blob: 33e131101ca2caec1cc18f07e07d8566f9935c04 [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
int ecc_encrypt_key(const unsigned char *inkey, unsigned long keylen,
unsigned char *out, unsigned long *len,
prng_state *prng, int wprng, int hash,
ecc_key *key)
{
unsigned char pub_expt[256], ecc_shared[256], skey[MAXBLOCKSIZE];
ecc_key pubkey;
unsigned long x, y, z, hashsize, pubkeysize;
int err;
_ARGCHK(inkey != NULL);
_ARGCHK(out != NULL);
_ARGCHK(len != NULL);
_ARGCHK(key != NULL);
/* check that wprng/cipher/hash are not invalid */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (keylen > hash_descriptor[hash].hashsize) {
return CRYPT_INVALID_HASH;
}
/* make a random key and export the public copy */
if ((err = ecc_make_key(prng, wprng, ecc_get_size(key), &pubkey)) != CRYPT_OK) {
return err;
}
pubkeysize = (unsigned long)sizeof(pub_expt);
if ((err = ecc_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) {
ecc_free(&pubkey);
return err;
}
/* now check if the out buffer is big enough */
if (*len < (9 + PACKET_SIZE + pubkeysize + hash_descriptor[hash].hashsize)) {
ecc_free(&pubkey);
return CRYPT_BUFFER_OVERFLOW;
}
/* make random key */
hashsize = hash_descriptor[hash].hashsize;
x = (unsigned long)sizeof(ecc_shared);
if ((err = ecc_shared_secret(&pubkey, key, ecc_shared, &x)) != CRYPT_OK) {
ecc_free(&pubkey);
return err;
}
ecc_free(&pubkey);
z = (unsigned long)sizeof(skey);
if ((err = hash_memory(hash, ecc_shared, x, skey, &z)) != CRYPT_OK) {
return err;
}
/* store header */
packet_store_header(out, PACKET_SECT_ECC, PACKET_SUB_ENC_KEY);
/* output header */
y = PACKET_SIZE;
/* size of hash name and the name itself */
out[y++] = hash_descriptor[hash].ID;
/* length of ECC pubkey and the key itself */
STORE32L(pubkeysize, out+y);
y += 4;
for (x = 0; x < pubkeysize; x++, y++) {
out[y] = pub_expt[x];
}
STORE32L(keylen, out+y);
y += 4;
/* Encrypt/Store the encrypted key */
for (x = 0; x < keylen; x++, y++) {
out[y] = skey[x] ^ inkey[x];
}
*len = y;
#ifdef CLEAN_STACK
/* clean up */
zeromem(pub_expt, sizeof(pub_expt));
zeromem(ecc_shared, sizeof(ecc_shared));
zeromem(skey, sizeof(skey));
#endif
return CRYPT_OK;
}
int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
ecc_key *key)
{
unsigned char shared_secret[256], skey[MAXBLOCKSIZE];
unsigned long x, y, z, hashsize, keysize;
int hash, err;
ecc_key pubkey;
_ARGCHK(in != NULL);
_ARGCHK(outkey != NULL);
_ARGCHK(keylen != NULL);
_ARGCHK(key != NULL);
/* right key type? */
if (key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
/* correct length ? */
if (inlen < PACKET_SIZE+1+4+4) {
return CRYPT_INVALID_PACKET;
} else {
inlen -= PACKET_SIZE+1+4+4;
}
/* is header correct? */
if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_ECC, PACKET_SUB_ENC_KEY)) != CRYPT_OK) {
return err;
}
/* now lets get the hash name */
y = PACKET_SIZE;
hash = find_hash_id(in[y++]);
if (hash == -1) {
return CRYPT_INVALID_HASH;
}
/* common values */
hashsize = hash_descriptor[hash].hashsize;
/* get public key */
LOAD32L(x, in+y);
if (inlen < x) {
return CRYPT_INVALID_PACKET;
} else {
inlen -= x;
}
y += 4;
if ((err = ecc_import(in+y, x, &pubkey)) != CRYPT_OK) {
return err;
}
y += x;
/* make shared key */
x = (unsigned long)sizeof(shared_secret);
if ((err = ecc_shared_secret(key, &pubkey, shared_secret, &x)) != CRYPT_OK) {
ecc_free(&pubkey);
return err;
}
ecc_free(&pubkey);
z = (unsigned long)sizeof(skey);
if ((err = hash_memory(hash, shared_secret, x, skey, &z)) != CRYPT_OK) {
return err;
}
LOAD32L(keysize, in+y);
if (inlen < keysize) {
return CRYPT_INVALID_PACKET;
} else {
inlen -= keysize;
}
y += 4;
if (*keylen < keysize) {
err = CRYPT_BUFFER_OVERFLOW;
goto done;
}
/* Decrypt the key */
for (x = 0; x < keysize; x++, y++) {
outkey[x] = skey[x] ^ in[y];
}
*keylen = keysize;
err = CRYPT_OK;
done:
#ifdef CLEAN_STACK
zeromem(shared_secret, sizeof(shared_secret));
zeromem(skey, sizeof(skey));
#endif
return err;
}
int ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key)
{
ecc_key pubkey;
mp_int b, p;
unsigned char epubkey[256], er[256];
unsigned long x, y, pubkeysize, rsize;
int err;
_ARGCHK(in != NULL);
_ARGCHK(out != NULL);
_ARGCHK(outlen != NULL);
_ARGCHK(key != NULL);
/* is this a private key? */
if (key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
/* is the IDX valid ? */
if (is_valid_idx(key->idx) != 1) {
return CRYPT_PK_INVALID_TYPE;
}
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* make up a key and export the public copy */
if ((err = ecc_make_key(prng, wprng, ecc_get_size(key), &pubkey)) != CRYPT_OK) {
return err;
}
pubkeysize = (unsigned long)sizeof(epubkey);
if ((err = ecc_export(epubkey, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) {
ecc_free(&pubkey);
return err;
}
/* get the hash and load it as a bignum into 'b' */
/* init the bignums */
if ((err = mp_init_multi(&b, &p, NULL)) != MP_OKAY) {
ecc_free(&pubkey);
return mpi_to_ltc_error(err);
}
if ((err = mp_read_radix(&p, (char *)sets[key->idx].order, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_unsigned_bin(&b, (unsigned char *)in, (int)inlen)) != MP_OKAY) { goto error; }
/* find b = (m - x)/k */
if ((err = mp_invmod(&pubkey.k, &p, &pubkey.k)) != MP_OKAY) { goto error; } /* k = 1/k */
if ((err = mp_submod(&b, &key->k, &p, &b)) != MP_OKAY) { goto error; } /* b = m - x */
if ((err = mp_mulmod(&b, &pubkey.k, &p, &b)) != MP_OKAY) { goto error; } /* b = (m - x)/k */
/* export it */
rsize = (unsigned long)mp_unsigned_bin_size(&b);
if (rsize > (unsigned long)sizeof(er)) {
err = CRYPT_BUFFER_OVERFLOW;
goto error;
}
if ((err = mp_to_unsigned_bin(&b, er)) != MP_OKAY) { goto error; }
/* now lets check the outlen before we write */
if (*outlen < (12 + rsize + pubkeysize)) {
err = CRYPT_BUFFER_OVERFLOW;
goto done;
}
/* lets output */
y = PACKET_SIZE;
/* size of public key */
STORE32L(pubkeysize, out+y);
y += 4;
/* copy the public key */
for (x = 0; x < pubkeysize; x++, y++) {
out[y] = epubkey[x];
}
/* size of 'r' */
STORE32L(rsize, out+y);
y += 4;
/* copy r */
for (x = 0; x < rsize; x++, y++) {
out[y] = er[x];
}
/* store header */
packet_store_header(out, PACKET_SECT_ECC, PACKET_SUB_SIGNED);
/* clear memory */
*outlen = y;
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
done:
mp_clear_multi(&b, &p, NULL);
ecc_free(&pubkey);
#ifdef CLEAN_STACK
zeromem(er, sizeof(er));
zeromem(epubkey, sizeof(epubkey));
#endif
return err;
}
/* verify that mG = (bA + Y)
*
* The signatures work by making up a fresh key "a" with a public key "A". Now we want to sign so the
* public key Y = xG can verify it.
*
* b = (m - x)/k, A is the public key embedded and Y is the users public key [who signed it]
* A = kG therefore bA == ((m-x)/k)kG == (m-x)G
*
* Adding Y = xG to the bA gives us (m-x)G + xG == mG
*
* The user given only xG, kG and b cannot determine k or x which means they can't find the private key.
*
*/
int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long inlen,
int *stat, ecc_key *key)
{
ecc_point *mG;
ecc_key pubkey;
mp_int b, p, m, mu;
unsigned long x, y;
int err;
_ARGCHK(sig != NULL);
_ARGCHK(hash != NULL);
_ARGCHK(stat != NULL);
_ARGCHK(key != NULL);
/* default to invalid signature */
*stat = 0;
if (siglen < PACKET_SIZE+4+4) {
return CRYPT_INVALID_PACKET;
} else {
siglen -= PACKET_SIZE+4+4;
}
/* is the message format correct? */
if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_ECC, PACKET_SUB_SIGNED)) != CRYPT_OK) {
return err;
}
/* get hash name */
y = PACKET_SIZE;
/* get size of public key */
LOAD32L(x, sig+y);
if (siglen < x) {
return CRYPT_INVALID_PACKET;
} else {
siglen -= x;
}
y += 4;
/* load the public key */
if ((err = ecc_import((unsigned char*)sig+y, x, &pubkey)) != CRYPT_OK) {
return err;
}
y += x;
/* load size of 'b' */
LOAD32L(x, sig+y);
if (siglen < x) {
return CRYPT_INVALID_PACKET;
} else {
siglen -= x;
}
y += 4;
/* init values */
if ((err = mp_init_multi(&b, &m, &p, &mu, NULL)) != MP_OKAY) {
ecc_free(&pubkey);
return mpi_to_ltc_error(err);
}
mG = new_point();
if (mG == NULL) {
mp_clear_multi(&b, &m, &p, &mu, NULL);
ecc_free(&pubkey);
return CRYPT_MEM;
}
/* load b */
if ((err = mp_read_unsigned_bin(&b, (unsigned char *)sig+y, (int)x)) != MP_OKAY) { goto error; }
y += x;
/* get m in binary a bignum */
if ((err = mp_read_unsigned_bin(&m, (unsigned char *)hash, (int)inlen)) != MP_OKAY) { goto error; }
/* load prime */
if ((err = mp_read_radix(&p, (char *)sets[key->idx].prime, 64)) != MP_OKAY) { goto error; }
/* calculate barrett stuff */
mp_set(&mu, 1);
mp_lshd(&mu, 2 * USED(&p));
if ((err = mp_div(&mu, &p, &mu, NULL)) != MP_OKAY) { goto error; }
/* get bA */
if ((err = ecc_mulmod(&b, &pubkey.pubkey, &pubkey.pubkey, &p)) != CRYPT_OK) { goto done; }
/* get bA + Y */
if ((err = add_point(&pubkey.pubkey, &key->pubkey, &pubkey.pubkey, &p, &mu)) != CRYPT_OK) { goto done; }
/* get mG */
if ((err = mp_read_radix(&mG->x, (char *)sets[key->idx].Gx, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_radix(&mG->y, (char *)sets[key->idx].Gy, 64)) != MP_OKAY) { goto error; }
if ((err = ecc_mulmod(&m, mG, mG, &p)) != CRYPT_OK) { goto done; }
/* compare mG to bA + Y */
if (mp_cmp(&mG->x, &pubkey.pubkey.x) == MP_EQ && mp_cmp(&mG->y, &pubkey.pubkey.y) == MP_EQ) {
*stat = 1;
}
/* clear up and return */
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
done:
del_point(mG);
ecc_free(&pubkey);
mp_clear_multi(&p, &m, &b, &mu, NULL);
return err;
}