blob: 4d3acb491f366b1ea0289af5cfc3e95b1ee0f47e [file] [log] [blame]
/** @file
MP initialize support functions for PEI phase.
Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MpLib.h"
#include <Library/PeiServicesLib.h>
#include <Guid/S3SmmInitDone.h>
#include <Ppi/ShadowMicrocode.h>
STATIC UINT64 mSevEsPeiWakeupBuffer = BASE_1MB;
/**
S3 SMM Init Done notification function.
@param PeiServices Indirect reference to the PEI Services Table.
@param NotifyDesc Address of the notification descriptor data structure.
@param InvokePpi Address of the PPI that was invoked.
@retval EFI_SUCCESS The function completes successfully.
**/
EFI_STATUS
EFIAPI
NotifyOnS3SmmInitDonePpi (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc,
IN VOID *InvokePpi
);
//
// Global function
//
EFI_PEI_NOTIFY_DESCRIPTOR mS3SmmInitDoneNotifyDesc = {
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gEdkiiS3SmmInitDoneGuid,
NotifyOnS3SmmInitDonePpi
};
/**
S3 SMM Init Done notification function.
@param PeiServices Indirect reference to the PEI Services Table.
@param NotifyDesc Address of the notification descriptor data structure.
@param InvokePpi Address of the PPI that was invoked.
@retval EFI_SUCCESS The function completes successfully.
**/
EFI_STATUS
EFIAPI
NotifyOnS3SmmInitDonePpi (
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDesc,
IN VOID *InvokePpi
)
{
CPU_MP_DATA *CpuMpData;
CpuMpData = GetCpuMpData ();
//
// PiSmmCpuDxeSmm driver hardcode change the loop mode to HLT mode.
// So in this notify function, code need to check the current loop
// mode, if it is not HLT mode, code need to change loop mode back
// to the original mode.
//
if (CpuMpData->ApLoopMode != ApInHltLoop) {
CpuMpData->WakeUpByInitSipiSipi = TRUE;
}
return EFI_SUCCESS;
}
/**
Enable Debug Agent to support source debugging on AP function.
**/
VOID
EnableDebugAgent (
VOID
)
{
}
/**
Get pointer to CPU MP Data structure.
For BSP, the pointer is retrieved from HOB.
For AP, the structure is stored in the top of each AP's stack.
@return The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpData (
VOID
)
{
CPU_MP_DATA *CpuMpData;
MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
UINTN ApTopOfStack;
AP_STACK_DATA *ApStackData;
ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
if (ApicBaseMsr.Bits.BSP == 1) {
CpuMpData = GetCpuMpDataFromGuidedHob ();
ASSERT (CpuMpData != NULL);
} else {
ApTopOfStack = ALIGN_VALUE ((UINTN)&ApTopOfStack, (UINTN)PcdGet32 (PcdCpuApStackSize));
ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack- sizeof (AP_STACK_DATA));
CpuMpData = (CPU_MP_DATA *)ApStackData->MpData;
}
return CpuMpData;
}
/**
Save the pointer to CPU MP Data structure.
@param[in] CpuMpData The pointer to CPU MP Data structure will be saved.
**/
VOID
SaveCpuMpData (
IN CPU_MP_DATA *CpuMpData
)
{
UINT32 MaxCpusPerHob;
UINT32 CpusInHob;
UINT64 Data64;
UINT32 Index;
UINT32 HobBase;
CPU_INFO_IN_HOB *CpuInfoInHob;
MP_HAND_OFF *MpHandOff;
MP_HAND_OFF_CONFIG MpHandOffConfig;
UINTN MpHandOffSize;
MaxCpusPerHob = (0xFFF8 - sizeof (EFI_HOB_GUID_TYPE) - sizeof (MP_HAND_OFF)) / sizeof (PROCESSOR_HAND_OFF);
//
// When APs are in a state that can be waken up by a store operation to a memory address,
// report the MP_HAND_OFF data for DXE to use.
//
CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
if (Index % MaxCpusPerHob == 0) {
HobBase = Index;
CpusInHob = MIN (CpuMpData->CpuCount - HobBase, MaxCpusPerHob);
MpHandOffSize = sizeof (MP_HAND_OFF) + sizeof (PROCESSOR_HAND_OFF) * CpusInHob;
MpHandOff = (MP_HAND_OFF *)BuildGuidHob (&mMpHandOffGuid, MpHandOffSize);
ASSERT (MpHandOff != NULL);
ZeroMem (MpHandOff, MpHandOffSize);
MpHandOff->ProcessorIndex = HobBase;
MpHandOff->CpuCount = CpusInHob;
}
MpHandOff->Info[Index-HobBase].ApicId = CpuInfoInHob[Index].ApicId;
MpHandOff->Info[Index-HobBase].Health = CpuInfoInHob[Index].Health;
if (CpuMpData->ApLoopMode != ApInHltLoop) {
MpHandOff->Info[Index-HobBase].StartupSignalAddress = (UINT64)(UINTN)CpuMpData->CpuData[Index].StartupApSignal;
MpHandOff->Info[Index-HobBase].StartupProcedureAddress = (UINT64)(UINTN)&CpuMpData->CpuData[Index].ApFunction;
}
}
ZeroMem (&MpHandOffConfig, sizeof (MpHandOffConfig));
if (CpuMpData->ApLoopMode != ApInHltLoop) {
MpHandOffConfig.StartupSignalValue = MP_HAND_OFF_SIGNAL;
MpHandOffConfig.WaitLoopExecutionMode = sizeof (VOID *);
}
BuildGuidDataHob (
&mMpHandOffConfigGuid,
(VOID *)&MpHandOffConfig,
sizeof (MpHandOffConfig)
);
//
// Build location of CPU MP DATA buffer in HOB
//
Data64 = (UINT64)(UINTN)CpuMpData;
BuildGuidDataHob (
&mCpuInitMpLibHobGuid,
(VOID *)&Data64,
sizeof (UINT64)
);
}
/**
Check if AP wakeup buffer is overlapped with existing allocated buffer.
@param[in] WakeupBufferStart AP wakeup buffer start address.
@param[in] WakeupBufferEnd AP wakeup buffer end address.
@retval TRUE There is overlap.
@retval FALSE There is no overlap.
**/
BOOLEAN
CheckOverlapWithAllocatedBuffer (
IN UINT64 WakeupBufferStart,
IN UINT64 WakeupBufferEnd
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
BOOLEAN Overlapped;
UINT64 MemoryStart;
UINT64 MemoryEnd;
Overlapped = FALSE;
//
// Get the HOB list for processing
//
Hob.Raw = GetHobList ();
//
// Collect memory ranges
//
while (!END_OF_HOB_LIST (Hob)) {
if (Hob.Header->HobType == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
MemoryHob = Hob.MemoryAllocation;
MemoryStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
MemoryEnd = MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength;
if (!((WakeupBufferStart >= MemoryEnd) || (WakeupBufferEnd <= MemoryStart))) {
Overlapped = TRUE;
break;
}
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
return Overlapped;
}
/**
Get available system memory below 1MB by specified size.
@param[in] WakeupBufferSize Wakeup buffer size required
@retval other Return wakeup buffer address below 1MB.
@retval -1 Cannot find free memory below 1MB.
**/
UINTN
GetWakeupBuffer (
IN UINTN WakeupBufferSize
)
{
EFI_PEI_HOB_POINTERS Hob;
UINT64 WakeupBufferStart;
UINT64 WakeupBufferEnd;
WakeupBufferSize = (WakeupBufferSize + SIZE_4KB - 1) & ~(SIZE_4KB - 1);
//
// Get the HOB list for processing
//
Hob.Raw = GetHobList ();
//
// Collect memory ranges
//
while (!END_OF_HOB_LIST (Hob)) {
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
if ((Hob.ResourceDescriptor->PhysicalStart < BASE_1MB) &&
(Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) &&
((Hob.ResourceDescriptor->ResourceAttribute &
(EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED |
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED |
EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
)) == 0)
)
{
//
// Need memory under 1MB to be collected here
//
WakeupBufferEnd = Hob.ResourceDescriptor->PhysicalStart + Hob.ResourceDescriptor->ResourceLength;
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
(WakeupBufferEnd > mSevEsPeiWakeupBuffer))
{
//
// SEV-ES Wakeup buffer should be under 1MB and under any previous one
//
WakeupBufferEnd = mSevEsPeiWakeupBuffer;
} else if (WakeupBufferEnd > BASE_1MB) {
//
// Wakeup buffer should be under 1MB
//
WakeupBufferEnd = BASE_1MB;
}
while (WakeupBufferEnd > WakeupBufferSize) {
//
// Wakeup buffer should be aligned on 4KB
//
WakeupBufferStart = (WakeupBufferEnd - WakeupBufferSize) & ~(SIZE_4KB - 1);
if (WakeupBufferStart < Hob.ResourceDescriptor->PhysicalStart) {
break;
}
if (CheckOverlapWithAllocatedBuffer (WakeupBufferStart, WakeupBufferEnd)) {
//
// If this range is overlapped with existing allocated buffer, skip it
// and find the next range
//
WakeupBufferEnd -= WakeupBufferSize;
continue;
}
DEBUG ((
DEBUG_INFO,
"WakeupBufferStart = %x, WakeupBufferSize = %x\n",
WakeupBufferStart,
WakeupBufferSize
));
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) {
//
// Next SEV-ES wakeup buffer allocation must be below this
// allocation
//
mSevEsPeiWakeupBuffer = WakeupBufferStart;
}
return (UINTN)WakeupBufferStart;
}
}
}
//
// Find the next HOB
//
Hob.Raw = GET_NEXT_HOB (Hob);
}
return (UINTN)-1;
}
/**
Get available EfiBootServicesCode memory below 4GB by specified size.
This buffer is required to safely transfer AP from real address mode to
protected mode or long mode, due to the fact that the buffer returned by
GetWakeupBuffer() may be marked as non-executable.
@param[in] BufferSize Wakeup transition buffer size.
@retval other Return wakeup transition buffer address below 4GB.
@retval 0 Cannot find free memory below 4GB.
**/
UINTN
AllocateCodeBuffer (
IN UINTN BufferSize
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS Address;
Status = PeiServicesAllocatePages (EfiBootServicesCode, EFI_SIZE_TO_PAGES (BufferSize), &Address);
if (EFI_ERROR (Status)) {
Address = 0;
}
return (UINTN)Address;
}
/**
Return the address of the SEV-ES AP jump table.
This buffer is required in order for an SEV-ES guest to transition from
UEFI into an OS.
@return Return SEV-ES AP jump table buffer
**/
UINTN
GetSevEsAPMemory (
VOID
)
{
//
// PEI phase doesn't need to do such transition. So simply return 0.
//
return 0;
}
/**
Checks APs status and updates APs status if needed.
**/
VOID
CheckAndUpdateApsStatus (
VOID
)
{
}
/**
Build the microcode patch HOB that contains the base address and size of the
microcode patch stored in the memory.
@param[in] CpuMpData Pointer to the CPU_MP_DATA structure.
**/
VOID
BuildMicrocodeCacheHob (
IN CPU_MP_DATA *CpuMpData
)
{
EDKII_MICROCODE_PATCH_HOB *MicrocodeHob;
UINTN HobDataLength;
UINT32 Index;
HobDataLength = sizeof (EDKII_MICROCODE_PATCH_HOB) +
sizeof (UINT64) * CpuMpData->CpuCount;
MicrocodeHob = AllocatePool (HobDataLength);
if (MicrocodeHob == NULL) {
ASSERT (FALSE);
return;
}
//
// Store the information of the memory region that holds the microcode patches.
//
MicrocodeHob->MicrocodePatchAddress = CpuMpData->MicrocodePatchAddress;
MicrocodeHob->MicrocodePatchRegionSize = CpuMpData->MicrocodePatchRegionSize;
//
// Store the detected microcode patch for each processor as well.
//
MicrocodeHob->ProcessorCount = CpuMpData->CpuCount;
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) {
MicrocodeHob->ProcessorSpecificPatchOffset[Index] =
CpuMpData->CpuData[Index].MicrocodeEntryAddr - CpuMpData->MicrocodePatchAddress;
} else {
MicrocodeHob->ProcessorSpecificPatchOffset[Index] = MAX_UINT64;
}
}
BuildGuidDataHob (
&gEdkiiMicrocodePatchHobGuid,
MicrocodeHob,
HobDataLength
);
return;
}
/**
Initialize global data for MP support.
@param[in] CpuMpData The pointer to CPU MP Data structure.
**/
VOID
InitMpGlobalData (
IN CPU_MP_DATA *CpuMpData
)
{
EFI_STATUS Status;
BuildMicrocodeCacheHob (CpuMpData);
SaveCpuMpData (CpuMpData);
///
/// Install Notify
///
Status = PeiServicesNotifyPpi (&mS3SmmInitDoneNotifyDesc);
ASSERT_EFI_ERROR (Status);
}
/**
This service executes a caller provided function on all enabled APs.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system. See type
EFI_AP_PROCEDURE.
@param[in] SingleThread If TRUE, then all the enabled APs execute
the function specified by Procedure one by
one, in ascending order of processor handle
number. If FALSE, then all the enabled APs
execute the function specified by Procedure
simultaneously.
@param[in] WaitEvent The event created by the caller with CreateEvent()
service. If it is NULL, then execute in
blocking mode. BSP waits until all APs finish
or TimeoutInMicroSeconds expires. If it's
not NULL, then execute in non-blocking mode.
BSP requests the function specified by
Procedure to be started on all the enabled
APs, and go on executing immediately. If
all return from Procedure, or TimeoutInMicroSeconds
expires, this event is signaled. The BSP
can use the CheckEvent() or WaitForEvent()
services to check the state of event. Type
EFI_EVENT is defined in CreateEvent() in
the Unified Extensible Firmware Interface
Specification.
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
APs to return from Procedure, either for
blocking or non-blocking mode. Zero means
infinity. If the timeout expires before
all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled
APs are available for next function assigned
by MpInitLibStartupAllAPs() or
MPInitLibStartupThisAP().
If the timeout expires in blocking mode,
BSP returns EFI_TIMEOUT. If the timeout
expires in non-blocking mode, WaitEvent
is signaled with SignalEvent().
@param[in] ProcedureArgument The parameter passed into Procedure for
all APs.
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
if all APs finish successfully, then its
content is set to NULL. If not all APs
finish before timeout expires, then its
content is set to address of the buffer
holding handle numbers of the failed APs.
The buffer is allocated by MP Initialization
library, and it's the caller's responsibility to
free the buffer with FreePool() service.
In blocking mode, it is ready for consumption
when the call returns. In non-blocking mode,
it is ready when WaitEvent is signaled. The
list of failed CPU is terminated by
END_OF_CPU_LIST.
@retval EFI_SUCCESS In blocking mode, all APs have finished before
the timeout expired.
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
to all enabled APs.
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
signaled.
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
supported.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_STARTED No enabled APs exist in the system.
@retval EFI_NOT_READY Any enabled APs are busy.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
all enabled APs have finished.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
MpInitLibStartupAllAPs (
IN EFI_AP_PROCEDURE Procedure,
IN BOOLEAN SingleThread,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT UINTN **FailedCpuList OPTIONAL
)
{
if (WaitEvent != NULL) {
return EFI_UNSUPPORTED;
}
return StartupAllCPUsWorker (
Procedure,
SingleThread,
TRUE,
NULL,
TimeoutInMicroseconds,
ProcedureArgument,
FailedCpuList
);
}
/**
This service lets the caller get one enabled AP to execute a caller-provided
function.
@param[in] Procedure A pointer to the function to be run on the
designated AP of the system. See type
EFI_AP_PROCEDURE.
@param[in] ProcessorNumber The handle number of the AP. The range is
from 0 to the total number of logical
processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@param[in] WaitEvent The event created by the caller with CreateEvent()
service. If it is NULL, then execute in
blocking mode. BSP waits until this AP finish
or TimeoutInMicroSeconds expires. If it's
not NULL, then execute in non-blocking mode.
BSP requests the function specified by
Procedure to be started on this AP,
and go on executing immediately. If this AP
return from Procedure or TimeoutInMicroSeconds
expires, this event is signaled. The BSP
can use the CheckEvent() or WaitForEvent()
services to check the state of event. Type
EFI_EVENT is defined in CreateEvent() in
the Unified Extensible Firmware Interface
Specification.
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
this AP to finish this Procedure, either for
blocking or non-blocking mode. Zero means
infinity. If the timeout expires before
this AP returns from Procedure, then Procedure
on the AP is terminated. The
AP is available for next function assigned
by MpInitLibStartupAllAPs() or
MpInitLibStartupThisAP().
If the timeout expires in blocking mode,
BSP returns EFI_TIMEOUT. If the timeout
expires in non-blocking mode, WaitEvent
is signaled with SignalEvent().
@param[in] ProcedureArgument The parameter passed into Procedure on the
specified AP.
@param[out] Finished If NULL, this parameter is ignored. In
blocking mode, this parameter is ignored.
In non-blocking mode, if AP returns from
Procedure before the timeout expires, its
content is set to TRUE. Otherwise, the
value is set to FALSE. The caller can
determine if the AP returned from Procedure
by evaluating this value.
@retval EFI_SUCCESS In blocking mode, specified AP finished before
the timeout expires.
@retval EFI_SUCCESS In non-blocking mode, the function has been
dispatched to specified AP.
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
signaled.
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
the specified AP has finished.
@retval EFI_NOT_READY The specified AP is busy.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
MpInitLibStartupThisAP (
IN EFI_AP_PROCEDURE Procedure,
IN UINTN ProcessorNumber,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT BOOLEAN *Finished OPTIONAL
)
{
if (WaitEvent != NULL) {
return EFI_UNSUPPORTED;
}
return StartupThisAPWorker (
Procedure,
ProcessorNumber,
NULL,
TimeoutInMicroseconds,
ProcedureArgument,
Finished
);
}
/**
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes. This call can only be performed
by the current BSP.
@param[in] ProcessorNumber The handle number of AP that is to become the new
BSP. The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
enabled AP. Otherwise, it will be disabled.
@retval EFI_SUCCESS BSP successfully switched.
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
this service returning.
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
a disabled AP.
@retval EFI_NOT_READY The specified AP is busy.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibSwitchBSP (
IN UINTN ProcessorNumber,
IN BOOLEAN EnableOldBSP
)
{
return SwitchBSPWorker (ProcessorNumber, EnableOldBSP);
}
/**
This service lets the caller enable or disable an AP from this point onward.
This service may only be called from the BSP.
@param[in] ProcessorNumber The handle number of AP.
The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@param[in] EnableAP Specifies the new state for the processor for
enabled, FALSE for disabled.
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
the new health status of the AP. This flag
corresponds to StatusFlag defined in
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
bits are ignored. If it is NULL, this parameter
is ignored.
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
prior to this service returning.
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibEnableDisableAP (
IN UINTN ProcessorNumber,
IN BOOLEAN EnableAP,
IN UINT32 *HealthFlag OPTIONAL
)
{
return EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag);
}
/**
This funtion will try to invoke platform specific microcode shadow logic to
relocate microcode update patches into memory.
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
@retval EFI_SUCCESS Shadow microcode success.
@retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation.
@retval EFI_UNSUPPORTED Can't find platform specific microcode shadow
PPI/Protocol.
**/
EFI_STATUS
PlatformShadowMicrocode (
IN OUT CPU_MP_DATA *CpuMpData
)
{
EFI_STATUS Status;
EDKII_PEI_SHADOW_MICROCODE_PPI *ShadowMicrocodePpi;
UINTN CpuCount;
EDKII_PEI_MICROCODE_CPU_ID *MicrocodeCpuId;
UINTN Index;
UINTN BufferSize;
VOID *Buffer;
Status = PeiServicesLocatePpi (
&gEdkiiPeiShadowMicrocodePpiGuid,
0,
NULL,
(VOID **)&ShadowMicrocodePpi
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
CpuCount = CpuMpData->CpuCount;
MicrocodeCpuId = (EDKII_PEI_MICROCODE_CPU_ID *)AllocateZeroPool (sizeof (EDKII_PEI_MICROCODE_CPU_ID) * CpuCount);
if (MicrocodeCpuId == NULL) {
return EFI_OUT_OF_RESOURCES;
}
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
MicrocodeCpuId[Index].ProcessorSignature = CpuMpData->CpuData[Index].ProcessorSignature;
MicrocodeCpuId[Index].PlatformId = CpuMpData->CpuData[Index].PlatformId;
}
Status = ShadowMicrocodePpi->ShadowMicrocode (
ShadowMicrocodePpi,
CpuCount,
MicrocodeCpuId,
&BufferSize,
&Buffer
);
FreePool (MicrocodeCpuId);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
CpuMpData->MicrocodePatchAddress = (UINTN)Buffer;
CpuMpData->MicrocodePatchRegionSize = BufferSize;
DEBUG ((
DEBUG_INFO,
"%a: Required microcode patches have been loaded at 0x%lx, with size 0x%lx.\n",
__func__,
CpuMpData->MicrocodePatchAddress,
CpuMpData->MicrocodePatchRegionSize
));
return EFI_SUCCESS;
}