
| * 1. Since tan(-x) = -tan(x), we need only to consider positive x. | |
| * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. | |
| * 3. tan(x) is approximated by a odd polynomial of degree 27 on | |
| * [0,0.67434] | |
| * 3 27 | |
| * tan(x) ~ x + T1*x + ... + T13*x | |
| * where | |
| * | |
| * |tan(x) 2 4 26 | -59.2 | |
| * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 | |
| * | x | | |
| * | |
| * Note: tan(x+y) = tan(x) + tan'(x)*y | |
| * ~ tan(x) + (1+x*x)*y | |
| * Therefore, for better accuracy in computing tan(x+y), let | |
| * 3 2 2 2 2 | |
| * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) | |
| * then | |
| * 3 2 | |
| * tan(x+y) = x + (T1*x + (x *(r+y)+y)) | |
| * | |
| * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then | |
| * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) | |
| * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) | |
| */ | |
| #include "math.h" | |
| #include "math_private.h" | |
| static const double xxx[] = { | |
| 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ | |
| 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ | |
| 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ | |
| 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ | |
| 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ | |
| 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ | |
| 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ | |
| 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ | |
| 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ | |
| 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ | |
| 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ | |
| -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ | |
| 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ | |
| /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ | |
| /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ | |
| /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ | |
| }; | |
| #define one xxx[13] | |
| #define pio4 xxx[14] | |
| #define pio4lo xxx[15] | |
| #define T xxx | |
| double | |
| __kernel_tan(double x, double y, int iy) | |
| { | |
| double z, r, v, w, s; | |
| int32_t ix, hx; | |
| GET_HIGH_WORD(hx, x); /* high word of x */ | |
| ix = hx & 0x7fffffff; /* high word of |x| */ | |
| if (ix < 0x3e300000) { /* x < 2**-28 */ | |
| if ((int) x == 0) { /* generate inexact */ | |
| u_int32_t low; | |
| GET_LOW_WORD(low, x); | |
| if(((ix | low) | (iy + 1)) == 0) | |
| return one / fabs(x); | |
| else { | |
| if (iy == 1) | |
| return x; | |
| else { /* compute -1 / (x+y) carefully */ | |
| double a, t; | |
| z = w = x + y; | |
| SET_LOW_WORD(z, 0); | |
| v = y - (z - x); | |
| t = a = -one / w; | |
| SET_LOW_WORD(t, 0); | |
| s = one + t * z; | |
| return t + a * (s + t * v); | |
| } | |
| } | |
| } | |
| } | |
| if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ | |
| if (hx < 0) { | |
| x = -x; | |
| y = -y; | |
| } | |
| z = pio4 - x; | |
| w = pio4lo - y; | |
| x = z + w; | |
| y = 0.0; | |
| } | |
| z = x * x; | |
| w = z * z; | |
| /* | |
| * Break x^5*(T[1]+x^2*T[2]+...) into | |
| * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + | |
| * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) | |
| */ | |
| r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + | |
| w * T[11])))); | |
| v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + | |
| w * T[12]))))); | |
| s = z * x; | |
| r = y + z * (s * (r + v) + y); | |
| r += T[0] * s; | |
| w = x + r; | |
| if (ix >= 0x3FE59428) { | |
| v = (double) iy; | |
| return (double) (1 - ((hx >> 30) & 2)) * | |
| (v - 2.0 * (x - (w * w / (w + v) - r))); | |
| } | |
| if (iy == 1) | |
| return w; | |
| else { | |
| /* | |
| * if allow error up to 2 ulp, simply return | |
| * -1.0 / (x+r) here | |
| */ | |
| /* compute -1.0 / (x+r) accurately */ | |
| double a, t; | |
| z = w; | |
| SET_LOW_WORD(z, 0); | |
| v = r - (z - x); /* z+v = r+x */ | |
| t = a = -1.0 / w; /* a = -1.0/w */ | |
| SET_LOW_WORD(t, 0); | |
| s = 1.0 + t * z; | |
| return t + a * (s + t * v); | |
| } | |
| } |