blob: 96468701e3b8c5f474526a4c51f6cc2e8d7599b4 [file] [log] [blame]
/**@file
Platform PEI driver
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
//
// The package level header files this module uses
//
#include <PiPei.h>
//
// The Library classes this module consumes
//
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/PeiServicesLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/QemuFwCfgS3Lib.h>
#include <Library/QemuFwCfgSimpleParserLib.h>
#include <Library/ResourcePublicationLib.h>
#include <Ppi/MasterBootMode.h>
#include <IndustryStandard/I440FxPiix4.h>
#include <IndustryStandard/Pci22.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <IndustryStandard/QemuCpuHotplug.h>
#include <OvmfPlatforms.h>
#include "Platform.h"
#include "Cmos.h"
EFI_PEI_PPI_DESCRIPTOR mPpiBootMode[] = {
{
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gEfiPeiMasterBootModePpiGuid,
NULL
}
};
UINT16 mHostBridgeDevId;
EFI_BOOT_MODE mBootMode = BOOT_WITH_FULL_CONFIGURATION;
BOOLEAN mS3Supported = FALSE;
UINT32 mMaxCpuCount;
VOID
AddIoMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_MAPPED_IO,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
AddReservedMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize,
BOOLEAN Cacheable
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_MEMORY_RESERVED,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
(Cacheable ?
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE :
0
) |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
AddIoMemoryRangeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
AddIoMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
AddMemoryBaseSizeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
UINT64 MemorySize
)
{
BuildResourceDescriptorHob (
EFI_RESOURCE_SYSTEM_MEMORY,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED,
MemoryBase,
MemorySize
);
}
VOID
AddMemoryRangeHob (
EFI_PHYSICAL_ADDRESS MemoryBase,
EFI_PHYSICAL_ADDRESS MemoryLimit
)
{
AddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}
VOID
MemMapInitialization (
VOID
)
{
UINT64 PciIoBase;
UINT64 PciIoSize;
RETURN_STATUS PcdStatus;
PciIoBase = 0xC000;
PciIoSize = 0x4000;
//
// Video memory + Legacy BIOS region
//
AddIoMemoryRangeHob (0x0A0000, BASE_1MB);
if (!mXen) {
UINT32 TopOfLowRam;
UINT64 PciExBarBase;
UINT32 PciBase;
UINT32 PciSize;
TopOfLowRam = GetSystemMemorySizeBelow4gb ();
PciExBarBase = 0;
if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
//
// The MMCONFIG area is expected to fall between the top of low RAM and
// the base of the 32-bit PCI host aperture.
//
PciExBarBase = FixedPcdGet64 (PcdPciExpressBaseAddress);
ASSERT (TopOfLowRam <= PciExBarBase);
ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB);
PciBase = (UINT32)(PciExBarBase + SIZE_256MB);
} else {
ASSERT (TopOfLowRam <= mQemuUc32Base);
PciBase = mQemuUc32Base;
}
//
// address purpose size
// ------------ -------- -------------------------
// max(top, 2g) PCI MMIO 0xFC000000 - max(top, 2g)
// 0xFC000000 gap 44 MB
// 0xFEC00000 IO-APIC 4 KB
// 0xFEC01000 gap 1020 KB
// 0xFED00000 HPET 1 KB
// 0xFED00400 gap 111 KB
// 0xFED1C000 gap (PIIX4) / RCRB (ICH9) 16 KB
// 0xFED20000 gap 896 KB
// 0xFEE00000 LAPIC 1 MB
//
PciSize = 0xFC000000 - PciBase;
AddIoMemoryBaseSizeHob (PciBase, PciSize);
PcdStatus = PcdSet64S (PcdPciMmio32Base, PciBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdPciMmio32Size, PciSize);
ASSERT_RETURN_ERROR (PcdStatus);
AddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB);
AddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB);
if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
AddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB);
//
// Note: there should be an
//
// AddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB);
//
// call below, just like the one above for RCBA. However, Linux insists
// that the MMCONFIG area be marked in the E820 or UEFI memory map as
// "reserved memory" -- Linux does not content itself with a simple gap
// in the memory map wherever the MCFG ACPI table points to.
//
// This appears to be a safety measure. The PCI Firmware Specification
// (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can
// *optionally* be returned in [...] EFIGetMemoryMap as reserved memory
// [...]". (Emphasis added here.)
//
// Normally we add memory resource descriptor HOBs in
// QemuInitializeRam(), and pre-allocate from those with memory
// allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area
// is most definitely not RAM; so, as an exception, cover it with
// uncacheable reserved memory right here.
//
AddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE);
BuildMemoryAllocationHob (PciExBarBase, SIZE_256MB,
EfiReservedMemoryType);
}
AddIoMemoryBaseSizeHob (PcdGet32(PcdCpuLocalApicBaseAddress), SIZE_1MB);
//
// On Q35, the IO Port space is available for PCI resource allocations from
// 0x6000 up.
//
if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
PciIoBase = 0x6000;
PciIoSize = 0xA000;
ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase);
}
}
//
// Add PCI IO Port space available for PCI resource allocations.
//
BuildResourceDescriptorHob (
EFI_RESOURCE_IO,
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED,
PciIoBase,
PciIoSize
);
PcdStatus = PcdSet64S (PcdPciIoBase, PciIoBase);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet64S (PcdPciIoSize, PciIoSize);
ASSERT_RETURN_ERROR (PcdStatus);
}
#define UPDATE_BOOLEAN_PCD_FROM_FW_CFG(TokenName) \
do { \
BOOLEAN Setting; \
RETURN_STATUS PcdStatus; \
\
if (!RETURN_ERROR (QemuFwCfgParseBool ( \
"opt/ovmf/" #TokenName, &Setting))) { \
PcdStatus = PcdSetBoolS (TokenName, Setting); \
ASSERT_RETURN_ERROR (PcdStatus); \
} \
} while (0)
VOID
NoexecDxeInitialization (
VOID
)
{
UPDATE_BOOLEAN_PCD_FROM_FW_CFG (PcdSetNxForStack);
}
VOID
PciExBarInitialization (
VOID
)
{
union {
UINT64 Uint64;
UINT32 Uint32[2];
} PciExBarBase;
//
// We only support the 256MB size for the MMCONFIG area:
// 256 buses * 32 devices * 8 functions * 4096 bytes config space.
//
// The masks used below enforce the Q35 requirements that the MMCONFIG area
// be (a) correctly aligned -- here at 256 MB --, (b) located under 64 GB.
//
// Note that (b) also ensures that the minimum address width we have
// determined in AddressWidthInitialization(), i.e., 36 bits, will suffice
// for DXE's page tables to cover the MMCONFIG area.
//
PciExBarBase.Uint64 = FixedPcdGet64 (PcdPciExpressBaseAddress);
ASSERT ((PciExBarBase.Uint32[1] & MCH_PCIEXBAR_HIGHMASK) == 0);
ASSERT ((PciExBarBase.Uint32[0] & MCH_PCIEXBAR_LOWMASK) == 0);
//
// Clear the PCIEXBAREN bit first, before programming the high register.
//
PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), 0);
//
// Program the high register. Then program the low register, setting the
// MMCONFIG area size and enabling decoding at once.
//
PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_HIGH), PciExBarBase.Uint32[1]);
PciWrite32 (
DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW),
PciExBarBase.Uint32[0] | MCH_PCIEXBAR_BUS_FF | MCH_PCIEXBAR_EN
);
}
VOID
MiscInitialization (
VOID
)
{
UINTN PmCmd;
UINTN Pmba;
UINT32 PmbaAndVal;
UINT32 PmbaOrVal;
UINTN AcpiCtlReg;
UINT8 AcpiEnBit;
RETURN_STATUS PcdStatus;
//
// Disable A20 Mask
//
IoOr8 (0x92, BIT1);
//
// Build the CPU HOB with guest RAM size dependent address width and 16-bits
// of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during
// S3 resume as well, so we build it unconditionally.)
//
BuildCpuHob (mPhysMemAddressWidth, 16);
//
// Determine platform type and save Host Bridge DID to PCD
//
switch (mHostBridgeDevId) {
case INTEL_82441_DEVICE_ID:
PmCmd = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET);
Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK;
PmbaOrVal = PIIX4_PMBA_VALUE;
AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC);
AcpiEnBit = PIIX4_PMREGMISC_PMIOSE;
break;
case INTEL_Q35_MCH_DEVICE_ID:
PmCmd = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET);
Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK;
PmbaOrVal = ICH9_PMBASE_VALUE;
AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL);
AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN;
break;
default:
DEBUG ((DEBUG_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n",
__FUNCTION__, mHostBridgeDevId));
ASSERT (FALSE);
return;
}
PcdStatus = PcdSet16S (PcdOvmfHostBridgePciDevId, mHostBridgeDevId);
ASSERT_RETURN_ERROR (PcdStatus);
//
// If the appropriate IOspace enable bit is set, assume the ACPI PMBA
// has been configured (e.g., by Xen) and skip the setup here.
// This matches the logic in AcpiTimerLibConstructor ().
//
if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) {
//
// The PEI phase should be exited with fully accessibe ACPI PM IO space:
// 1. set PMBA
//
PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal);
//
// 2. set PCICMD/IOSE
//
PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE);
//
// 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN)
//
PciOr8 (AcpiCtlReg, AcpiEnBit);
}
if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
//
// Set Root Complex Register Block BAR
//
PciWrite32 (
POWER_MGMT_REGISTER_Q35 (ICH9_RCBA),
ICH9_ROOT_COMPLEX_BASE | ICH9_RCBA_EN
);
//
// Set PCI Express Register Range Base Address
//
PciExBarInitialization ();
}
}
VOID
BootModeInitialization (
VOID
)
{
EFI_STATUS Status;
if (CmosRead8 (0xF) == 0xFE) {
mBootMode = BOOT_ON_S3_RESUME;
}
CmosWrite8 (0xF, 0x00);
Status = PeiServicesSetBootMode (mBootMode);
ASSERT_EFI_ERROR (Status);
Status = PeiServicesInstallPpi (mPpiBootMode);
ASSERT_EFI_ERROR (Status);
}
VOID
ReserveEmuVariableNvStore (
)
{
EFI_PHYSICAL_ADDRESS VariableStore;
RETURN_STATUS PcdStatus;
//
// Allocate storage for NV variables early on so it will be
// at a consistent address. Since VM memory is preserved
// across reboots, this allows the NV variable storage to survive
// a VM reboot.
//
VariableStore =
(EFI_PHYSICAL_ADDRESS)(UINTN)
AllocateRuntimePages (
EFI_SIZE_TO_PAGES (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize))
);
DEBUG ((DEBUG_INFO,
"Reserved variable store memory: 0x%lX; size: %dkb\n",
VariableStore,
(2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / 1024
));
PcdStatus = PcdSet64S (PcdEmuVariableNvStoreReserved, VariableStore);
ASSERT_RETURN_ERROR (PcdStatus);
}
VOID
DebugDumpCmos (
VOID
)
{
UINT32 Loop;
DEBUG ((DEBUG_INFO, "CMOS:\n"));
for (Loop = 0; Loop < 0x80; Loop++) {
if ((Loop % 0x10) == 0) {
DEBUG ((DEBUG_INFO, "%02x:", Loop));
}
DEBUG ((DEBUG_INFO, " %02x", CmosRead8 (Loop)));
if ((Loop % 0x10) == 0xf) {
DEBUG ((DEBUG_INFO, "\n"));
}
}
}
VOID
S3Verification (
VOID
)
{
#if defined (MDE_CPU_X64)
if (FeaturePcdGet (PcdSmmSmramRequire) && mS3Supported) {
DEBUG ((DEBUG_ERROR,
"%a: S3Resume2Pei doesn't support X64 PEI + SMM yet.\n", __FUNCTION__));
DEBUG ((DEBUG_ERROR,
"%a: Please disable S3 on the QEMU command line (see the README),\n",
__FUNCTION__));
DEBUG ((DEBUG_ERROR,
"%a: or build OVMF with \"OvmfPkgIa32X64.dsc\".\n", __FUNCTION__));
ASSERT (FALSE);
CpuDeadLoop ();
}
#endif
}
VOID
Q35BoardVerification (
VOID
)
{
if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
return;
}
DEBUG ((
DEBUG_ERROR,
"%a: no TSEG (SMRAM) on host bridge DID=0x%04x; "
"only DID=0x%04x (Q35) is supported\n",
__FUNCTION__,
mHostBridgeDevId,
INTEL_Q35_MCH_DEVICE_ID
));
ASSERT (FALSE);
CpuDeadLoop ();
}
/**
Fetch the boot CPU count and the possible CPU count from QEMU, and expose
them to UefiCpuPkg modules. Set the mMaxCpuCount variable.
**/
VOID
MaxCpuCountInitialization (
VOID
)
{
UINT16 BootCpuCount;
RETURN_STATUS PcdStatus;
//
// Try to fetch the boot CPU count.
//
QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount);
BootCpuCount = QemuFwCfgRead16 ();
if (BootCpuCount == 0) {
//
// QEMU doesn't report the boot CPU count. (BootCpuCount == 0) will let
// MpInitLib count APs up to (PcdCpuMaxLogicalProcessorNumber - 1), or
// until PcdCpuApInitTimeOutInMicroSeconds elapses (whichever is reached
// first).
//
DEBUG ((DEBUG_WARN, "%a: boot CPU count unavailable\n", __FUNCTION__));
mMaxCpuCount = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
} else {
//
// We will expose BootCpuCount to MpInitLib. MpInitLib will count APs up to
// (BootCpuCount - 1) precisely, regardless of timeout.
//
// Now try to fetch the possible CPU count.
//
UINTN CpuHpBase;
UINT32 CmdData2;
CpuHpBase = ((mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) ?
ICH9_CPU_HOTPLUG_BASE : PIIX4_CPU_HOTPLUG_BASE);
//
// If only legacy mode is available in the CPU hotplug register block, or
// the register block is completely missing, then the writes below are
// no-ops.
//
// 1. Switch the hotplug register block to modern mode.
//
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
//
// 2. Select a valid CPU for deterministic reading of
// QEMU_CPUHP_R_CMD_DATA2.
//
// CPU#0 is always valid; it is the always present and non-removable
// BSP.
//
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
//
// 3. Send a command after which QEMU_CPUHP_R_CMD_DATA2 is specified to
// read as zero, and which does not invalidate the selector. (The
// selector may change, but it must not become invalid.)
//
// Send QEMU_CPUHP_CMD_GET_PENDING, as it will prove useful later.
//
IoWrite8 (CpuHpBase + QEMU_CPUHP_W_CMD, QEMU_CPUHP_CMD_GET_PENDING);
//
// 4. Read QEMU_CPUHP_R_CMD_DATA2.
//
// If the register block is entirely missing, then this is an unassigned
// IO read, returning all-bits-one.
//
// If only legacy mode is available, then bit#0 stands for CPU#0 in the
// "CPU present bitmap". CPU#0 is always present.
//
// Otherwise, QEMU_CPUHP_R_CMD_DATA2 is either still reserved (returning
// all-bits-zero), or it is specified to read as zero after the above
// steps. Both cases confirm modern mode.
//
CmdData2 = IoRead32 (CpuHpBase + QEMU_CPUHP_R_CMD_DATA2);
DEBUG ((DEBUG_VERBOSE, "%a: CmdData2=0x%x\n", __FUNCTION__, CmdData2));
if (CmdData2 != 0) {
//
// QEMU doesn't support the modern CPU hotplug interface. Assume that the
// possible CPU count equals the boot CPU count (precluding hotplug).
//
DEBUG ((DEBUG_WARN, "%a: modern CPU hotplug interface unavailable\n",
__FUNCTION__));
mMaxCpuCount = BootCpuCount;
} else {
//
// Grab the possible CPU count from the modern CPU hotplug interface.
//
UINT32 Present, Possible, Selected;
Present = 0;
Possible = 0;
//
// We've sent QEMU_CPUHP_CMD_GET_PENDING last; this ensures
// QEMU_CPUHP_RW_CMD_DATA can now be read usefully. However,
// QEMU_CPUHP_CMD_GET_PENDING may have selected a CPU with actual pending
// hotplug events; therefore, select CPU#0 forcibly.
//
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
do {
UINT8 CpuStatus;
//
// Read the status of the currently selected CPU. This will help with a
// sanity check against "BootCpuCount".
//
CpuStatus = IoRead8 (CpuHpBase + QEMU_CPUHP_R_CPU_STAT);
if ((CpuStatus & QEMU_CPUHP_STAT_ENABLED) != 0) {
++Present;
}
//
// Attempt to select the next CPU.
//
++Possible;
IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
//
// If the selection is successful, then the following read will return
// the selector (which we know is positive at this point). Otherwise,
// the read will return 0.
//
Selected = IoRead32 (CpuHpBase + QEMU_CPUHP_RW_CMD_DATA);
ASSERT (Selected == Possible || Selected == 0);
} while (Selected > 0);
//
// Sanity check: fw_cfg and the modern CPU hotplug interface should
// return the same boot CPU count.
//
if (BootCpuCount != Present) {
DEBUG ((DEBUG_WARN, "%a: QEMU v2.7 reset bug: BootCpuCount=%d "
"Present=%u\n", __FUNCTION__, BootCpuCount, Present));
//
// The handling of QemuFwCfgItemSmpCpuCount, across CPU hotplug plus
// platform reset (including S3), was corrected in QEMU commit
// e3cadac073a9 ("pc: fix FW_CFG_NB_CPUS to account for -device added
// CPUs", 2016-11-16), part of release v2.8.0.
//
BootCpuCount = (UINT16)Present;
}
mMaxCpuCount = Possible;
}
}
DEBUG ((DEBUG_INFO, "%a: BootCpuCount=%d mMaxCpuCount=%u\n", __FUNCTION__,
BootCpuCount, mMaxCpuCount));
ASSERT (BootCpuCount <= mMaxCpuCount);
PcdStatus = PcdSet32S (PcdCpuBootLogicalProcessorNumber, BootCpuCount);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet32S (PcdCpuMaxLogicalProcessorNumber, mMaxCpuCount);
ASSERT_RETURN_ERROR (PcdStatus);
}
/**
Perform Platform PEI initialization.
@param FileHandle Handle of the file being invoked.
@param PeiServices Describes the list of possible PEI Services.
@return EFI_SUCCESS The PEIM initialized successfully.
**/
EFI_STATUS
EFIAPI
InitializePlatform (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
DEBUG ((DEBUG_INFO, "Platform PEIM Loaded\n"));
DebugDumpCmos ();
XenDetect ();
if (QemuFwCfgS3Enabled ()) {
DEBUG ((DEBUG_INFO, "S3 support was detected on QEMU\n"));
mS3Supported = TRUE;
Status = PcdSetBoolS (PcdAcpiS3Enable, TRUE);
ASSERT_EFI_ERROR (Status);
}
S3Verification ();
BootModeInitialization ();
AddressWidthInitialization ();
//
// Query Host Bridge DID
//
mHostBridgeDevId = PciRead16 (OVMF_HOSTBRIDGE_DID);
MaxCpuCountInitialization ();
if (FeaturePcdGet (PcdSmmSmramRequire)) {
Q35BoardVerification ();
Q35TsegMbytesInitialization ();
Q35SmramAtDefaultSmbaseInitialization ();
}
PublishPeiMemory ();
QemuUc32BaseInitialization ();
InitializeRamRegions ();
if (mXen) {
DEBUG ((DEBUG_INFO, "Xen was detected\n"));
InitializeXen ();
}
if (mBootMode != BOOT_ON_S3_RESUME) {
if (!FeaturePcdGet (PcdSmmSmramRequire)) {
ReserveEmuVariableNvStore ();
}
PeiFvInitialization ();
MemTypeInfoInitialization ();
MemMapInitialization ();
NoexecDxeInitialization ();
}
InstallClearCacheCallback ();
AmdSevInitialize ();
MiscInitialization ();
InstallFeatureControlCallback ();
return EFI_SUCCESS;
}