blob: 469d56d07fe2153bf9027153181e2715d1b3359f [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.org
*/
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
*
* All curves taken from NIST recommendation paper of July 1999
* Available at http://csrc.nist.gov/cryptval/dss.htm
*/
#include "tomcrypt.h"
/**
@file ecc.c
ECC Crypto, Tom St Denis
*/
#ifdef MECC
/* size of our temp buffers for exported keys */
#define ECC_BUF_SIZE 256
/* max private key size */
#define ECC_MAXSIZE 66
/* This holds the key settings. ***MUST*** be organized by size from smallest to largest. */
static const struct {
int size;
char *name, *prime, *B, *order, *Gx, *Gy;
} sets[] = {
#ifdef ECC192
{
24,
"ECC-192",
/* prime */
"/////////////////////l//////////",
/* B */
"P2456UMSWESFf+chSYGmIVwutkp1Hhcn",
/* order */
"////////////////cTxuDXHhoR6qqYWn",
/* Gx */
"68se3h0maFPylo3hGw680FJ/2ls2/n0I",
/* Gy */
"1nahbV/8sdXZ417jQoJDrNFvTw4UUKWH"
},
#endif
#ifdef ECC224
{
28,
"ECC-224",
/* prime */
"3/////////////////////0000000000000001",
/* B */
"2q1Gg530Ipg/L1CbPGHB2trx/OkYSBEKCZLV+q",
/* order */
"3//////////////////nQYuBZmFXFTAKLSN2ez",
/* Gx */
"2t3WozQxI/Vp8JaBbA0y7JLi8H8ZGoWDOHN1qX",
/* Gy */
"2zDsE8jVSZ+qmYt+RDGtMWMWT7P4JLWPc507uq",
},
#endif
#ifdef ECC256
{
32,
"ECC-256",
/* Prime */
"F////y000010000000000000000////////////////",
/* B */
"5h6DTYgEfFdi+kzLNQOXhnb7GQmp5EmzZlEF3udqc1B",
/* Order */
"F////y00000//////////+yvlgjfnUUXFEvoiByOoLH",
/* Gx */
"6iNqVBXB497+BpcvMEaGF9t0ts1BUipeFIXEKNOcCAM",
/* Gy */
"4/ZGkB+6d+RZkVhIdmFdXOhpZDNQp5UpiksG6Wtlr7r"
},
#endif
#ifdef ECC384
{
48,
"ECC-384",
/* prime */
"//////////////////////////////////////////x/////00000000003/"
"////",
/* B */
"ip4lf+8+v+IOZWLhu/Wj6HWTd6x+WK4I0nG8Zr0JXrh6LZcDYYxHdIg5oEtJ"
"x2hl",
/* Order */
"////////////////////////////////nsDDWVGtBTzO6WsoIB2dUkpi6MhC"
"nIbp",
/* Gx and Gy */
"geVA8hwB1JUEiSSUyo2jT6uTEsABfvkOMVT1u89KAZXL0l9TlrKfR3fKNZXo"
"TWgt",
"DXVUIfOcB6zTdfY/afBSAVZq7RqecXHywTen4xNmkC0AOB7E7Nw1dNf37NoG"
"wWvV"
},
#endif
#ifdef ECC521
{
65,
"ECC-521",
/* prime */
"V///////////////////////////////////////////////////////////"
"///////////////////////////",
/* B */
"56LFhbXZXoQ7vAQ8Q2sXK3kejfoMvcp5VEuj8cHZl49uLOPEL7iVfDx5bB0l"
"JknlmSrSz+8FImqyUz57zHhK3y0",
/* Order */
"V//////////////////////////////////////////+b66XuE/BvPhVym1I"
"FS9fT0xjScuYPn7hhjljnwHE6G9",
/* Gx and Gy */
"CQ5ZWQt10JfpPu+osOZbRH2d6I1EGK/jI7uAAzWQqqzkg5BNdVlvrae/Xt19"
"wB/gDupIBF1XMf2c/b+VZ72vRrc",
"HWvAMfucZl015oANxGiVHlPcFL4ILURH6WNhxqN9pvcB9VkSfbUz2P0nL2v0"
"J+j1s4rF726edB2G8Y+b7QVqMPG",
},
#endif
{
0,
NULL, NULL, NULL, NULL, NULL, NULL
}
};
static int is_valid_idx(int n)
{
int x;
for (x = 0; sets[x].size != 0; x++);
if ((n < 0) || (n >= x)) {
return 0;
}
return 1;
}
static ecc_point *new_point(void)
{
ecc_point *p;
p = XMALLOC(sizeof(ecc_point));
if (p == NULL) {
return NULL;
}
if (mp_init_multi(&p->x, &p->y, &p->z, NULL) != MP_OKAY) {
XFREE(p);
return NULL;
}
return p;
}
static void del_point(ecc_point *p)
{
/* prevents free'ing null arguments */
if (p != NULL) {
mp_clear_multi(&p->x, &p->y, &p->z, NULL);
XFREE(p);
}
}
static int ecc_map(ecc_point *P, mp_int *modulus, mp_digit mp)
{
mp_int t1, t2;
int err;
if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
return CRYPT_MEM;
}
/* first map z back to normal */
if ((err = mp_montgomery_reduce(&P->z, modulus, mp)) != MP_OKAY) { goto error; }
/* get 1/z */
if ((err = mp_invmod(&P->z, modulus, &t1)) != MP_OKAY) { goto error; }
/* get 1/z^2 and 1/z^3 */
if ((err = mp_sqr(&t1, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_mod(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_mul(&t1, &t2, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_mod(&t1, modulus, &t1)) != MP_OKAY) { goto error; }
/* multiply against x/y */
if ((err = mp_mul(&P->x, &t2, &P->x)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&P->x, modulus, mp)) != MP_OKAY) { goto error; }
if ((err = mp_mul(&P->y, &t1, &P->y)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&P->y, modulus, mp)) != MP_OKAY) { goto error; }
mp_set(&P->z, 1);
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
done:
mp_clear_multi(&t1, &t2, NULL);
return err;
}
/* double a point R = 2P, R can be P*/
static int dbl_point(ecc_point *P, ecc_point *R, mp_int *modulus, mp_digit mp)
{
mp_int t1, t2;
int err;
if ((err = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
return mpi_to_ltc_error(err);
}
if ((err = mp_copy(&P->x, &R->x)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&P->y, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&P->z, &R->z)) != MP_OKAY) { goto error; }
/* t1 = Z * Z */
if ((err = mp_sqr(&R->z, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* Z = Y * Z */
if ((err = mp_mul(&R->z, &R->y, &R->z)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&R->z, modulus, mp)) != MP_OKAY) { goto error; }
/* Z = 2Z */
if ((err = mp_mul_2(&R->z, &R->z)) != MP_OKAY) { goto error; }
if (mp_cmp(&R->z, modulus) != MP_LT) {
if ((err = mp_sub(&R->z, modulus, &R->z)) != MP_OKAY) { goto error; }
}
/* T2 = X - T1 */
if ((err = mp_sub(&R->x, &t1, &t2)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&t2, 0) == MP_LT) {
if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
}
/* T1 = X + T1 */
if ((err = mp_add(&t1, &R->x, &t1)) != MP_OKAY) { goto error; }
if (mp_cmp(&t1, modulus) != MP_LT) {
if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; }
}
/* T2 = T1 * T2 */
if ((err = mp_mul(&t1, &t2, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = 2T2 */
if ((err = mp_mul_2(&t2, &t1)) != MP_OKAY) { goto error; }
if (mp_cmp(&t1, modulus) != MP_LT) {
if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; }
}
/* T1 = T1 + T2 */
if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto error; }
if (mp_cmp(&t1, modulus) != MP_LT) {
if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; }
}
/* Y = 2Y */
if ((err = mp_mul_2(&R->y, &R->y)) != MP_OKAY) { goto error; }
if (mp_cmp(&R->y, modulus) != MP_LT) {
if ((err = mp_sub(&R->y, modulus, &R->y)) != MP_OKAY) { goto error; }
}
/* Y = Y * Y */
if ((err = mp_sqr(&R->y, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&R->y, modulus, mp)) != MP_OKAY) { goto error; }
/* T2 = Y * Y */
if ((err = mp_sqr(&R->y, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; }
/* T2 = T2/2 */
if (mp_isodd(&t2)) {
if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
}
if ((err = mp_div_2(&t2, &t2)) != MP_OKAY) { goto error; }
/* Y = Y * X */
if ((err = mp_mul(&R->y, &R->x, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&R->y, modulus, mp)) != MP_OKAY) { goto error; }
/* X = T1 * T1 */
if ((err = mp_sqr(&t1, &R->x)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&R->x, modulus, mp)) != MP_OKAY) { goto error; }
/* X = X - Y */
if ((err = mp_sub(&R->x, &R->y, &R->x)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&R->x, 0) == MP_LT) {
if ((err = mp_add(&R->x, modulus, &R->x)) != MP_OKAY) { goto error; }
}
/* X = X - Y */
if ((err = mp_sub(&R->x, &R->y, &R->x)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&R->x, 0) == MP_LT) {
if ((err = mp_add(&R->x, modulus, &R->x)) != MP_OKAY) { goto error; }
}
/* Y = Y - X */
if ((err = mp_sub(&R->y, &R->x, &R->y)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&R->y, 0) == MP_LT) {
if ((err = mp_add(&R->y, modulus, &R->y)) != MP_OKAY) { goto error; }
}
/* Y = Y * T1 */
if ((err = mp_mul(&R->y, &t1, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&R->y, modulus, mp)) != MP_OKAY) { goto error; }
/* Y = Y - T2 */
if ((err = mp_sub(&R->y, &t2, &R->y)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&R->y, 0) == MP_LT) {
if ((err = mp_add(&R->y, modulus, &R->y)) != MP_OKAY) { goto error; }
}
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
done:
mp_clear_multi(&t1, &t2, NULL);
return err;
}
/* add two different points over Z/pZ, R = P + Q, note R can equal either P or Q */
static int add_point(ecc_point *P, ecc_point *Q, ecc_point *R, mp_int *modulus, mp_digit mp)
{
mp_int t1, t2, x, y, z;
int err;
if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != MP_OKAY) {
return mpi_to_ltc_error(err);
}
if ((err = mp_copy(&P->x, &x)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&P->y, &y)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&P->z, &z)) != MP_OKAY) { goto error; }
/* T1 = Z' * Z' */
if ((err = mp_sqr(&Q->z, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* X = X * T1 */
if ((err = mp_mul(&t1, &x, &x)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&x, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = Z' * T1 */
if ((err = mp_mul(&Q->z, &t1, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* Y = Y * T1 */
if ((err = mp_mul(&t1, &y, &y)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&y, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = Z*Z */
if ((err = mp_sqr(&z, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* T2 = X' * T1 */
if ((err = mp_mul(&Q->x, &t1, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = Z * T1 */
if ((err = mp_mul(&z, &t1, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = Y' * T1 */
if ((err = mp_mul(&Q->y, &t1, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* Y = Y - T1 */
if ((err = mp_sub(&y, &t1, &y)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&y, 0) == MP_LT) {
if ((err = mp_add(&y, modulus, &y)) != MP_OKAY) { goto error; }
}
/* T1 = 2T1 */
if ((err = mp_mul_2(&t1, &t1)) != MP_OKAY) { goto error; }
if (mp_cmp(&t1, modulus) != MP_LT) {
if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; }
}
/* T1 = Y + T1 */
if ((err = mp_add(&t1, &y, &t1)) != MP_OKAY) { goto error; }
if (mp_cmp(&t1, modulus) != MP_LT) {
if ((err = mp_sub(&t1, modulus, &t1)) != MP_OKAY) { goto error; }
}
/* X = X - T2 */
if ((err = mp_sub(&x, &t2, &x)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&x, 0) == MP_LT) {
if ((err = mp_add(&x, modulus, &x)) != MP_OKAY) { goto error; }
}
/* T2 = 2T2 */
if ((err = mp_mul_2(&t2, &t2)) != MP_OKAY) { goto error; }
if (mp_cmp(&t2, modulus) != MP_LT) {
if ((err = mp_sub(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
}
/* T2 = X + T2 */
if ((err = mp_add(&t2, &x, &t2)) != MP_OKAY) { goto error; }
if (mp_cmp(&t2, modulus) != MP_LT) {
if ((err = mp_sub(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
}
/* if Z' != 1 */
if (mp_cmp_d(&Q->z, 1) != MP_EQ) {
/* Z = Z * Z' */
if ((err = mp_mul(&z, &Q->z, &z)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&z, modulus, mp)) != MP_OKAY) { goto error; }
}
/* Z = Z * X */
if ((err = mp_mul(&z, &x, &z)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&z, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = T1 * X */
if ((err = mp_mul(&t1, &x, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* X = X * X */
if ((err = mp_sqr(&x, &x)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&x, modulus, mp)) != MP_OKAY) { goto error; }
/* T2 = T2 * x */
if ((err = mp_mul(&t2, &x, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; }
/* T1 = T1 * X */
if ((err = mp_mul(&t1, &x, &t1)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t1, modulus, mp)) != MP_OKAY) { goto error; }
/* X = Y*Y */
if ((err = mp_sqr(&y, &x)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&x, modulus, mp)) != MP_OKAY) { goto error; }
/* X = X - T2 */
if ((err = mp_sub(&x, &t2, &x)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&x, 0) == MP_LT) {
if ((err = mp_add(&x, modulus, &x)) != MP_OKAY) { goto error; }
}
/* T2 = T2 - X */
if ((err = mp_sub(&t2, &x, &t2)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&t2, 0) == MP_LT) {
if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
}
/* T2 = T2 - X */
if ((err = mp_sub(&t2, &x, &t2)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&t2, 0) == MP_LT) {
if ((err = mp_add(&t2, modulus, &t2)) != MP_OKAY) { goto error; }
}
/* T2 = T2 * Y */
if ((err = mp_mul(&t2, &y, &t2)) != MP_OKAY) { goto error; }
if ((err = mp_montgomery_reduce(&t2, modulus, mp)) != MP_OKAY) { goto error; }
/* Y = T2 - T1 */
if ((err = mp_sub(&t2, &t1, &y)) != MP_OKAY) { goto error; }
if (mp_cmp_d(&y, 0) == MP_LT) {
if ((err = mp_add(&y, modulus, &y)) != MP_OKAY) { goto error; }
}
/* Y = Y/2 */
if (mp_isodd(&y)) {
if ((err = mp_add(&y, modulus, &y)) != MP_OKAY) { goto error; }
}
if ((err = mp_div_2(&y, &y)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&x, &R->x)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&y, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&z, &R->z)) != MP_OKAY) { goto error; }
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
done:
mp_clear_multi(&t1, &t2, &x, &y, &z, NULL);
return err;
}
/* size of sliding window, don't change this! */
#define WINSIZE 4
/* perform R = kG where k == integer and G == ecc_point */
static int ecc_mulmod(mp_int *k, ecc_point *G, ecc_point *R, mp_int *modulus, int map)
{
ecc_point *tG, *M[8];
int i, j, err;
mp_int mu;
mp_digit buf, mp;
int first, bitbuf, bitcpy, bitcnt, mode, digidx;
/* init montgomery reduction */
if ((err = mp_montgomery_setup(modulus, &mp)) != MP_OKAY) {
return CRYPT_INVALID_ARG;
}
if ((err = mp_init(&mu)) != MP_OKAY) {
return CRYPT_MEM;
}
if ((err = mp_montgomery_calc_normalization(&mu, modulus)) != MP_OKAY) {
mp_clear(&mu);
return CRYPT_INVALID_ARG;
}
/* alloc ram for window temps */
for (i = 0; i < 8; i++) {
M[i] = new_point();
if (M[i] == NULL) {
for (j = 0; j < i; j++) {
del_point(M[j]);
}
mp_clear(&mu);
return CRYPT_MEM;
}
}
/* make a copy of G incase R==G */
tG = new_point();
if (tG == NULL) { err = CRYPT_MEM; goto done; }
/* tG = G and convert to montgomery */
if ((err = mp_mulmod(&G->x, &mu, modulus, &tG->x)) != MP_OKAY) { goto error; }
if ((err = mp_mulmod(&G->y, &mu, modulus, &tG->y)) != MP_OKAY) { goto error; }
if ((err = mp_mulmod(&G->z, &mu, modulus, &tG->z)) != MP_OKAY) { goto error; }
mp_clear(&mu);
/* calc the M tab, which holds kG for k==8..15 */
/* M[0] == 8G */
if ((err = dbl_point(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = dbl_point(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; }
if ((err = dbl_point(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; }
/* now find (8+k)G for k=1..7 */
for (j = 9; j < 16; j++) {
if ((err = add_point(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK) { goto done; }
}
/* setup sliding window */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = k->used - 1;
bitcpy = bitbuf = 0;
first = 1;
/* perform ops */
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
if (digidx == -1) {
break;
}
buf = k->dp[digidx--];
bitcnt = (int) DIGIT_BIT;
}
/* grab the next msb from the ltiplicand */
i = (buf >> (DIGIT_BIT - 1)) & 1;
buf <<= 1;
/* skip leading zero bits */
if (mode == 0 && i == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we double */
if (mode == 1 && i == 0) {
if ((err = dbl_point(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
continue;
}
/* else we add it to the window */
bitbuf |= (i << (WINSIZE - ++bitcpy));
mode = 2;
if (bitcpy == WINSIZE) {
/* if this is the first window we do a simple copy */
if (first == 1) {
/* R = kG [k = first window] */
if ((err = mp_copy(&M[bitbuf-8]->x, &R->x)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&M[bitbuf-8]->y, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&M[bitbuf-8]->z, &R->z)) != MP_OKAY) { goto error; }
first = 0;
} else {
/* normal window */
/* ok window is filled so double as required and add */
/* double first */
for (j = 0; j < WINSIZE; j++) {
if ((err = dbl_point(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */
if ((err = add_point(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK) { goto done; }
}
/* empty window and reset */
bitcpy = bitbuf = 0;
mode = 1;
}
}
/* if bits remain then double/add */
if (mode == 2 && bitcpy > 0) {
/* double then add */
for (j = 0; j < bitcpy; j++) {
/* only double if we have had at least one add first */
if (first == 0) {
if ((err = dbl_point(R, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
bitbuf <<= 1;
if ((bitbuf & (1 << WINSIZE)) != 0) {
if (first == 1){
/* first add, so copy */
if ((err = mp_copy(&tG->x, &R->x)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&tG->y, &R->y)) != MP_OKAY) { goto error; }
if ((err = mp_copy(&tG->z, &R->z)) != MP_OKAY) { goto error; }
first = 0;
} else {
/* then add */
if ((err = add_point(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; }
}
}
}
}
/* map R back from projective space */
if (map) {
err = ecc_map(R, modulus, mp);
} else {
err = CRYPT_OK;
}
goto done;
error:
err = mpi_to_ltc_error(err);
done:
del_point(tG);
for (i = 0; i < 8; i++) {
del_point(M[i]);
}
return err;
}
#undef WINSIZE
/**
Perform on the ECC system
@return CRYPT_OK if successful
*/
int ecc_test(void)
{
mp_int modulus, order;
ecc_point *G, *GG;
int i, err, primality;
if ((err = mp_init_multi(&modulus, &order, NULL)) != MP_OKAY) {
return mpi_to_ltc_error(err);
}
G = new_point();
GG = new_point();
if (G == NULL || GG == NULL) {
mp_clear_multi(&modulus, &order, NULL);
del_point(G);
del_point(GG);
return CRYPT_MEM;
}
for (i = 0; sets[i].size; i++) {
#if 0
printf("Testing %d\n", sets[i].size);
#endif
if ((err = mp_read_radix(&modulus, (char *)sets[i].prime, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_radix(&order, (char *)sets[i].order, 64)) != MP_OKAY) { goto error; }
/* is prime actually prime? */
if ((err = is_prime(&modulus, &primality)) != CRYPT_OK) { goto done; }
if (primality == 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
/* is order prime ? */
if ((err = is_prime(&order, &primality)) != CRYPT_OK) { goto done; }
if (primality == 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
if ((err = mp_read_radix(&G->x, (char *)sets[i].Gx, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_radix(&G->y, (char *)sets[i].Gy, 64)) != MP_OKAY) { goto error; }
mp_set(&G->z, 1);
/* then we should have G == (order + 1)G */
if ((err = mp_add_d(&order, 1, &order)) != MP_OKAY) { goto error; }
if ((err = ecc_mulmod(&order, G, GG, &modulus, 1)) != CRYPT_OK) { goto done; }
if (mp_cmp(&G->x, &GG->x) != 0 || mp_cmp(&G->y, &GG->y) != 0) {
err = CRYPT_FAIL_TESTVECTOR;
goto done;
}
}
err = CRYPT_OK;
goto done;
error:
err = mpi_to_ltc_error(err);
done:
del_point(GG);
del_point(G);
mp_clear_multi(&order, &modulus, NULL);
return err;
}
void ecc_sizes(int *low, int *high)
{
int i;
LTC_ARGCHK(low != NULL);
LTC_ARGCHK(high != NULL);
*low = INT_MAX;
*high = 0;
for (i = 0; sets[i].size != 0; i++) {
if (sets[i].size < *low) {
*low = sets[i].size;
}
if (sets[i].size > *high) {
*high = sets[i].size;
}
}
}
/**
Make a new ECC key
@param prng An active PRNG state
@param wprng The index of the PRNG you wish to use
@param keysize The keysize for the new key (in octets from 20 to 65 bytes)
@param key [out] Destination of the newly created key
@return CRYPT_OK if successful, upon error all allocated memory will be freed
*/
int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key)
{
int x, err;
ecc_point *base;
mp_int prime;
unsigned char *buf;
LTC_ARGCHK(key != NULL);
/* good prng? */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* find key size */
for (x = 0; (keysize > sets[x].size) && (sets[x].size != 0); x++);
keysize = sets[x].size;
if (keysize > ECC_MAXSIZE || sets[x].size == 0) {
return CRYPT_INVALID_KEYSIZE;
}
key->idx = x;
/* allocate ram */
base = NULL;
buf = XMALLOC(ECC_MAXSIZE);
if (buf == NULL) {
return CRYPT_MEM;
}
/* make up random string */
if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) {
err = CRYPT_ERROR_READPRNG;
goto LBL_ERR2;
}
/* setup the key variables */
if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, NULL)) != MP_OKAY) {
err = mpi_to_ltc_error(err);
goto LBL_ERR;
}
base = new_point();
if (base == NULL) {
mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, NULL);
err = CRYPT_MEM;
goto LBL_ERR;
}
/* read in the specs for this key */
if ((err = mp_read_radix(&prime, (char *)sets[key->idx].prime, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_radix(&base->x, (char *)sets[key->idx].Gx, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_radix(&base->y, (char *)sets[key->idx].Gy, 64)) != MP_OKAY) { goto error; }
mp_set(&base->z, 1);
if ((err = mp_read_unsigned_bin(&key->k, (unsigned char *)buf, keysize)) != MP_OKAY) { goto error; }
/* make the public key */
if ((err = ecc_mulmod(&key->k, base, &key->pubkey, &prime, 1)) != CRYPT_OK) { goto LBL_ERR; }
key->type = PK_PRIVATE;
/* shrink key */
if ((err = mp_shrink(&key->k)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->pubkey.x)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->pubkey.y)) != MP_OKAY) { goto error; }
if ((err = mp_shrink(&key->pubkey.z)) != MP_OKAY) { goto error; }
/* free up ram */
err = CRYPT_OK;
goto LBL_ERR;
error:
err = mpi_to_ltc_error(err);
LBL_ERR:
del_point(base);
mp_clear(&prime);
LBL_ERR2:
#ifdef LTC_CLEAN_STACK
zeromem(buf, ECC_MAXSIZE);
#endif
XFREE(buf);
return err;
}
/**
Free an ECC key from memory
@param key The key you wish to free
*/
void ecc_free(ecc_key *key)
{
LTC_ARGCHK(key != NULL);
mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL);
}
/**
Export an ECC key as a binary packet
@param out [out] Destination for the key
@param outlen [in/out] Max size and resulting size of the exported key
@param type The type of key you want to export (PK_PRIVATE or PK_PUBLIC)
@param key The key to export
@return CRYPT_OK if successful
*/
int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key)
{
int err;
unsigned char flags[1];
unsigned long key_size;
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* type valid? */
if (key->type != PK_PRIVATE && type == PK_PRIVATE) {
return CRYPT_PK_TYPE_MISMATCH;
}
if (is_valid_idx(key->idx) == 0) {
return CRYPT_INVALID_ARG;
}
/* we store the NIST byte size */
key_size = sets[key->idx].size;
if (type == PK_PRIVATE) {
flags[0] = 1;
err = der_encode_sequence_multi(out, outlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.y,
LTC_ASN1_INTEGER, 1UL, &key->k,
LTC_ASN1_EOL, 0UL, NULL);
} else {
flags[0] = 0;
err = der_encode_sequence_multi(out, outlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.y,
LTC_ASN1_EOL, 0UL, NULL);
}
return err;
}
/**
Import an ECC key from a binary packet
@param in The packet to import
@param inlen The length of the packet
@param key [out] The destination of the import
@return CRYPT_OK if successful, upon error all allocated memory will be freed
*/
int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key)
{
unsigned long key_size;
unsigned char flags[1];
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(key != NULL);
/* init key */
if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != MP_OKAY) {
return CRYPT_MEM;
}
/* find out what type of key it is */
if ((err = der_decode_sequence_multi(in, inlen,
LTC_ASN1_BIT_STRING, 1UL, &flags,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {
goto error;
}
if (flags[0] == 1) {
/* private key */
key->type = PK_PRIVATE;
if ((err = der_decode_sequence_multi(in, inlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.y,
LTC_ASN1_INTEGER, 1UL, &key->k,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {
goto error;
}
} else {
/* public key */
/* private key */
key->type = PK_PUBLIC;
if ((err = der_decode_sequence_multi(in, inlen,
LTC_ASN1_BIT_STRING, 1UL, flags,
LTC_ASN1_SHORT_INTEGER, 1UL, &key_size,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.x,
LTC_ASN1_INTEGER, 1UL, &key->pubkey.y,
LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {
goto error;
}
}
/* find the idx */
for (key->idx = 0; sets[key->idx].size && (unsigned long)sets[key->idx].size != key_size; ++key->idx);
if (sets[key->idx].size == 0) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* set z */
mp_set(&key->pubkey.z, 1);
/* we're good */
return CRYPT_OK;
error:
mp_clear_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL);
return err;
}
/**
Create an ECC shared secret between two keys
@param private_key The private ECC key
@param public_key The public key
@param out [out] Destination of the shared secret (Conforms to EC-DH from ANSI X9.63)
@param outlen [in/out] The max size and resulting size of the shared secret
@return CRYPT_OK if successful
*/
int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key,
unsigned char *out, unsigned long *outlen)
{
unsigned long x;
ecc_point *result;
mp_int prime;
int err;
LTC_ARGCHK(private_key != NULL);
LTC_ARGCHK(public_key != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* type valid? */
if (private_key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
if (is_valid_idx(private_key->idx) == 0) {
return CRYPT_INVALID_ARG;
}
if (private_key->idx != public_key->idx) {
return CRYPT_PK_TYPE_MISMATCH;
}
/* make new point */
result = new_point();
if (result == NULL) {
return CRYPT_MEM;
}
if ((err = mp_init(&prime)) != MP_OKAY) {
del_point(result);
return mpi_to_ltc_error(err);
}
if ((err = mp_read_radix(&prime, (char *)sets[private_key->idx].prime, 64)) != MP_OKAY) { goto error; }
if ((err = ecc_mulmod(&private_key->k, &public_key->pubkey, result, &prime, 1)) != CRYPT_OK) { goto done1; }
x = (unsigned long)mp_unsigned_bin_size(&prime);
if (*outlen < x) {
err = CRYPT_BUFFER_OVERFLOW;
goto done1;
}
zeromem(out, x);
if ((err = mp_to_unsigned_bin(&result->x, out + (x - mp_unsigned_bin_size(&result->x)))) != MP_OKAY) { goto error; }
err = CRYPT_OK;
*outlen = x;
goto done1;
error:
err = mpi_to_ltc_error(err);
done1:
mp_clear(&prime);
del_point(result);
return err;
}
/**
Get the size of an ECC key
@param key The key to get the size of
@return The size (octets) of the key or INT_MAX on error
*/
int ecc_get_size(ecc_key *key)
{
LTC_ARGCHK(key != NULL);
if (is_valid_idx(key->idx))
return sets[key->idx].size;
else
return INT_MAX; /* large value known to cause it to fail when passed to ecc_make_key() */
}
#include "ecc_sys.c"
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc.c,v $ */
/* $Revision: 1.20 $ */
/* $Date: 2005/06/14 20:42:28 $ */