blob: 66edaf10c468c9627f5a1e7fb1c7329aba9eb15c [file] [log] [blame]
/** @file
Core Primitive Implementation of the Advanced Encryption Standard (AES) algorithm.
Refer to FIPS PUB 197 ("Advanced Encryption Standard (AES)") for detailed algorithm
description of AES.
Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "AesCore.h"
//
// Number of columns (32-bit words) comprising the State.
// AES_NB is a constant (value = 4) for NIST FIPS-197.
//
#define AES_NB 4
//
// Pre-computed AES Forward Table: AesForwardTable[t] = AES_SBOX[t].[02, 01, 01, 03]
// AES_SBOX (AES S-box) is defined in sec 5.1.1 of FIPS PUB 197.
// This is to speed up execution of the cipher by combining SubBytes and
// ShiftRows with MixColumns steps and transforming them into table lookups.
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AesForwardTable[] = {
0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd,
0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d,
0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7,
0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4,
0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1,
0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e,
0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e,
0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46,
0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7,
0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe,
0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a,
0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2,
0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e,
0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256,
0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4,
0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa,
0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1,
0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42,
0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158,
0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22,
0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631,
0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a
};
//
// Round constant word array used in AES key expansion.
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 Rcon[] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
};
//
// Rotates x right n bits (circular right shift operation)
//
#define ROTATE_RIGHT32(x, n) (((x) >> (n)) | ((x) << (32-(n))))
//
// Loading & Storing 32-bit words in big-endian format: y[3..0] --> x; x --> y[3..0];
//
#define LOAD32H(x, y) { x = ((UINT32)((y)[0] & 0xFF) << 24) | ((UINT32)((y)[1] & 0xFF) << 16) | \
((UINT32)((y)[2] & 0xFF) << 8) | ((UINT32)((y)[3] & 0xFF)); }
#define STORE32H(x, y) { (y)[0] = (UINT8)(((x) >> 24) & 0xFF); (y)[1] = (UINT8)(((x) >> 16) & 0xFF); \
(y)[2] = (UINT8)(((x) >> 8) & 0xFF); (y)[3] = (UINT8)((x) & 0xFF); }
//
// Wrap macros for AES forward tables lookups
//
#define AES_FT0(x) AesForwardTable[x]
#define AES_FT1(x) ROTATE_RIGHT32(AesForwardTable[x], 8)
#define AES_FT2(x) ROTATE_RIGHT32(AesForwardTable[x], 16)
#define AES_FT3(x) ROTATE_RIGHT32(AesForwardTable[x], 24)
///
/// AES Key Schedule which is expanded from symmetric key [Size 60 = 4 * ((Max AES Round, 14) + 1)].
///
typedef struct {
UINTN Nk; // Number of Cipher Key (in 32-bit words);
UINT32 EncKey[60]; // Expanded AES encryption key
UINT32 DecKey[60]; // Expanded AES decryption key (Not used here)
} AES_KEY;
/**
AES Key Expansion.
This function expands the cipher key into encryption schedule.
@param[in] Key AES symmetric key buffer.
@param[in] KeyLenInBits Key length in bits (128, 192, or 256).
@param[out] AesKey Expanded AES Key schedule for encryption.
@retval EFI_SUCCESS AES key expansion succeeded.
@retval EFI_INVALID_PARAMETER Unsupported key length.
**/
EFI_STATUS
EFIAPI
AesExpandKey (
IN UINT8 *Key,
IN UINTN KeyLenInBits,
OUT AES_KEY *AesKey
)
{
UINTN Nk;
UINTN Nr;
UINTN Nw;
UINTN Index1;
UINTN Index2;
UINTN Index3;
UINT32 *Ek;
UINT32 Temp;
//
// Nk - Number of 32-bit words comprising the cipher key. (Nk = 4, 6 or 8)
// Nr - Number of rounds. (Nr = 10, 12, or 14), which is dependent on the key size.
//
Nk = KeyLenInBits >> 5;
if (Nk != 4 && Nk != 6 && Nk != 8) {
return EFI_INVALID_PARAMETER;
}
Nr = Nk + 6;
Nw = AES_NB * (Nr + 1); // Key Expansion generates a total of Nb * (Nr + 1) words
AesKey->Nk = Nk;
//
// Load initial symmetric AES key;
// Note that AES was designed on big-endian systems.
//
Ek = AesKey->EncKey;
for (Index1 = Index2 = 0; Index1 < Nk; Index1++, Index2 += 4) {
LOAD32H (Ek[Index1], Key + Index2);
}
//
// Initialize the encryption key scheduler
//
for (Index2 = Nk, Index3 = 0; Index2 < Nw; Index2 += Nk, Index3++) {
Temp = Ek[Index2 - 1];
Ek[Index2] = Ek[Index2 - Nk] ^ (AES_FT2((Temp >> 16) & 0xFF) & 0xFF000000) ^
(AES_FT3((Temp >> 8) & 0xFF) & 0x00FF0000) ^
(AES_FT0((Temp) & 0xFF) & 0x0000FF00) ^
(AES_FT1((Temp >> 24) & 0xFF) & 0x000000FF) ^
Rcon[Index3];
if (Nk <= 6) {
//
// If AES Cipher Key is 128 or 192 bits
//
for (Index1 = 1; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
Ek [Index1 + Index2] = Ek [Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
}
} else {
//
// Different routine for key expansion If Cipher Key is 256 bits,
//
for (Index1 = 1; Index1 < 4 && (Index1 + Index2) < Nw; Index1++) {
Ek [Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
}
if (Index2 + 4 < Nw) {
Temp = Ek[Index2 + 3];
Ek[Index2 + 4] = Ek[Index2 + 4 - Nk] ^ (AES_FT2((Temp >> 24) & 0xFF) & 0xFF000000) ^
(AES_FT3((Temp >> 16) & 0xFF) & 0x00FF0000) ^
(AES_FT0((Temp >> 8) & 0xFF) & 0x0000FF00) ^
(AES_FT1((Temp) & 0xFF) & 0x000000FF);
}
for (Index1 = 5; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
}
}
}
return EFI_SUCCESS;
}
/**
Encrypts one single block data (128 bits) with AES algorithm.
@param[in] Key AES symmetric key buffer.
@param[in] InData One block of input plaintext to be encrypted.
@param[out] OutData Encrypted output ciphertext.
@retval EFI_SUCCESS AES Block Encryption succeeded.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
EFI_STATUS
EFIAPI
AesEncrypt (
IN UINT8 *Key,
IN UINT8 *InData,
OUT UINT8 *OutData
)
{
AES_KEY AesKey;
UINTN Nr;
UINT32 *Ek;
UINT32 State[4];
UINT32 TempState[4];
UINT32 *StateX;
UINT32 *StateY;
UINT32 *Temp;
UINTN Index;
UINTN NbIndex;
UINTN Round;
if ((Key == NULL) || (InData == NULL) || (OutData == NULL)) {
return EFI_INVALID_PARAMETER;
}
//
// Expands AES Key for encryption.
//
AesExpandKey (Key, 128, &AesKey);
Nr = AesKey.Nk + 6;
Ek = AesKey.EncKey;
//
// Initialize the cipher State array with the initial round key
//
for (Index = 0; Index < AES_NB; Index++) {
LOAD32H (State[Index], InData + 4 * Index);
State[Index] ^= Ek[Index];
}
NbIndex = AES_NB;
StateX = State;
StateY = TempState;
//
// AES Cipher transformation rounds (Nr - 1 rounds), in which SubBytes(),
// ShiftRows() and MixColumns() operations were combined by a sequence of
// table lookups to speed up the execution.
//
for (Round = 1; Round < Nr; Round++) {
StateY[0] = AES_FT0 ((StateX[0] >> 24) ) ^ AES_FT1 ((StateX[1] >> 16) & 0xFF) ^
AES_FT2 ((StateX[2] >> 8) & 0xFF) ^ AES_FT3 ((StateX[3] ) & 0xFF) ^ Ek[NbIndex];
StateY[1] = AES_FT0 ((StateX[1] >> 24) ) ^ AES_FT1 ((StateX[2] >> 16) & 0xFF) ^
AES_FT2 ((StateX[3] >> 8) & 0xFF) ^ AES_FT3 ((StateX[0] ) & 0xFF) ^ Ek[NbIndex + 1];
StateY[2] = AES_FT0 ((StateX[2] >> 24) ) ^ AES_FT1 ((StateX[3] >> 16) & 0xFF) ^
AES_FT2 ((StateX[0] >> 8) & 0xFF) ^ AES_FT3 ((StateX[1] ) & 0xFF) ^ Ek[NbIndex + 2];
StateY[3] = AES_FT0 ((StateX[3] >> 24) ) ^ AES_FT1 ((StateX[0] >> 16) & 0xFF) ^
AES_FT2 ((StateX[1] >> 8) & 0xFF) ^ AES_FT3 ((StateX[2] ) & 0xFF) ^ Ek[NbIndex + 3];
NbIndex += 4;
Temp = StateX; StateX = StateY; StateY = Temp;
}
//
// Apply the final round, which does not include MixColumns() transformation
//
StateY[0] = (AES_FT2 ((StateX[0] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[1] >> 16) & 0xFF) & 0x00FF0000) ^
(AES_FT0 ((StateX[2] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[3] ) & 0xFF) & 0x000000FF) ^
Ek[NbIndex];
StateY[1] = (AES_FT2 ((StateX[1] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[2] >> 16) & 0xFF) & 0x00FF0000) ^
(AES_FT0 ((StateX[3] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[0] ) & 0xFF) & 0x000000FF) ^
Ek[NbIndex + 1];
StateY[2] = (AES_FT2 ((StateX[2] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[3] >> 16) & 0xFF) & 0x00FF0000) ^
(AES_FT0 ((StateX[0] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[1] ) & 0xFF) & 0x000000FF) ^
Ek[NbIndex + 2];
StateY[3] = (AES_FT2 ((StateX[3] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[0] >> 16) & 0xFF) & 0x00FF0000) ^
(AES_FT0 ((StateX[1] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[2] ) & 0xFF) & 0x000000FF) ^
Ek[NbIndex + 3];
//
// Output the transformed result;
//
for (Index = 0; Index < AES_NB; Index++) {
STORE32H (StateY[Index], OutData + 4 * Index);
}
return EFI_SUCCESS;
}