blob: 11eadb40f76c876bbcd4daeaa3369fc83701f676 [file] [log] [blame]
/** @file
PCI Root Bridge Io Protocol implementation
Copyright (c) 2008 - 2009, Intel Corporation<BR> All rights
reserved. This program and the accompanying materials are
licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PciHostBridge.h"
typedef struct {
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR SpaceDesp[TypeMax];
EFI_ACPI_END_TAG_DESCRIPTOR EndDesp;
} RESOURCE_CONFIGURATION;
RESOURCE_CONFIGURATION Configuration = {
{{0x8A, 0x2B, 1, 0, 0, 0, 0, 0, 0, 0},
{0x8A, 0x2B, 0, 0, 0, 32, 0, 0, 0, 0},
{0x8A, 0x2B, 0, 0, 6, 32, 0, 0, 0, 0},
{0x8A, 0x2B, 0, 0, 0, 64, 0, 0, 0, 0},
{0x8A, 0x2B, 0, 0, 6, 64, 0, 0, 0, 0},
{0x8A, 0x2B, 2, 0, 0, 0, 0, 0, 0, 0}},
{0x79, 0}
};
//
// Protocol Member Function Prototypes
//
EFI_STATUS
EFIAPI
RootBridgeIoPollMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
);
EFI_STATUS
EFIAPI
RootBridgeIoPollIo (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
);
EFI_STATUS
EFIAPI
RootBridgeIoMemRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS
EFIAPI
RootBridgeIoMemWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS
EFIAPI
RootBridgeIoIoRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 UserAddress,
IN UINTN Count,
IN OUT VOID *UserBuffer
);
EFI_STATUS
EFIAPI
RootBridgeIoIoWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 UserAddress,
IN UINTN Count,
IN OUT VOID *UserBuffer
);
EFI_STATUS
EFIAPI
RootBridgeIoCopyMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 DestAddress,
IN UINT64 SrcAddress,
IN UINTN Count
);
EFI_STATUS
EFIAPI
RootBridgeIoPciRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS
EFIAPI
RootBridgeIoPciWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);
EFI_STATUS
EFIAPI
RootBridgeIoMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
);
EFI_STATUS
EFIAPI
RootBridgeIoUnmap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN VOID *Mapping
);
EFI_STATUS
EFIAPI
RootBridgeIoAllocateBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
);
EFI_STATUS
EFIAPI
RootBridgeIoFreeBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINTN Pages,
OUT VOID *HostAddress
);
EFI_STATUS
EFIAPI
RootBridgeIoFlush (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
);
EFI_STATUS
EFIAPI
RootBridgeIoGetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT UINT64 *Supported,
OUT UINT64 *Attributes
);
EFI_STATUS
EFIAPI
RootBridgeIoSetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINT64 Attributes,
IN OUT UINT64 *ResourceBase,
IN OUT UINT64 *ResourceLength
);
EFI_STATUS
EFIAPI
RootBridgeIoConfiguration (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT VOID **Resources
);
//
// Sub Function Prototypes
//
EFI_STATUS
RootBridgeIoPciRW (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN BOOLEAN Write,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 UserAddress,
IN UINTN Count,
IN OUT VOID *UserBuffer
);
//
// Memory Controller Pci Root Bridge Io Module Variables
//
EFI_METRONOME_ARCH_PROTOCOL *mMetronome;
EFI_CPU_IO_PROTOCOL *mCpuIo;
EFI_STATUS
RootBridgeConstructor (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *Protocol,
IN EFI_HANDLE HostBridgeHandle,
IN UINT64 Attri,
IN PCI_ROOT_BRIDGE_RESOURCE_APPETURE *ResAppeture
)
/*++
Routine Description:
Construct the Pci Root Bridge Io protocol
Arguments:
Protocol - protocol to initialize
Returns:
None
--*/
{
EFI_STATUS Status;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
PCI_RESOURCE_TYPE Index;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (Protocol);
//
// The host to pci bridge, the host memory and io addresses are
// direct mapped to pci addresses, so no need translate, set bases to 0.
//
PrivateData->MemBase = ResAppeture->MemBase;
PrivateData->IoBase = ResAppeture->IoBase;
//
// The host bridge only supports 32bit addressing for memory
// and standard IA32 16bit io
//
PrivateData->MemLimit = ResAppeture->MemLimit;
PrivateData->IoLimit = ResAppeture->IoLimit;
//
// Bus Appeture for this Root Bridge (Possible Range)
//
PrivateData->BusBase = ResAppeture->BusBase;
PrivateData->BusLimit = ResAppeture->BusLimit;
//
// Specific for this chipset
//
for (Index = TypeIo; Index < TypeMax; Index++) {
PrivateData->ResAllocNode[Index].Type = Index;
PrivateData->ResAllocNode[Index].Base = 0;
PrivateData->ResAllocNode[Index].Length = 0;
PrivateData->ResAllocNode[Index].Status = ResNone;
}
EfiInitializeLock (&PrivateData->PciLock, TPL_HIGH_LEVEL);
PrivateData->PciAddress = 0xCF8;
PrivateData->PciData = 0xCFC;
PrivateData->RootBridgeAttrib = Attri;
PrivateData->Attributes = 0;
PrivateData->Supports = 0;
Protocol->ParentHandle = HostBridgeHandle;
Protocol->PollMem = RootBridgeIoPollMem;
Protocol->PollIo = RootBridgeIoPollIo;
Protocol->Mem.Read = RootBridgeIoMemRead;
Protocol->Mem.Write = RootBridgeIoMemWrite;
Protocol->Io.Read = RootBridgeIoIoRead;
Protocol->Io.Write = RootBridgeIoIoWrite;
Protocol->CopyMem = RootBridgeIoCopyMem;
Protocol->Pci.Read = RootBridgeIoPciRead;
Protocol->Pci.Write = RootBridgeIoPciWrite;
Protocol->Map = RootBridgeIoMap;
Protocol->Unmap = RootBridgeIoUnmap;
Protocol->AllocateBuffer = RootBridgeIoAllocateBuffer;
Protocol->FreeBuffer = RootBridgeIoFreeBuffer;
Protocol->Flush = RootBridgeIoFlush;
Protocol->GetAttributes = RootBridgeIoGetAttributes;
Protocol->SetAttributes = RootBridgeIoSetAttributes;
Protocol->Configuration = RootBridgeIoConfiguration;
Protocol->SegmentNumber = 0;
Status = gBS->LocateProtocol (&gEfiCpuIoProtocolGuid, NULL, (VOID **)&mCpuIo);
ASSERT_EFI_ERROR (Status);
Status = gBS->LocateProtocol (&gEfiMetronomeArchProtocolGuid, NULL, (VOID **)&mMetronome);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoPollMem (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
/*++
Routine Description:
Memory Poll
Arguments:
Returns:
--*/
{
EFI_STATUS Status;
UINT64 NumberOfTicks;
UINT32 Remainder;
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
//
// No matter what, always do a single poll.
//
Status = This->Mem.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
if (Delay == 0) {
return EFI_SUCCESS;
} else {
//
// Determine the proper # of metronome ticks to wait for polling the
// location. The nuber of ticks is Roundup (Delay / mMetronome->TickPeriod)+1
// The "+1" to account for the possibility of the first tick being short
// because we started in the middle of a tick.
//
// BugBug: overriding mMetronome->TickPeriod with UINT32 until Metronome
// protocol definition is updated.
//
NumberOfTicks = DivU64x32Remainder (Delay, (UINT32) mMetronome->TickPeriod, &Remainder);
if (Remainder != 0) {
NumberOfTicks += 1;
}
NumberOfTicks += 1;
while (NumberOfTicks) {
mMetronome->WaitForTick (mMetronome, 1);
Status = This->Mem.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
NumberOfTicks -= 1;
}
}
return EFI_TIMEOUT;
}
EFI_STATUS
EFIAPI
RootBridgeIoPollIo (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
/*++
Routine Description:
Io Poll
Arguments:
Returns:
--*/
{
EFI_STATUS Status;
UINT64 NumberOfTicks;
UINT32 Remainder;
//
// No matter what, always do a single poll.
//
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
Status = This->Io.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
if (Delay == 0) {
return EFI_SUCCESS;
} else {
//
// Determine the proper # of metronome ticks to wait for polling the
// location. The number of ticks is Roundup (Delay / mMetronome->TickPeriod)+1
// The "+1" to account for the possibility of the first tick being short
// because we started in the middle of a tick.
//
NumberOfTicks = DivU64x32Remainder (Delay, (UINT32)mMetronome->TickPeriod, &Remainder);
if (Remainder != 0) {
NumberOfTicks += 1;
}
NumberOfTicks += 1;
while (NumberOfTicks) {
mMetronome->WaitForTick (mMetronome, 1);
Status = This->Io.Read (This, Width, Address, 1, Result);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*Result & Mask) == Value) {
return EFI_SUCCESS;
}
NumberOfTicks -= 1;
}
}
return EFI_TIMEOUT;
}
EFI_STATUS
EFIAPI
RootBridgeIoMemRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Memory read
Arguments:
Returns:
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH OldWidth;
UINTN OldCount;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
//
// Check memory access limit
//
if (Address < PrivateData->MemBase) {
return EFI_INVALID_PARAMETER;
}
OldWidth = Width;
OldCount = Count;
if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
Count = 1;
}
Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH)(Width & 0x03);
if (Address + (((UINTN)1 << Width) * Count) - 1 > PrivateData->MemLimit) {
return EFI_INVALID_PARAMETER;
}
return mCpuIo->Mem.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) OldWidth,
Address, OldCount, Buffer);
}
EFI_STATUS
EFIAPI
RootBridgeIoMemWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Memory write
Arguments:
Returns:
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH OldWidth;
UINTN OldCount;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
//
// Check memory access limit
//
if (Address < PrivateData->MemBase) {
return EFI_INVALID_PARAMETER;
}
OldWidth = Width;
OldCount = Count;
if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
Count = 1;
}
Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH)(Width & 0x03);
if (Address + (((UINTN)1 << Width) * Count) - 1 > PrivateData->MemLimit) {
return EFI_INVALID_PARAMETER;
}
return mCpuIo->Mem.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) OldWidth,
Address, OldCount, Buffer);
}
EFI_STATUS
EFIAPI
RootBridgeIoIoRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Io read
Arguments:
Returns:
--*/
{
UINTN AlignMask;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH OldWidth;
UINTN OldCount;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
//AlignMask = (1 << Width) - 1;
AlignMask = (1 << (Width & 0x03)) - 1;
//
// check Io access limit
//
if (Address < PrivateData->IoBase) {
return EFI_INVALID_PARAMETER;
}
OldWidth = Width;
OldCount = Count;
if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
Count = 1;
}
Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH)(Width & 0x03);
if (Address + (((UINTN)1 << Width) * Count) - 1 >= PrivateData->IoLimit) {
return EFI_INVALID_PARAMETER;
}
if (Address & AlignMask) {
return EFI_INVALID_PARAMETER;
}
return mCpuIo->Io.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) OldWidth,
Address, OldCount, Buffer);
}
EFI_STATUS
EFIAPI
RootBridgeIoIoWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Io write
Arguments:
Returns:
--*/
{
UINTN AlignMask;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH OldWidth;
UINTN OldCount;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
//AlignMask = (1 << Width) - 1;
AlignMask = (1 << (Width & 0x03)) - 1;
//
// Check Io access limit
//
if (Address < PrivateData->IoBase) {
return EFI_INVALID_PARAMETER;
}
OldWidth = Width;
OldCount = Count;
if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
Count = 1;
}
Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH)(Width & 0x03);
if (Address + (((UINTN)1 << Width) * Count) - 1 >= PrivateData->IoLimit) {
return EFI_INVALID_PARAMETER;
}
if (Address & AlignMask) {
return EFI_INVALID_PARAMETER;
}
return mCpuIo->Io.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) OldWidth,
Address, OldCount, Buffer);
}
EFI_STATUS
EFIAPI
RootBridgeIoCopyMem (
IN struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 DestAddress,
IN UINT64 SrcAddress,
IN UINTN Count
)
/*++
Routine Description:
Memory copy
Arguments:
Returns:
--*/
{
EFI_STATUS Status;
BOOLEAN Direction;
UINTN Stride;
UINTN Index;
UINT64 Result;
if (Width < 0 || Width > EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
if (DestAddress == SrcAddress) {
return EFI_SUCCESS;
}
Stride = (UINTN)(1 << Width);
Direction = TRUE;
if ((DestAddress > SrcAddress) && (DestAddress < (SrcAddress + Count * Stride))) {
Direction = FALSE;
SrcAddress = SrcAddress + (Count-1) * Stride;
DestAddress = DestAddress + (Count-1) * Stride;
}
for (Index = 0;Index < Count;Index++) {
Status = RootBridgeIoMemRead (
This,
Width,
SrcAddress,
1,
&Result
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = RootBridgeIoMemWrite (
This,
Width,
DestAddress,
1,
&Result
);
if (EFI_ERROR (Status)) {
return Status;
}
if (Direction) {
SrcAddress += Stride;
DestAddress += Stride;
} else {
SrcAddress -= Stride;
DestAddress -= Stride;
}
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoPciRead (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Pci read
Arguments:
Returns:
--*/
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
//
// Read Pci configuration space
//
return RootBridgeIoPciRW (This, FALSE, Width, Address, Count, Buffer);
}
EFI_STATUS
EFIAPI
RootBridgeIoPciWrite (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Pci write
Arguments:
Returns:
--*/
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
//
// Write Pci configuration space
//
return RootBridgeIoPciRW (This, TRUE, Width, Address, Count, Buffer);
}
EFI_STATUS
EFIAPI
RootBridgeIoMap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
MAP_INFO *MapInfo;
if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL || Mapping == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the return values to their defaults
//
*Mapping = NULL;
//
// Make sure that Operation is valid
//
if (Operation < 0 || Operation >= EfiPciOperationMaximum) {
return EFI_INVALID_PARAMETER;
}
//
// Most PCAT like chipsets can not handle performing DMA above 4GB.
// If any part of the DMA transfer being mapped is above 4GB, then
// map the DMA transfer to a buffer below 4GB.
//
PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
if ((PhysicalAddress + *NumberOfBytes) > 0x100000000ULL) {
//
// Common Buffer operations can not be remapped. If the common buffer
// if above 4GB, then it is not possible to generate a mapping, so return
// an error.
//
if (Operation == EfiPciOperationBusMasterCommonBuffer || Operation == EfiPciOperationBusMasterCommonBuffer64) {
return EFI_UNSUPPORTED;
}
//
// Allocate a MAP_INFO structure to remember the mapping when Unmap() is
// called later.
//
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof(MAP_INFO),
(VOID **)&MapInfo
);
if (EFI_ERROR (Status)) {
*NumberOfBytes = 0;
return Status;
}
//
// Return a pointer to the MAP_INFO structure in Mapping
//
*Mapping = MapInfo;
//
// Initialize the MAP_INFO structure
//
MapInfo->Operation = Operation;
MapInfo->NumberOfBytes = *NumberOfBytes;
MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES(*NumberOfBytes);
MapInfo->HostAddress = PhysicalAddress;
MapInfo->MappedHostAddress = 0x00000000ffffffff;
//
// Allocate a buffer below 4GB to map the transfer to.
//
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiBootServicesData,
MapInfo->NumberOfPages,
&MapInfo->MappedHostAddress
);
if (EFI_ERROR (Status)) {
gBS->FreePool (MapInfo);
*NumberOfBytes = 0;
return Status;
}
//
// If this is a read operation from the Bus Master's point of view,
// then copy the contents of the real buffer into the mapped buffer
// so the Bus Master can read the contents of the real buffer.
//
if (Operation == EfiPciOperationBusMasterRead || Operation == EfiPciOperationBusMasterRead64) {
CopyMem (
(VOID *)(UINTN)MapInfo->MappedHostAddress,
(VOID *)(UINTN)MapInfo->HostAddress,
MapInfo->NumberOfBytes
);
}
//
// The DeviceAddress is the address of the maped buffer below 4GB
//
*DeviceAddress = MapInfo->MappedHostAddress;
} else {
//
// The transfer is below 4GB, so the DeviceAddress is simply the HostAddress
//
*DeviceAddress = PhysicalAddress;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoUnmap (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN VOID *Mapping
)
{
MAP_INFO *MapInfo;
//
// See if the Map() operation associated with this Unmap() required a mapping buffer.
// If a mapping buffer was not required, then this function simply returns EFI_SUCCESS.
//
if (Mapping != NULL) {
//
// Get the MAP_INFO structure from Mapping
//
MapInfo = (MAP_INFO *)Mapping;
//
// If this is a write operation from the Bus Master's point of view,
// then copy the contents of the mapped buffer into the real buffer
// so the processor can read the contents of the real buffer.
//
if (MapInfo->Operation == EfiPciOperationBusMasterWrite || MapInfo->Operation == EfiPciOperationBusMasterWrite64) {
CopyMem (
(VOID *)(UINTN)MapInfo->HostAddress,
(VOID *)(UINTN)MapInfo->MappedHostAddress,
MapInfo->NumberOfBytes
);
}
//
// Free the mapped buffer and the MAP_INFO structure.
//
gBS->FreePages (MapInfo->MappedHostAddress, MapInfo->NumberOfPages);
gBS->FreePool (Mapping);
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoAllocateBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
//
// Validate Attributes
//
if (Attributes & EFI_PCI_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) {
return EFI_UNSUPPORTED;
}
//
// Check for invalid inputs
//
if (HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// The only valid memory types are EfiBootServicesData and EfiRuntimeServicesData
//
if (MemoryType != EfiBootServicesData && MemoryType != EfiRuntimeServicesData) {
return EFI_INVALID_PARAMETER;
}
//
// Limit allocations to memory below 4GB
//
PhysicalAddress = (EFI_PHYSICAL_ADDRESS)(0xffffffff);
Status = gBS->AllocatePages (AllocateMaxAddress, MemoryType, Pages, &PhysicalAddress);
if (EFI_ERROR (Status)) {
return Status;
}
*HostAddress = (VOID *)(UINTN)PhysicalAddress;
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoFreeBuffer (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINTN Pages,
OUT VOID *HostAddress
)
{
return gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress, Pages);
}
EFI_STATUS
EFIAPI
RootBridgeIoFlush (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
)
/*++
Routine Description:
Arguments:
Returns:
--*/
{
//
// not supported yet
//
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoGetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT UINT64 *Supported,
OUT UINT64 *Attributes
)
/*++
Routine Description:
Arguments:
Returns:
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
if (Attributes == NULL && Supported == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Set the return value for Supported and Attributes
//
if (Supported) {
*Supported = PrivateData->Supports;
}
if (Attributes) {
*Attributes = PrivateData->Attributes;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoSetAttributes (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN UINT64 Attributes,
IN OUT UINT64 *ResourceBase,
IN OUT UINT64 *ResourceLength
)
/*++
Routine Description:
Arguments:
Returns:
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
if (Attributes) {
if ((Attributes & (~(PrivateData->Supports))) != 0) {
return EFI_UNSUPPORTED;
}
}
//
// This is a generic driver for a PC-AT class system. It does not have any
// chipset specific knowlegde, so none of the attributes can be set or
// cleared. Any attempt to set attribute that are already set will succeed,
// and any attempt to set an attribute that is not supported will fail.
//
if (Attributes & (~PrivateData->Attributes)) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
RootBridgeIoConfiguration (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
OUT VOID **Resources
)
/*++
Routine Description:
Arguments:
Returns:
--*/
{
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
UINTN Index;
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS (This);
for (Index = 0; Index < TypeMax; Index++) {
if (PrivateData->ResAllocNode[Index].Status == ResAllocated) {
Configuration.SpaceDesp[Index].AddrRangeMin = PrivateData->ResAllocNode[Index].Base;
Configuration.SpaceDesp[Index].AddrRangeMax = PrivateData->ResAllocNode[Index].Base + PrivateData->ResAllocNode[Index].Length - 1;
Configuration.SpaceDesp[Index].AddrLen = PrivateData->ResAllocNode[Index].Length;
}
}
*Resources = &Configuration;
return EFI_SUCCESS;
}
//
// Internal function
//
EFI_STATUS
RootBridgeIoPciRW (
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
IN BOOLEAN Write,
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
IN UINT64 UserAddress,
IN UINTN Count,
IN OUT VOID *UserBuffer
)
{
PCI_CONFIG_ACCESS_CF8 Pci;
PCI_CONFIG_ACCESS_CF8 PciAligned;
UINT32 InStride;
UINT32 OutStride;
UINTN PciData;
UINTN PciDataStride;
PCI_ROOT_BRIDGE_INSTANCE *PrivateData;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress;
if (Width < 0 || Width >= EfiPciWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
if ((Width & 0x03) >= EfiPciWidthUint64) {
return EFI_INVALID_PARAMETER;
}
PrivateData = DRIVER_INSTANCE_FROM_PCI_ROOT_BRIDGE_IO_THIS(This);
InStride = 1 << (Width & 0x03);
OutStride = InStride;
if (Width >= EfiCpuIoWidthFifoUint8 && Width <= EfiCpuIoWidthFifoUint64) {
InStride = 0;
}
if (Width >= EfiCpuIoWidthFillUint8 && Width <= EfiCpuIoWidthFillUint64) {
OutStride = 0;
}
CopyMem (&PciAddress, &UserAddress, sizeof(UINT64));
if (PciAddress.ExtendedRegister > 0xFF) {
return EFI_UNSUPPORTED;
}
if (PciAddress.ExtendedRegister != 0) {
Pci.Bits.Reg = PciAddress.ExtendedRegister & 0xFF;
} else {
Pci.Bits.Reg = PciAddress.Register;
}
Pci.Bits.Func = PciAddress.Function;
Pci.Bits.Dev = PciAddress.Device;
Pci.Bits.Bus = PciAddress.Bus;
Pci.Bits.Reserved = 0;
Pci.Bits.Enable = 1;
//
// PCI Config access are all 32-bit alligned, but by accessing the
// CONFIG_DATA_REGISTER (0xcfc) with different widths more cycle types
// are possible on PCI.
//
// To read a byte of PCI config space you load 0xcf8 and
// read 0xcfc, 0xcfd, 0xcfe, 0xcff
//
PciDataStride = Pci.Bits.Reg & 0x03;
while (Count) {
CopyMem (&PciAligned, &Pci, sizeof (PciAligned));
PciAligned.Bits.Reg &= 0xfc;
PciData = (UINTN)PrivateData->PciData + PciDataStride;
EfiAcquireLock(&PrivateData->PciLock);
This->Io.Write (This, EfiPciWidthUint32, PrivateData->PciAddress, 1, &PciAligned);
if (Write) {
This->Io.Write (This, Width, PciData, 1, UserBuffer);
} else {
This->Io.Read (This, Width, PciData, 1, UserBuffer);
}
EfiReleaseLock(&PrivateData->PciLock);
UserBuffer = ((UINT8 *)UserBuffer) + OutStride;
PciDataStride = (PciDataStride + InStride) % 4;
Pci.Bits.Reg += InStride;
Count -= 1;
}
return EFI_SUCCESS;
}