blob: 68d715615b5cf870f0d248857099f655386e2213 [file] [log] [blame]
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
*
* Based vaguely on the Linux code
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <assert.h>
#include <endian.h>
#include <libpayload.h>
#include <stdint.h>
#include "base/time.h"
#include "config.h"
#include "drivers/storage/mmc.h"
/* Set block count limit because of 16 bit register limit on some hardware*/
#ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
#endif
/* Set to 1 to turn on debug messages. */
int __mmc_debug = 0;
int __mmc_trace = 0;
int mmc_busy_wait_io(volatile uint32_t *address, uint32_t *output,
uint32_t io_mask, uint32_t timeout_ms)
{
uint32_t value = (uint32_t)-1;
uint64_t start = timer_time_in_us(0);
if (!output)
output = &value;
for (; *output & io_mask; *output = readl(address)) {
if (timer_time_in_us(start) > timeout_ms * 1000)
return -1;
}
return 0;
}
int mmc_busy_wait_io_until(volatile uint32_t *address, uint32_t *output,
uint32_t io_mask, uint32_t timeout_ms)
{
uint32_t value = 0;
uint64_t start = timer_time_in_us(0);
if (!output)
output = &value;
for (; !(*output & io_mask); *output = readl(address)) {
if (timer_time_in_us(start) > timeout_ms * 1000)
return -1;
}
return 0;
}
static uint64_t extract_uint32_bits(const uint32_t *array, int start, int count)
{
int i;
uint64_t value = 0;
for (i = 0; i < count; i++, start++) {
value <<= 1;
value |= (array[start / 32] >> (31 - (start % 32))) & 0x1;
}
return value;
}
int mmc_send_cmd(MmcDevice *mmc, MmcCommand *cmd, MmcData *data)
{
int ret;
mmc_trace("CMD_SEND:%d\n", cmd->cmdidx);
mmc_trace("\tARG\t\t\t %#08X\n", cmd->cmdarg);
mmc_trace("\tFLAG\t\t\t %d\n", cmd->flags);
ret = mmc->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
mmc_trace("\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
mmc_trace("\tMMC_RSP_R1,5,6,7 \t %#08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
mmc_trace("\tMMC_RSP_R1b\t\t %#08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
mmc_trace("\tMMC_RSP_R2\t\t %#08X \n",
cmd->response[0]);
mmc_trace("\t \t\t %#08X \n",
cmd->response[1]);
mmc_trace("\t \t\t %#08X \n",
cmd->response[2]);
mmc_trace("\t \t\t %#08X \n",
cmd->response[3]);
break;
case MMC_RSP_R3:
mmc_trace("\tMMC_RSP_R3,4\t\t %#08X \n",
cmd->response[0]);
break;
default:
mmc_trace("\tERROR MMC rsp not supported\n");
break;
}
return ret;
}
int mmc_send_status(MmcDevice *mmc, int timeout)
{
MmcCommand cmd;
int err;
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA)
break;
mdelay(1);
if (cmd.response[0] & MMC_STATUS_MASK) {
mmc_error("Status Error: %#08X\n", cmd.response[0]);
return MMC_COMM_ERR;
}
} while (timeout--);
mmc_trace("CURR STATE:%d\n",
(cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9);
if (!timeout) {
mmc_error("Timeout waiting card ready\n");
return MMC_TIMEOUT;
}
return 0;
}
int mmc_set_blocklen(MmcDevice *mmc, int len)
{
MmcCommand cmd;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
uint32_t mmc_write(MmcDevice *mmc, uint32_t start, lba_t block_count,
const void *src)
{
int timeout = MMC_IO_RETRIES;
MmcCommand cmd;
MmcData data;
if ((start + block_count) > mmc->lba) {
mmc_error("block number %#x exceeds max(%#x)\n",
(int)(start + block_count), (int)mmc->lba);
return 0;
}
if (block_count > 1)
cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->write_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.src = src;
data.blocks = block_count;
data.blocksize = mmc->write_bl_len;
data.flags = MMC_DATA_WRITE;
if (mmc_send_cmd(mmc, &cmd, &data)) {
mmc_error("mmc write failed\n");
return 0;
}
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (block_count > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
mmc_error("mmc fail to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
}
return block_count;
}
int mmc_read(MmcDevice *mmc, void *dest, uint32_t start, lba_t block_count)
{
int timeout = MMC_IO_RETRIES;
MmcCommand cmd;
MmcData data;
if ((start + block_count) > mmc->lba) {
mmc_error("block number %#x exceeds max(%#x)\n",
(int)(start + block_count), (int)mmc->lba);
return 0;
}
if (block_count > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.dest = dest;
data.blocks = block_count;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (block_count > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
mmc_error("mmc fail to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
}
return block_count;
}
int mmc_go_idle(MmcDevice *mmc)
{
MmcCommand cmd;
int err;
// TODO(hungte) Find out if we can get rid of this initial delay.
mdelay(1);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
static int sd_send_op_cond(MmcDevice *mmc)
{
int timeout = MMC_IO_RETRIES;
int err;
MmcCommand cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = (mmc->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return MMC_UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(MmcDevice *mmc, MmcCommand *cmd, int use_arg)
{
int err;
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = MMC_RSP_R3;
cmd->cmdarg = 0;
if (use_arg) {
cmd->cmdarg = ((mmc->voltages &
(mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
(mmc->op_cond_response & OCR_ACCESS_MODE));
if (mmc->host_caps & MMC_MODE_HC)
cmd->cmdarg |= OCR_HCS;
}
cmd->flags = 0;
err = mmc_send_cmd(mmc, cmd, NULL);
if (err)
return err;
mmc->op_cond_response = cmd->response[0];
return 0;
}
static int mmc_send_op_cond(MmcDevice *mmc)
{
MmcCommand cmd;
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Ask the card for its capabilities */
mmc->op_cond_pending = 1;
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
if (err)
return err;
/* exit if not busy (flag seems to be inverted) */
if (mmc->op_cond_response & OCR_BUSY)
return 0;
}
return MMC_IN_PROGRESS;
}
static int mmc_complete_op_cond(MmcDevice *mmc)
{
MmcCommand cmd;
int timeout = MMC_IO_RETRIES;
uint32_t start;
int err;
mmc->op_cond_pending = 0;
start = timer_time_in_us(0);
do {
err = mmc_send_op_cond_iter(mmc, &cmd, 1);
if (err)
return err;
if (timer_time_in_us(start) > timeout * 1000)
return MMC_UNUSABLE_ERR;
udelay(100);
} while (!(mmc->op_cond_response & OCR_BUSY));
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
static int mmc_send_ext_csd(MmcDevice *mmc, unsigned char *ext_csd)
{
MmcCommand cmd;
MmcData data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = 512;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
static int mmc_switch(MmcDevice *mmc, uint8_t set, uint8_t index, uint8_t value)
{
int timeout = MMC_IO_RETRIES;
int ret;
MmcCommand cmd;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = ((MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) | (value << 8));
cmd.flags = 0;
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
return ret;
}
static int mmc_change_freq(MmcDevice *mmc)
{
char cardtype;
int err;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, 512);
mmc->card_caps = 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
if (!ext_csd[EXT_CSD_HS_TIMING])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & MMC_HS_52MHZ)
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
else
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
int mmc_is_card_present(MmcDevice *mmc)
{
if (mmc->is_card_present)
return mmc->is_card_present(mmc);
return 0;
}
static int sd_switch(MmcDevice *mmc, int mode, int group, uint8_t value,
uint8_t *resp)
{
MmcCommand cmd;
MmcData data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
cmd.flags = 0;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(MmcDevice *mmc)
{
int err, timeout;
MmcCommand cmd;
MmcData data;
ALLOC_CACHE_ALIGN_BUFFER(uint32_t, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint32_t, switch_status, 16);
mmc->card_caps = 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_debug("%s: before SD_CMD_APP_SEND_SCR\n", __func__);
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
while (timeout--) {
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (!err)
break;
}
if (err) {
mmc_error("%s: return err (%d).\n", __func__, err);
return err;
}
mmc_debug("%s: end SD_CMD_APP_SEND_SCR\n", __func__);
mmc->scr[0] = betohl(scr[0]);
mmc->scr[1] = betohl(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(uint8_t *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(ntohl(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(ntohl(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->host_caps & MMC_MODE_HS)))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (uint8_t *)switch_status);
if (err)
return err;
if ((ntohl(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
void mmc_set_ios(MmcDevice *mmc)
{
mmc->set_ios(mmc);
}
void mmc_set_clock(MmcDevice *mmc, uint32_t clock)
{
if (clock > mmc->f_max)
clock = mmc->f_max;
if (clock < mmc->f_min)
clock = mmc->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
void mmc_set_bus_width(MmcDevice *mmc, uint32_t width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
uint32_t mmc_calculate_transfer_speed(uint32_t csd0)
{
uint32_t mult, freq;
/* frequency bases, divided by 10 to be nice to platforms without
* floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point. */
static const int multipliers[] = {
0, // reserved
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[csd0 & 0x7];
mult = multipliers[(csd0 >> 3) & 0xf];
return freq * mult;
}
int mmc_startup(MmcDevice *mmc)
{
int err, width;
uint64_t cmult, csize, capacity;
int timeout = MMC_IO_RETRIES;
uint32_t clock = MMC_CLOCK_DEFAULT_MHZ;
MmcCommand cmd;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE);
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, test_csd, EXT_CSD_SIZE);
/* Put the Card in Identify Mode */
cmd.cmdidx = MMC_CMD_ALL_SEND_CID;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, sizeof(mmc->cid));
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err)
return err;
memcpy(mmc->csd, cmd.response, sizeof(mmc->csd));
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = extract_uint32_bits(mmc->csd, 2, 4);
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
mmc->tran_speed = mmc_calculate_transfer_speed(mmc->csd[0]);
mmc->read_bl_len = 1 << extract_uint32_bits(mmc->csd, 44, 4);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((mmc->csd[3] >> 22) & 0xf);
if (mmc->high_capacity) {
cmult = 8;
csize = extract_uint32_bits(mmc->csd, 58, 22);
} else {
csize = extract_uint32_bits(mmc->csd, 54, 12);
cmult = extract_uint32_bits(mmc->csd, 78, 3);
}
mmc->capacity = (csize + 1) << (cmult + 2);
mmc->capacity *= mmc->read_bl_len;
if (mmc->read_bl_len > 512)
mmc->read_bl_len = 512;
if (mmc->write_bl_len > 512)
mmc->write_bl_len = 512;
mmc_debug("mmc info: version=%#x, tran_speed=%d\n",
mmc->version, (int)mmc->tran_speed);
/* Select the card, and put it into Transfer Mode */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err & (ext_csd[EXT_CSD_REV] >= 2)) {
/* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB */
// TODO(hungte) Replace by letohl().
capacity = (ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
capacity *= 512;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity = capacity;
}
}
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->host_caps;
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
clock = MMC_CLOCK_50MHZ;
else
clock = MMC_CLOCK_25MHZ;
} else {
for (width = EXT_CSD_BUS_WIDTH_8; width >= 0; width--) {
/* Set the card to use 4 bit*/
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, width);
if (err)
continue;
if (!width) {
mmc_set_bus_width(mmc, 1);
break;
} else
mmc_set_bus_width(mmc, 4 * width);
err = mmc_send_ext_csd(mmc, test_csd);
if (!err &&
(ext_csd[EXT_CSD_PARTITIONING_SUPPORT] ==
test_csd[EXT_CSD_PARTITIONING_SUPPORT]) &&
(ext_csd[EXT_CSD_ERASE_GROUP_DEF] ==
test_csd[EXT_CSD_ERASE_GROUP_DEF]) &&
(ext_csd[EXT_CSD_REV] ==
test_csd[EXT_CSD_REV]) &&
(ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] ==
test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
memcmp(&ext_csd[EXT_CSD_SEC_CNT],
&test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
mmc->card_caps |= width;
break;
}
}
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
clock = MMC_CLOCK_52MHZ;
else
clock = MMC_CLOCK_26MHZ;
}
}
mmc_set_clock(mmc, clock);
mmc->lba = mmc->capacity / mmc->read_bl_len;
if (mmc->block_dev) {
mmc->block_dev->block_count = mmc->lba;
mmc->block_dev->block_size = mmc->read_bl_len;
}
return 0;
}
int mmc_send_if_cond(MmcDevice *mmc)
{
MmcCommand cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* Set if host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return MMC_UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
int mmc_start_init(MmcDevice *mmc)
{
int err;
if (mmc_is_card_present(mmc) == 0) {
mmc->has_init = 0;
mmc_debug("No card present\n");
return MMC_NO_CARD_ERR;
}
if (mmc->has_init)
return 0;
err = mmc->init(mmc);
if (err)
return err;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Get SD card operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == MMC_TIMEOUT) {
err = mmc_send_op_cond(mmc);
if (err && err != MMC_IN_PROGRESS) {
mmc_error("Card did not respond to voltage select!\n");
return MMC_UNUSABLE_ERR;
}
}
if (err == MMC_IN_PROGRESS)
mmc->init_in_progress = 1;
return err;
}
static int mmc_complete_init(MmcDevice *mmc)
{
int err = 0;
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (!err)
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
mmc->init_in_progress = 0;
return err;
}
int mmc_init(MmcDevice *mmc)
{
int err = MMC_IN_PROGRESS;
if (mmc->has_init)
return 0;
if (!mmc->init_in_progress)
err = mmc_start_init(mmc);
if (!err || err == MMC_IN_PROGRESS)
err = mmc_complete_init(mmc);
return err;
}
/////////////////////////////////////////////////////////////////////////////
// BlockDevice utilities and callbacks
void block_mmc_refresh(ListNode *block_node, MmcDevice *mmc)
{
assert(mmc && mmc->block_dev);
mmc_debug("%s: %s\n",mmc->block_dev->name, __func__);
if (mmc->has_init) {
list_remove(&mmc->block_dev->list_node);
mmc->has_init = 0;
}
if (mmc_init(mmc) == 0) {
list_insert_after(&mmc->block_dev->list_node, block_node);
printf("%s: %s: Card present.\n", __func__,
mmc->block_dev->name);
} else {
printf("%s: %s: No card present.\n", __func__,
mmc->block_dev->name);
}
}
void block_mmc_ctrlr_refresh(BlockDevCtrlr *ctrlr)
{
MmcDevice *mmc = (MmcDevice *)ctrlr->ctrlr_data;
mmc_debug("%s: enter (root=%p).\n", __func__, mmc);
for (; mmc; mmc = mmc->next) {
block_mmc_refresh(&removable_block_devices, mmc);
}
mmc_debug("%s: leave.\n", __func__);
}
int block_mmc_register(BlockDev *dev, MmcDevice *mmc, MmcDevice **root)
{
if (!mmc->b_max)
mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
mmc->block_dev = dev;
dev->dev_data = mmc;
dev->read = block_mmc_read;
dev->write = block_mmc_write;
if (root) {
while (*root && (*root)->next)
root = &(*root)->next;
if (*root)
(*root)->next = mmc;
else
*root = mmc;
}
return 0;
}
lba_t block_mmc_read(BlockDev *dev, lba_t start, lba_t count, void *buffer)
{
MmcDevice *mmc = (MmcDevice *)dev->dev_data;
lba_t cur, blocks_todo = count;
uint8_t *dest = (uint8_t *)buffer;
if (count == 0 || !mmc)
return 0;
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_read(mmc, dest, start, cur) != cur)
return 0;
blocks_todo -= cur;
mmc_debug("%s: Got %d blocks, more %d (total %d) to go.\n",
__func__, (int)cur, (int)blocks_todo, (int)count);
start += cur;
dest += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return count;
}
lba_t block_mmc_write(BlockDev *dev, lba_t start, lba_t count,
const void *buffer)
{
MmcDevice *mmc = (MmcDevice *)dev->dev_data;
const uint8_t *src = (const uint8_t *)buffer;
lba_t cur, blocks_todo = count;
if (count == 0 || !mmc)
return 0;
if (mmc_set_blocklen(mmc, mmc->write_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_write(mmc, start, cur, src) != cur)
return 0;
blocks_todo -= cur;
start += cur;
src += cur * mmc->write_bl_len;
} while (blocks_todo > 0);
return count;
}