blob: d68b49cbbe233a0067d904dc4a36615b9610b788 [file] [log] [blame]
import 'dart:typed_data';
import '../exif_data.dart';
import '../image.dart';
import '../util/output_buffer.dart';
import 'encoder.dart';
import 'jpeg/jpeg.dart';
/// Encode an image to the JPEG format.
///
/// Derived from:
/// https://github.com/owencm/javascript-jpeg-encoder
class JpegEncoder extends Encoder {
JpegEncoder({int quality = 100}) {
_initHuffmanTbl();
_initCategoryNumber();
_initRGBYUVTable();
setQuality(quality);
}
void setQuality(int quality) {
quality = quality.clamp(0, 100).toInt();
if (currentQuality == quality) {
// don't re-calc if unchanged
return;
}
int sf = 0;
if (quality < 50) {
sf = (5000 / quality).floor();
} else {
sf = (200 - quality * 2).floor();
}
_initQuantTables(sf);
currentQuality = quality;
}
List<int> encodeImage(Image image) {
OutputBuffer fp = OutputBuffer(bigEndian: true);
// Add JPEG headers
_writeMarker(fp, Jpeg.M_SOI);
_writeAPP0(fp);
_writeAPP1(fp, image.exif);
_writeDQT(fp);
_writeSOF0(fp, image.width, image.height);
_writeDHT(fp);
_writeSOS(fp);
// Encode 8x8 macroblocks
int DCY = 0;
int DCU = 0;
int DCV = 0;
_resetBits();
int width = image.width;
int height = image.height;
Uint8List imageData = image.getBytes();
int quadWidth = width * 4;
//int tripleWidth = width * 3;
//bool first = true;
int y = 0;
while (y < height) {
int x = 0;
while (x < quadWidth) {
int start = quadWidth * y + x;
for (int pos = 0; pos < 64; pos++) {
int row = pos >> 3; // / 8
int col = (pos & 7) * 4; // % 8
int p = start + (row * quadWidth) + col;
if (y + row >= height) { // padding bottom
p -= (quadWidth * (y + 1 + row - height));
}
if (x + col >= quadWidth) { // padding right
p -= ((x + col) - quadWidth + 4);
}
int b = imageData[p++];
int g = imageData[p++];
int r = imageData[p++];
// calculate YUV values
YDU[pos] = ((RGB_YUV_TABLE[r] +
RGB_YUV_TABLE[(g + 256)] +
RGB_YUV_TABLE[(b + 512)]) >> 16) - 128.0;
UDU[pos] = ((RGB_YUV_TABLE[(r + 768)] +
RGB_YUV_TABLE[(g + 1024)] +
RGB_YUV_TABLE[(b + 1280)]) >> 16) - 128.0;
VDU[pos] = ((RGB_YUV_TABLE[(r + 1280)] +
RGB_YUV_TABLE[(g + 1536)] +
RGB_YUV_TABLE[(b + 1792)]) >> 16) - 128.0;
}
DCY = _processDU(fp, YDU, fdtbl_Y, DCY, YDC_HT, YAC_HT);
DCU = _processDU(fp, UDU, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
DCV = _processDU(fp, VDU, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
x += 32;
}
y += 8;
}
////////////////////////////////////////////////////////////////
// Do the bit alignment of the EOI marker
if (_bytepos >= 0) {
final fillBits = [(1 << (_bytepos + 1)) - 1, _bytepos + 1];
_writeBits(fp, fillBits);
}
_writeMarker(fp, Jpeg.M_EOI);
return fp.getBytes();
}
void _writeMarker(OutputBuffer fp, int marker) {
fp.writeByte(0xff);
fp.writeByte(marker & 0xff);
}
void _initQuantTables(int sf) {
const List<int> YQT = const [
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68,109,103, 77,
24, 35, 55, 64, 81,104,113, 92,
49, 64, 78, 87,103,121,120,101,
72, 92, 95, 98,112,100,103, 99 ];
for (int i = 0; i < 64; i++) {
int t = ((YQT[i] * sf + 50) / 100).floor();
if (t < 1) {
t = 1;
} else if (t > 255) {
t = 255;
}
YTable[ZIGZAG[i]] = t;
}
const List<int> UVQT = const [
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99 ];
for (int j = 0; j < 64; j++) {
int u = ((UVQT[j] * sf + 50) / 100).floor();
if (u < 1) {
u = 1;
} else if (u > 255) {
u = 255;
}
UVTable[ZIGZAG[j]] = u;
}
const List<double> aasf = const [
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379 ];
int k = 0;
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 8; col++) {
fdtbl_Y[k] = (1.0 / (YTable[ZIGZAG[k]] * aasf[row] * aasf[col] * 8.0));
fdtbl_UV[k] = (1.0 / (UVTable[ZIGZAG[k]] * aasf[row] * aasf[col] * 8.0));
k++;
}
}
}
List<List<int>> _computeHuffmanTbl(List<int> nrcodes, List<int> std_table) {
int codevalue = 0;
int pos_in_table = 0;
List<List<int>> HT = [];
for (int k = 1; k <= 16; k++) {
for (int j = 1; j <= nrcodes[k]; j++) {
int index = std_table[pos_in_table];
if (HT.length <= index) {
HT.length = index + 1;
}
HT[index] = [codevalue, k];
pos_in_table++;
codevalue++;
}
codevalue *= 2;
}
return HT;
}
void _initHuffmanTbl() {
YDC_HT = _computeHuffmanTbl(STD_DC_LUMINANCE_NR_CODES,
STD_DC_LUMINANCE_VALUES);
UVDC_HT = _computeHuffmanTbl(STD_DC_CHROMINANCE_NR_CODES,
STD_DC_CHROMINANCE_VALUES);
YAC_HT = _computeHuffmanTbl(STD_AC_LUMINANCE_NR_CODES,
STD_AC_LUMINANCE_VALUES);
UVAC_HT = _computeHuffmanTbl(STD_AC_CHROMINANCE_NR_CODES,
STD_AC_CHROMINANCE_VALUES);
}
void _initCategoryNumber() {
int nrlower = 1;
int nrupper = 2;
for (int cat = 1; cat <= 15; cat++) {
// Positive numbers
for (int nr = nrlower; nr < nrupper; nr++) {
category[32767 + nr] = cat;
bitcode[32767 + nr] = [nr, cat];
}
// Negative numbers
for (int nrneg = -(nrupper - 1); nrneg <= -nrlower; nrneg++) {
category[32767 + nrneg] = cat;
bitcode[32767 + nrneg] = [nrupper - 1 + nrneg, cat];
}
nrlower <<= 1;
nrupper <<= 1;
}
}
void _initRGBYUVTable() {
for (int i = 0; i < 256; i++) {
RGB_YUV_TABLE[i] = 19595 * i;
RGB_YUV_TABLE[(i + 256)] = 38470 * i;
RGB_YUV_TABLE[(i + 512)] = 7471 * i + 0x8000;
RGB_YUV_TABLE[(i + 768)] = -11059 * i;
RGB_YUV_TABLE[(i + 1024)] = -21709 * i;
RGB_YUV_TABLE[(i + 1280)] = 32768 * i + 0x807FFF;
RGB_YUV_TABLE[(i + 1536)] = -27439 * i;
RGB_YUV_TABLE[(i + 1792)] = -5329 * i;
}
}
// DCT & quantization core
List<int> _fDCTQuant(List<double> data, List<double> fdtbl) {
// Pass 1: process rows.
int dataOff = 0;
const I8 = 8;
const I64 = 64;
for (int i = 0; i < I8; ++i) {
double d0 = data[dataOff];
double d1 = data[dataOff + 1];
double d2 = data[dataOff + 2];
double d3 = data[dataOff + 3];
double d4 = data[dataOff + 4];
double d5 = data[dataOff + 5];
double d6 = data[dataOff + 6];
double d7 = data[dataOff + 7];
double tmp0 = d0 + d7;
double tmp7 = d0 - d7;
double tmp1 = d1 + d6;
double tmp6 = d1 - d6;
double tmp2 = d2 + d5;
double tmp5 = d2 - d5;
double tmp3 = d3 + d4;
double tmp4 = d3 - d4;
// Even part
double tmp10 = tmp0 + tmp3; // phase 2
double tmp13 = tmp0 - tmp3;
double tmp11 = tmp1 + tmp2;
double tmp12 = tmp1 - tmp2;
data[dataOff] = tmp10 + tmp11; // phase 3
data[dataOff + 4] = tmp10 - tmp11;
double z1 = (tmp12 + tmp13) * 0.707106781; // c4
data[dataOff + 2] = tmp13 + z1; // phase 5
data[dataOff + 6] = tmp13 - z1;
// Odd part
tmp10 = tmp4 + tmp5; // phase 2
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
// The rotator is modified from fig 4-8 to avoid extra negations.
double z5 = (tmp10 - tmp12) * 0.382683433; // c6
double z2 = 0.541196100 * tmp10 + z5; // c2 - c6
double z4 = 1.306562965 * tmp12 + z5; // c2 + c6
double z3 = tmp11 * 0.707106781; // c4
double z11 = tmp7 + z3; // phase 5
double z13 = tmp7 - z3;
data[dataOff + 5] = z13 + z2; // phase 6
data[dataOff + 3] = z13 - z2;
data[dataOff + 1] = z11 + z4;
data[dataOff + 7] = z11 - z4;
dataOff += 8; // advance pointer to next row
}
// Pass 2: process columns.
dataOff = 0;
for (int i = 0; i < I8; ++i) {
double d0 = data[dataOff];
double d1 = data[dataOff + 8];
double d2 = data[dataOff + 16];
double d3 = data[dataOff + 24];
double d4 = data[dataOff + 32];
double d5 = data[dataOff + 40];
double d6 = data[dataOff + 48];
double d7 = data[dataOff + 56];
double tmp0p2 = d0 + d7;
double tmp7p2 = d0 - d7;
double tmp1p2 = d1 + d6;
double tmp6p2 = d1 - d6;
double tmp2p2 = d2 + d5;
double tmp5p2 = d2 - d5;
double tmp3p2 = d3 + d4;
double tmp4p2 = d3 - d4;
// Even part
double tmp10p2 = tmp0p2 + tmp3p2; // phase 2
double tmp13p2 = tmp0p2 - tmp3p2;
double tmp11p2 = tmp1p2 + tmp2p2;
double tmp12p2 = tmp1p2 - tmp2p2;
data[dataOff] = tmp10p2 + tmp11p2; // phase 3
data[dataOff + 32] = tmp10p2 - tmp11p2;
double z1p2 = (tmp12p2 + tmp13p2) * 0.707106781; // c4
data[dataOff + 16] = tmp13p2 + z1p2; // phase 5
data[dataOff + 48] = tmp13p2 - z1p2;
// Odd part
tmp10p2 = tmp4p2 + tmp5p2; // phase 2
tmp11p2 = tmp5p2 + tmp6p2;
tmp12p2 = tmp6p2 + tmp7p2;
// The rotator is modified from fig 4-8 to avoid extra negations.
double z5p2 = (tmp10p2 - tmp12p2) * 0.382683433; // c6
double z2p2 = 0.541196100 * tmp10p2 + z5p2; // c2 - c6
double z4p2 = 1.306562965 * tmp12p2 + z5p2; // c2 + c6
double z3p2 = tmp11p2 * 0.707106781; // c4
double z11p2 = tmp7p2 + z3p2; // phase 5
double z13p2 = tmp7p2 - z3p2;
data[dataOff + 40] = z13p2 + z2p2; // phase 6
data[dataOff + 24] = z13p2 - z2p2;
data[dataOff + 8] = z11p2 + z4p2;
data[dataOff + 56] = z11p2 - z4p2;
dataOff++; // advance pointer to next column
}
// Quantize/descale the coefficients
for (int i = 0; i < I64; ++i) {
// Apply the quantization and scaling factor & Round to nearest integer
double fDCTQuant = data[i] * fdtbl[i];
outputfDCTQuant[i] = (fDCTQuant > 0.0) ?
((fDCTQuant + 0.5).toInt()) :
((fDCTQuant - 0.5).toInt());
}
return outputfDCTQuant;
}
void _writeAPP0(OutputBuffer out) {
_writeMarker(out, Jpeg.M_APP0);
out.writeUint16(16); // length
out.writeByte(0x4A); // J
out.writeByte(0x46); // F
out.writeByte(0x49); // I
out.writeByte(0x46); // F
out.writeByte(0); // '\0'
out.writeByte(1); // versionhi
out.writeByte(1); // versionlo
out.writeByte(0); // xyunits
out.writeUint16(1); // xdensity
out.writeUint16(1); // ydensity
out.writeByte(0); // thumbnwidth
out.writeByte(0); // thumbnheight
}
void _writeAPP1(OutputBuffer out, ExifData exif) {
if (exif.rawData == null) {
return;
}
for (var rawData in exif.rawData) {
_writeMarker(out, Jpeg.M_APP1);
out.writeUint16(rawData.length + 2);
out.writeBytes(rawData);
}
}
void _writeSOF0(OutputBuffer out, int width, int height) {
_writeMarker(out, Jpeg.M_SOF0);
out.writeUint16(17); // length, truecolor YUV JPG
out.writeByte(8); // precision
out.writeUint16(height);
out.writeUint16(width);
out.writeByte(3); // nrofcomponents
out.writeByte(1); // IdY
out.writeByte(0x11); // HVY
out.writeByte(0); // QTY
out.writeByte(2); // IdU
out.writeByte(0x11); // HVU
out.writeByte(1); // QTU
out.writeByte(3); // IdV
out.writeByte(0x11); // HVV
out.writeByte(1); // QTV
}
void _writeDQT(OutputBuffer out) {
_writeMarker(out, Jpeg.M_DQT);
out.writeUint16(132); // length
out.writeByte(0);
for (int i = 0; i < 64; i++) {
out.writeByte(YTable[i]);
}
out.writeByte(1);
for (int j = 0; j < 64; j++) {
out.writeByte(UVTable[j]);
}
}
void _writeDHT(OutputBuffer out) {
_writeMarker(out, Jpeg.M_DHT);
out.writeUint16(0x01A2); // length
out.writeByte(0); // HTYDCinfo
for (int i = 0; i < 16; i++) {
out.writeByte(STD_DC_LUMINANCE_NR_CODES[i + 1]);
}
for (int j = 0; j <= 11; j++) {
out.writeByte(STD_DC_LUMINANCE_VALUES[j]);
}
out.writeByte(0x10); // HTYACinfo
for (int k = 0; k < 16; k++) {
out.writeByte(STD_AC_LUMINANCE_NR_CODES[k + 1]);
}
for (int l = 0; l <= 161; l++) {
out.writeByte(STD_AC_LUMINANCE_VALUES[l]);
}
out.writeByte(1); // HTUDCinfo
for (int m = 0; m < 16; m++) {
out.writeByte(STD_DC_CHROMINANCE_NR_CODES[m + 1]);
}
for (int n = 0; n <= 11; n++) {
out.writeByte(STD_DC_CHROMINANCE_VALUES[n]);
}
out.writeByte(0x11); // HTUACinfo
for (int o = 0; o < 16; o++) {
out.writeByte(STD_AC_CHROMINANCE_NR_CODES[o + 1]);
}
for (int p = 0; p <= 161; p++) {
out.writeByte(STD_AC_CHROMINANCE_VALUES[p]);
}
}
void _writeSOS(OutputBuffer out) {
_writeMarker(out, Jpeg.M_SOS);
out.writeUint16(12); // length
out.writeByte(3); // nrofcomponents
out.writeByte(1); // IdY
out.writeByte(0); // HTY
out.writeByte(2); // IdU
out.writeByte(0x11); // HTU
out.writeByte(3); // IdV
out.writeByte(0x11); // HTV
out.writeByte(0); // Ss
out.writeByte(0x3f); // Se
out.writeByte(0); // Bf
}
int _processDU(OutputBuffer out, List<double> CDU, List<double> fdtbl,
int DC, List<List<int>> HTDC, List<List<int>> HTAC) {
List<int> EOB = HTAC[0x00];
List<int> M16zeroes = HTAC[0xF0];
int pos;
const I16 = 16;
const I63 = 63;
const I64 = 64;
List<int> DU_DCT = _fDCTQuant(CDU, fdtbl);
// ZigZag reorder
for (int j = 0; j < I64; ++j) {
DU[ZIGZAG[j]] = DU_DCT[j];
}
int Diff = DU[0] - DC;
DC = DU[0];
// Encode DC
if (Diff == 0) {
_writeBits(out, HTDC[0]); // Diff might be 0
} else {
pos = 32767 + Diff;
_writeBits(out, HTDC[category[pos]]);
_writeBits(out, bitcode[pos]);
}
// Encode ACs
int end0pos = 63;
for (; (end0pos > 0) && (DU[end0pos] == 0); end0pos--) {};
//end0pos = first element in reverse order !=0
if ( end0pos == 0) {
_writeBits(out, EOB);
return DC;
}
int i = 1;
int lng;
while (i <= end0pos) {
int startpos = i;
for (; (DU[i] == 0) && (i <= end0pos); ++i) {
}
int nrzeroes = i - startpos;
if (nrzeroes >= I16) {
lng = nrzeroes >> 4;
for (int nrmarker = 1; nrmarker <= lng; ++nrmarker) {
_writeBits(out, M16zeroes);
}
nrzeroes = nrzeroes & 0xF;
}
pos = 32767 + DU[i];
_writeBits(out, HTAC[(nrzeroes << 4) + category[pos]]);
_writeBits(out, bitcode[pos]);
i++;
}
if (end0pos != I63) {
_writeBits(out, EOB);
}
return DC;
}
void _writeBits(OutputBuffer out, List<int> bits) {
int value = bits[0];
int posval = bits[1] - 1;
while (posval >= 0) {
if ((value & (1 << posval)) != 0) {
_bytenew |= (1 << _bytepos);
}
posval--;
_bytepos--;
if (_bytepos < 0) {
if (_bytenew == 0xff) {
out.writeByte(0xff);
out.writeByte(0);
} else {
out.writeByte(_bytenew);
}
_bytepos = 7;
_bytenew = 0;
}
}
}
void _resetBits() {
_bytenew = 0;
_bytepos = 7;
}
final YTable = Uint8List(64);
final UVTable = Uint8List(64);
final fdtbl_Y = Float32List(64);
final fdtbl_UV = Float32List(64);
List<List<int>> YDC_HT;
List<List<int>> UVDC_HT;
List<List<int>> YAC_HT;
List<List<int>> UVAC_HT;
final bitcode = List<List<int>>(65535);
final category = List<int>(65535);
final outputfDCTQuant = List<int>(64);
final DU = List<int>(64);
final Float32List YDU = Float32List(64);
final Float32List UDU = Float32List(64);
final Float32List VDU = Float32List(64);
final Int32List RGB_YUV_TABLE = Int32List(2048);
int currentQuality;
static const List<int> ZIGZAG = const [
0, 1, 5, 6,14,15,27,28,
2, 4, 7,13,16,26,29,42,
3, 8,12,17,25,30,41,43,
9,11,18,24,31,40,44,53,
10,19,23,32,39,45,52,54,
20,22,33,38,46,51,55,60,
21,34,37,47,50,56,59,61,
35,36,48,49,57,58,62,63 ];
static const List<int> STD_DC_LUMINANCE_NR_CODES = const [
0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 ];
static const List<int> STD_DC_LUMINANCE_VALUES = const [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];
static const List<int> STD_AC_LUMINANCE_NR_CODES = const [
0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d ];
static const List<int> STD_AC_LUMINANCE_VALUES = const [
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa ];
static const List<int> STD_DC_CHROMINANCE_NR_CODES = const [
0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 ];
static const List<int> STD_DC_CHROMINANCE_VALUES = const [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];
static const List<int> STD_AC_CHROMINANCE_NR_CODES = const [
0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 ];
static const List<int> STD_AC_CHROMINANCE_VALUES = const [
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa ];
int _bytenew = 0;
int _bytepos = 7;
}