blob: 7e2025beb6f78bc0e92f5614ccf920a4a1d202d2 [file] [log] [blame]
part of archive;
class Deflate {
// enum CompressionLevel
static const int DEFAULT_COMPRESSION = 6;
static const int BEST_COMPRESSION = 9;
static const int BEST_SPEED = 1;
static const int NO_COMPRESSION = 0;
// enum FlushMode
static const int NO_FLUSH = 0;
static const int PARTIAL_FLUSH = 1;
static const int SYNC_FLUSH = 2;
static const int FULL_FLUSH = 3;
static const int FINISH = 4;
Deflate(List<int> bytes, {int level: DEFAULT_COMPRESSION,
int flush: FINISH}) :
_input = new InputStream(bytes) {
_init(level);
_deflate(flush);
}
Deflate.buffer(this._input, {int level: DEFAULT_COMPRESSION,
int flush: FINISH}) {
_init(level);
_deflate(flush);
}
/**
* Get the resulting compressed bytes.
*/
List<int> getBytes() {
_flushPending();
return _output.getBytes();
}
/**
* Get the resulting compressed bytes without storing the resulting data to
* minimize memory usage.
*/
List<int> takeBytes() {
_flushPending();
List<int> bytes = _output.getBytes();
_output.clear();
return bytes;
}
/**
* Add more data to be deflated.
*/
void addBytes(List<int> bytes, {int flush: FINISH}) {
_input = new InputStream(bytes);
_deflate(flush);
}
/**
* Add more data to be deflated.
*/
void addBuffer(InputStream buffer, {int flush: FINISH}) {
_input = buffer;
_deflate(flush);
}
/**
* Compression level used (1..9)
*/
int get level => _level;
/**
* Initialize the deflate structures for the given parameters.
*/
void _init(int level,
{int method: Z_DEFLATED,
int windowBits: MAX_WBITS,
int memLevel: DEF_MEM_LEVEL,
int strategy: Z_DEFAULT_STRATEGY}) {
if (level == null || level == Z_DEFAULT_COMPRESSION) {
level = 6;
}
_config = _getConfig(level);
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
throw new ArchiveException('Invalid Deflate parameter');
}
_dynamicLengthTree = new Uint16List(HEAP_SIZE * 2);
_dynamicDistTree = new Uint16List((2 * D_CODES + 1) * 2);
_bitLengthTree = new Uint16List((2 * BL_CODES + 1) * 2);
_windowBits = windowBits;
_windowSize = 1 << _windowBits;
_windowMask = _windowSize - 1;
_hashBits = memLevel + 7;
_hashSize = 1 << _hashBits;
_hashMask = _hashSize - 1;
_hashShift = ((_hashBits + MIN_MATCH - 1) ~/ MIN_MATCH);
_window = new Uint8List(_windowSize * 2);
_prev = new Uint16List(_windowSize);
_head = new Uint16List(_hashSize);
_litBufferSize = 1 << (memLevel + 6); // 16K elements by default
// We overlay pending_buf and d_buf+l_buf. This works since the average
// output size for (length,distance) codes is <= 24 bits.
_pendingBuffer = new Uint8List(_litBufferSize * 4);
_pendingBufferSize = _litBufferSize * 4;
_dbuf = _litBufferSize;
_lbuf = (1 + 2) * _litBufferSize;
_level = level;
_strategy = strategy;
_method = method;
_pending = 0;
_pendingOut = 0;
_status = BUSY_STATE;
_lastFlush = NO_FLUSH;
_trInit();
_lmInit();
}
/**
* Compress the current input buffer.
*/
int _deflate(int flush) {
if (flush > FINISH || flush < 0) {
throw new ArchiveException('Invalid Deflate Parameter');
}
_lastFlush = flush;
// Flush as much pending output as possible
if (_pending != 0) {
// Make sure there is something to do and avoid duplicate consecutive
// flushes. For repeated and useless calls with FINISH, we keep
// returning Z_STREAM_END instead of Z_BUFF_ERROR.
_flushPending();
}
// Start a new block or continue the current one.
if (!_input.isEOS || _lookAhead != 0 ||
(flush != NO_FLUSH && _status != FINISH_STATE)) {
int bstate = -1;
switch (_config.function) {
case STORED:
bstate = _deflateStored(flush);
break;
case FAST:
bstate = _deflateFast(flush);
break;
case SLOW:
bstate = _deflateSlow(flush);
break;
default:
break;
}
if (bstate == FINISH_STARTED || bstate == FINISH_DONE) {
_status = FINISH_STATE;
}
if (bstate == NEED_MORE || bstate == FINISH_STARTED) {
// If flush != Z_NO_FLUSH && avail_out == 0, the next call
// of deflate should use the same flush parameter to make sure
// that the flush is complete. So we don't have to output an
// empty block here, this will be done at next call. This also
// ensures that for a very small output buffer, we emit at most
// one empty block.
return Z_OK;
}
if (bstate == BLOCK_DONE) {
if (flush == PARTIAL_FLUSH) {
_trAlign();
} else {
// FULL_FLUSH or SYNC_FLUSH
_trStoredBlock(0, 0, false);
// For a full flush, this empty block will be recognized
// as a special marker by inflate_sync().
if (flush == FULL_FLUSH) {
for (int i = 0; i < _hashSize; i++) {
// forget history
_head[i] = 0;
}
}
}
_flushPending();
}
}
if (flush != FINISH) {
return Z_OK;
}
return Z_STREAM_END;
}
void _lmInit() {
_actualWindowSize = 2 * _windowSize;
_head[_hashSize - 1] = 0;
for (int i = 0; i < _hashSize - 1; i++) {
_head[i] = 0;
}
_strStart = 0;
_blockStart = 0;
_lookAhead = 0;
_matchLength = _prevLength = MIN_MATCH - 1;
_matchAvailable = 0;
_insertHash = 0;
}
/**
* Initialize the tree data structures for a new zlib stream.
*/
void _trInit() {
_lDesc.dynamicTree = _dynamicLengthTree;
_lDesc.staticDesc = _StaticTree.staticLDesc;
_dDesc.dynamicTree = _dynamicDistTree;
_dDesc.staticDesc = _StaticTree.staticDDesc;
_blDesc.dynamicTree = _bitLengthTree;
_blDesc.staticDesc = _StaticTree.staticBlDesc;
_bitBuffer = 0;
_numValidBits = 0;
_lastEOBLen = 8; // enough lookahead for inflate
// Initialize the first block of the first file:
_initBlock();
}
void _initBlock() {
// Initialize the trees.
for (int i = 0; i < L_CODES; i++) {
_dynamicLengthTree[i * 2] = 0;
}
for (int i = 0; i < D_CODES; i++) {
_dynamicDistTree[i * 2] = 0;
}
for (int i = 0; i < BL_CODES; i++) {
_bitLengthTree[i * 2] = 0;
}
_dynamicLengthTree[END_BLOCK * 2] = 1;
_optimalLen = _staticLen = 0;
_lastLit = _matches = 0;
}
/**
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
void _pqdownheap(Uint16List tree, int k) {
int v = _heap[k];
int j = k << 1; // left son of k
while (j <= _heapLen) {
// Set j to the smallest of the two sons:
if (j < _heapLen && _smaller(tree, _heap[j + 1], _heap[j], _depth)) {
j++;
}
// Exit if v is smaller than both sons
if (_smaller(tree, v, _heap[j], _depth)) {
break;
}
// Exchange v with the smallest son
_heap[k] = _heap[j]; k = j;
// And continue down the tree, setting j to the left son of k
j <<= 1;
}
_heap[k] = v;
}
static bool _smaller(Uint16List tree, int n, int m,
Uint8List depth) {
return (tree[n * 2] < tree[m * 2] ||
(tree[n * 2] == tree[m * 2] && depth[n] <= depth[m]));
}
/**
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
void _scanTree(Uint16List tree, int max_code) {
int n; // iterates over all tree elements
int prevlen = - 1; // last emitted length
int curlen; // length of current code
int nextlen = tree[0 * 2 + 1]; // length of next code
int count = 0; // repeat count of the current code
int max_count = 7; // max repeat count
int min_count = 4; // min repeat count
if (nextlen == 0) {
max_count = 138; min_count = 3;
}
tree[(max_code + 1) * 2 + 1] = 0xffff; // guard
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1];
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
_bitLengthTree[curlen * 2] = (_bitLengthTree[curlen * 2] + count);
} else if (curlen != 0) {
if (curlen != prevlen) {
_bitLengthTree[curlen * 2]++;
}
_bitLengthTree[REP_3_6 * 2]++;
} else if (count <= 10) {
_bitLengthTree[REPZ_3_10 * 2]++;
} else {
_bitLengthTree[REPZ_11_138 * 2]++;
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138; min_count = 3;
} else if (curlen == nextlen) {
max_count = 6; min_count = 3;
} else {
max_count = 7; min_count = 4;
}
}
}
// Construct the Huffman tree for the bit lengths and return the index in
// bl_order of the last bit length code to send.
int _buildBitLengthTree() {
int max_blindex; // index of last bit length code of non zero freq
// Determine the bit length frequencies for literal and distance trees
_scanTree(_dynamicLengthTree, _lDesc.maxCode);
_scanTree(_dynamicDistTree, _dDesc.maxCode);
// Build the bit length tree:
_blDesc._buildTree(this);
// opt_len now includes the length of the tree representations, except
// the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
// Determine the number of bit length codes to send. The pkzip format
// requires that at least 4 bit length codes be sent. (appnote.txt says
// 3 but the actual value used is 4.)
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
if (_bitLengthTree[_HuffmanTree.BL_ORDER[max_blindex] * 2 + 1] != 0) {
break;
}
}
// Update opt_len to include the bit length tree and counts
_optimalLen += 3 * (max_blindex + 1) + 5 + 5 + 4;
return max_blindex;
}
/**
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
void _sendAllTrees(int lcodes, int dcodes, int blcodes) {
int rank; // index in bl_order
_sendBits(lcodes - 257, 5); // not +255 as stated in appnote.txt
_sendBits(dcodes - 1, 5);
_sendBits(blcodes - 4, 4); // not -3 as stated in appnote.txt
for (rank = 0; rank < blcodes; rank++) {
_sendBits(_bitLengthTree[_HuffmanTree.BL_ORDER[rank] * 2 + 1], 3);
}
_sendTree(_dynamicLengthTree, lcodes - 1); // literal tree
_sendTree(_dynamicDistTree, dcodes - 1); // distance tree
}
/**
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
void _sendTree(Uint16List tree, int max_code) {
int n; // iterates over all tree elements
int prevlen = - 1; // last emitted length
int curlen; // length of current code
int nextlen = tree[0 * 2 + 1]; // length of next code
int count = 0; // repeat count of the current code
int max_count = 7; // max repeat count
int min_count = 4; // min repeat count
if (nextlen == 0) {
max_count = 138; min_count = 3;
}
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1];
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do {
_sendCode(curlen, _bitLengthTree);
} while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
_sendCode(curlen, _bitLengthTree);
count--;
}
_sendCode(REP_3_6, _bitLengthTree);
_sendBits(count - 3, 2);
} else if (count <= 10) {
_sendCode(REPZ_3_10, _bitLengthTree);
_sendBits(count - 3, 3);
} else {
_sendCode(REPZ_11_138, _bitLengthTree);
_sendBits(count - 11, 7);
}
count = 0;
prevlen = curlen;
if (nextlen == 0) {
max_count = 138;
min_count = 3;
} else if (curlen == nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
/**
* Output a byte on the stream.
* IN assertion: there is enough room in pending_buf.
*/
void _putBytes(Uint8List p, int start, int len) {
if (len == 0) {
return;
}
_pendingBuffer.setRange(_pending, _pending + len, p, start);
_pending += len;
}
void _putByte(int c) {
_pendingBuffer[_pending++] = c;
}
void _putShort(int w) {
_putByte((w));
_putByte((_rshift(w, 8)));
}
void _sendCode(int c, List<int> tree) {
_sendBits((tree[c * 2] & 0xffff), (tree[c * 2 + 1] & 0xffff));
}
void _sendBits(int value_Renamed, int length) {
int len = length;
if (_numValidBits > BUF_SIZE - len) {
int val = value_Renamed;
_bitBuffer = (_bitBuffer | (((val << _numValidBits) & 0xffff)));
_putShort(_bitBuffer);
_bitBuffer = (_rshift(val, (BUF_SIZE - _numValidBits)));
_numValidBits += len - BUF_SIZE;
} else {
_bitBuffer = (_bitBuffer | ((((value_Renamed) << _numValidBits) & 0xffff)));
_numValidBits += len;
}
}
/**
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
* The current inflate code requires 9 bits of lookahead. If the
* last two codes for the previous block (real code plus EOB) were coded
* on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
* the last real code. In this case we send two empty static blocks instead
* of one. (There are no problems if the previous block is stored or fixed.)
* To simplify the code, we assume the worst case of last real code encoded
* on one bit only.
*/
void _trAlign() {
_sendBits(STATIC_TREES << 1, 3);
_sendCode(END_BLOCK, _StaticTree.STATIC_LTREE);
biFlush();
// Of the 10 bits for the empty block, we have already sent
// (10 - bi_valid) bits. The lookahead for the last real code (before
// the EOB of the previous block) was thus at least one plus the length
// of the EOB plus what we have just sent of the empty static block.
if (1 + _lastEOBLen + 10 - _numValidBits < 9) {
_sendBits(STATIC_TREES << 1, 3);
_sendCode(END_BLOCK, _StaticTree.STATIC_LTREE);
biFlush();
}
_lastEOBLen = 7;
}
/**
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
bool _trTally(int dist, int lc) {
_pendingBuffer[_dbuf + _lastLit * 2] = (_rshift(dist, 8));
_pendingBuffer[_dbuf + _lastLit * 2 + 1] = dist;
_pendingBuffer[_lbuf + _lastLit] = lc;
_lastLit++;
if (dist == 0) {
// lc is the unmatched char
_dynamicLengthTree[lc * 2]++;
} else {
_matches++;
// Here, lc is the match length - MIN_MATCH
dist--; // dist = match distance - 1
_dynamicLengthTree[(_HuffmanTree.LENGTH_CODE[lc] + LITERALS + 1) * 2]++;
_dynamicDistTree[_HuffmanTree._dCode(dist) * 2]++;
}
if ((_lastLit & 0x1fff) == 0 && _level > 2) {
// Compute an upper bound for the compressed length
int out_length = _lastLit * 8;
int in_length = _strStart - _blockStart;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length = (out_length + _dynamicDistTree[dcode * 2] * (5 + _HuffmanTree.EXTRA_D_BITS[dcode]));
}
out_length = _rshift(out_length, 3);
if ((_matches < (_lastLit / 2)) && out_length < in_length / 2) {
return true;
}
}
return (_lastLit == _litBufferSize - 1);
// We avoid equality with lit_bufsize because of wraparound at 64K
// on 16 bit machines and because stored blocks are restricted to
// 64K-1 bytes.
}
/**
* Send the block data compressed using the given Huffman trees
*/
void _compressBlock(List<int> ltree, List<int> dtree) {
int dist; // distance of matched string
int lc; // match length or unmatched char (if dist == 0)
int lx = 0; // running index in l_buf
int code; // the code to send
int extra; // number of extra bits to send
if (_lastLit != 0) {
do {
dist = ((_pendingBuffer[_dbuf + lx * 2] << 8) & 0xff00) |
(_pendingBuffer[_dbuf + lx * 2 + 1] & 0xff);
lc = (_pendingBuffer[_lbuf + lx]) & 0xff;
lx++;
if (dist == 0) {
_sendCode(lc, ltree); // send a literal byte
} else {
// Here, lc is the match length - MIN_MATCH
code = _HuffmanTree.LENGTH_CODE[lc];
_sendCode(code + LITERALS + 1, ltree); // send the length code
extra = _HuffmanTree.EXTRA_L_BITS[code];
if (extra != 0) {
lc -= _HuffmanTree.BASE_LENGTH[code];
_sendBits(lc, extra); // send the extra length bits
}
dist--; // dist is now the match distance - 1
code = _HuffmanTree._dCode(dist);
_sendCode(code, dtree); // send the distance code
extra = _HuffmanTree.EXTRA_D_BITS[code];
if (extra != 0) {
dist -= _HuffmanTree.BASE_DIST[code];
_sendBits(dist, extra); // send the extra distance bits
}
} // literal or match pair ?
// Check that the overlay between pending_buf and d_buf+l_buf is ok:
} while (lx < _lastLit);
}
_sendCode(END_BLOCK, ltree);
_lastEOBLen = ltree[END_BLOCK * 2 + 1];
}
/**
* Set the data type to ASCII or BINARY, using a crude approximation:
* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
* IN assertion: the fields freq of dyn_ltree are set and the total of all
* frequencies does not exceed 64K (to fit in an int on 16 bit machines).
*/
void setDataType() {
int n = 0;
int ascii_freq = 0;
int bin_freq = 0;
while (n < 7) {
bin_freq += _dynamicLengthTree[n * 2]; n++;
}
while (n < 128) {
ascii_freq += _dynamicLengthTree[n * 2]; n++;
}
while (n < LITERALS) {
bin_freq += _dynamicLengthTree[n * 2]; n++;
}
_dataType = (bin_freq > (_rshift(ascii_freq, 2)) ?
Z_BINARY : Z_ASCII);
}
/**
* Flush the bit buffer, keeping at most 7 bits in it.
*/
void biFlush() {
if (_numValidBits == 16) {
_putShort(_bitBuffer);
_bitBuffer = 0;
_numValidBits = 0;
} else if (_numValidBits >= 8) {
_putByte(_bitBuffer);
_bitBuffer = (_rshift(_bitBuffer, 8));
_numValidBits -= 8;
}
}
/**
* Flush the bit buffer and align the output on a byte boundary
*/
void _biWindup() {
if (_numValidBits > 8) {
_putShort(_bitBuffer);
} else if (_numValidBits > 0) {
_putByte(_bitBuffer);
}
_bitBuffer = 0;
_numValidBits = 0;
}
/**
* Copy a stored block, storing first the length and its
* one's complement if requested.
*/
void _copyBlock(int buf, int len, bool header) {
_biWindup(); // align on byte boundary
_lastEOBLen = 8; // enough lookahead for inflate
if (header) {
_putShort(len);
_putShort((~len + 0x10000) & 0xffff);
}
_putBytes(_window, buf, len);
}
void _flushBlockOnly(bool eof) {
_trFlushBlock(_blockStart >= 0 ? _blockStart : -1,
_strStart - _blockStart, eof);
_blockStart = _strStart;
_flushPending();
}
/**
* Copy without compression as much as possible from the input stream, return
* the current block state.
* This function does not insert new strings in the dictionary since
* uncompressible data is probably not useful. This function is used
* only for the level=0 compression option.
* NOTE: this function should be optimized to avoid extra copying from
* window to pending_buf.
*/
int _deflateStored(int flush) {
// Stored blocks are limited to 0xffff bytes, pending_buf is limited
// to pending_buf_size, and each stored block has a 5 byte header:
int maxBlockSize = 0xffff;
if (maxBlockSize > _pendingBufferSize - 5) {
maxBlockSize = _pendingBufferSize - 5;
}
// Copy as much as possible from input to output:
while (true) {
// Fill the window as much as possible:
if (_lookAhead <= 1) {
_fillWindow();
if (_lookAhead == 0 && flush == NO_FLUSH) {
return NEED_MORE;
}
if (_lookAhead == 0) {
break; // flush the current block
}
}
_strStart += _lookAhead;
_lookAhead = 0;
// Emit a stored block if pendingBuffer will be full:
int maxStart = _blockStart + maxBlockSize;
if (_strStart >= maxStart) {
_lookAhead = (_strStart - maxStart);
_strStart = maxStart;
_flushBlockOnly(false);
}
// Flush if we may have to slide, otherwise block_start may become
// negative and the data will be gone:
if (_strStart - _blockStart >= _windowSize - MIN_LOOKAHEAD) {
_flushBlockOnly(false);
}
}
_flushBlockOnly(flush == FINISH);
return (flush == FINISH) ? FINISH_DONE : BLOCK_DONE;
}
/**
* Send a stored block
*/
void _trStoredBlock(int buf, int storedLen, bool eof) {
_sendBits((STORED_BLOCK << 1) + (eof ? 1 : 0), 3); // send block type
_copyBlock(buf, storedLen, true); // with header
}
/**
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
void _trFlushBlock(int buf, int storedLen, bool eof) {
int optLenb;
int staticLenb;
int max_blindex = 0; // index of last bit length code of non zero freq
// Build the Huffman trees unless a stored block is forced
if (_level > 0) {
// Check if the file is ascii or binary
if (_dataType == Z_UNKNOWN) {
setDataType();
}
// Construct the literal and distance trees
_lDesc._buildTree(this);
_dDesc._buildTree(this);
// At this point, opt_len and static_len are the total bit lengths of
// the compressed block data, excluding the tree representations.
// Build the bit length tree for the above two trees, and get the index
// in bl_order of the last bit length code to send.
max_blindex = _buildBitLengthTree();
// Determine the best encoding. Compute first the block length in bytes
optLenb = _rshift((_optimalLen + 3 + 7), 3);
staticLenb = _rshift((_staticLen + 3 + 7), 3);
if (staticLenb <= optLenb) {
optLenb = staticLenb;
}
} else {
optLenb = staticLenb = storedLen + 5; // force a stored block
}
if (storedLen + 4 <= optLenb && buf != -1) {
// 4: two words for the lengths
// The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
// Otherwise we can't have processed more than WSIZE input bytes since
// the last block flush, because compression would have been
// successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
// transform a block into a stored block.
_trStoredBlock(buf, storedLen, eof);
} else if (staticLenb == optLenb) {
_sendBits((STATIC_TREES << 1) + (eof ? 1 : 0), 3);
_compressBlock(_StaticTree.STATIC_LTREE, _StaticTree.STATIC_DTREE);
} else {
_sendBits((DYN_TREES << 1) + (eof ? 1 : 0), 3);
_sendAllTrees(_lDesc.maxCode + 1, _dDesc.maxCode + 1, max_blindex + 1);
_compressBlock(_dynamicLengthTree, _dynamicDistTree);
}
// The above check is made mod 2^32, for files larger than 512 MB
// and uLong implemented on 32 bits.
_initBlock();
if (eof) {
_biWindup();
}
}
/**
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
void _fillWindow() {
do {
// Amount of free space at the end of the window.
int more = (_actualWindowSize - _lookAhead - _strStart);
// Deal with 64K limit:
if (more == 0 && _strStart == 0 && _lookAhead == 0) {
more = _windowSize;
} else if (_strStart >= _windowSize + _windowSize - MIN_LOOKAHEAD) {
// If the window is almost full and there is insufficient lookahead,
// move the upper half to the lower one to make room in the upper half.
_window.setRange(0, _windowSize, _window, _windowSize);
_matchStart -= _windowSize;
_strStart -= _windowSize; // we now have strstart >= MAX_DIST
_blockStart -= _windowSize;
// Slide the hash table (could be avoided with 32 bit values
// at the expense of memory usage). We slide even when level == 0
// to keep the hash table consistent if we switch back to level > 0
// later. (Using level 0 permanently is not an optimal usage of
// zlib, so we don't care about this pathological case.)
int n = _hashSize;
int p = n;
do {
int m = (_head[--p] & 0xffff);
_head[p] = (m >= _windowSize?(m - _windowSize) : 0);
} while (--n != 0);
n = _windowSize;
p = n;
do {
int m = (_prev[--p] & 0xffff);
_prev[p] = (m >= _windowSize ? (m - _windowSize) : 0);
// If n is not on any hash chain, prev[n] is garbage but
// its value will never be used.
} while (--n != 0);
more += _windowSize;
}
if (_input.isEOS) {
return;
}
// If there was no sliding:
// strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
// more == window_size - lookahead - strstart
// => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
// => more >= window_size - 2*WSIZE + 2
// In the BIG_MEM or MMAP case (not yet supported),
// window_size == input_size + MIN_LOOKAHEAD &&
// strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
// Otherwise, window_size == 2*WSIZE so more >= 2.
// If there was sliding, more >= WSIZE. So in all cases, more >= 2.
int n = _readBuf(_window, _strStart + _lookAhead, more);
_lookAhead += n;
// Initialize the hash value now that we have some input:
if (_lookAhead >= MIN_MATCH) {
_insertHash = _window[_strStart] & 0xff;
_insertHash = (((_insertHash) << _hashShift) ^
(_window[_strStart + 1] & 0xff)) & _hashMask;
}
// If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
// but this is not important since only literal bytes will be emitted.
} while (_lookAhead < MIN_LOOKAHEAD && !_input.isEOS);
}
/**
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
int _deflateFast(int flush) {
int hash_head = 0; // head of the hash chain
bool bflush; // set if current block must be flushed
while (true) {
// Make sure that we always have enough lookahead, except
// at the end of the input file. We need MAX_MATCH bytes
// for the next match, plus MIN_MATCH bytes to insert the
// string following the next match.
if (_lookAhead < MIN_LOOKAHEAD) {
_fillWindow();
if (_lookAhead < MIN_LOOKAHEAD && flush == NO_FLUSH) {
return NEED_MORE;
}
if (_lookAhead == 0) {
break; // flush the current block
}
}
// Insert the string window[strstart .. strstart+2] in the
// dictionary, and set hash_head to the head of the hash chain:
if (_lookAhead >= MIN_MATCH) {
_insertHash = (((_insertHash) << _hashShift) ^
(_window[(_strStart) + (MIN_MATCH - 1)] & 0xff)) & _hashMask;
hash_head = (_head[_insertHash] & 0xffff);
_prev[_strStart & _windowMask] = _head[_insertHash];
_head[_insertHash] = _strStart;
}
// Find the longest match, discarding those <= prev_length.
// At this point we have always match_length < MIN_MATCH
if (hash_head != 0 &&
((_strStart - hash_head) & 0xffff) <= _windowSize - MIN_LOOKAHEAD) {
// To simplify the code, we prevent matches with the string
// of window index 0 (in particular we have to avoid a match
// of the string with itself at the start of the input file).
if (_strategy != Z_HUFFMAN_ONLY) {
_matchLength = _longestMatch(hash_head);
}
// longest_match() sets match_start
}
if (_matchLength >= MIN_MATCH) {
bflush = _trTally(_strStart - _matchStart, _matchLength - MIN_MATCH);
_lookAhead -= _matchLength;
// Insert new strings in the hash table only if the match length
// is not too large. This saves time but degrades compression.
if (_matchLength <= _config.maxLazy && _lookAhead >= MIN_MATCH) {
_matchLength--; // string at strstart already in hash table
do {
_strStart++;
_insertHash = ((_insertHash << _hashShift) ^
(_window[(_strStart) + (MIN_MATCH - 1)] & 0xff)) &
_hashMask;
hash_head = (_head[_insertHash] & 0xffff);
_prev[_strStart & _windowMask] = _head[_insertHash];
_head[_insertHash] = _strStart;
// strstart never exceeds WSIZE-MAX_MATCH, so there are
// always MIN_MATCH bytes ahead.
} while (--_matchLength != 0);
_strStart++;
} else {
_strStart += _matchLength;
_matchLength = 0;
_insertHash = _window[_strStart] & 0xff;
_insertHash = (((_insertHash) << _hashShift) ^
(_window[_strStart + 1] & 0xff)) & _hashMask;
// If lookahead < MIN_MATCH, ins_h is garbage, but it does not
// matter since it will be recomputed at next deflate call.
}
} else {
// No match, output a literal byte
bflush = _trTally(0, _window[_strStart] & 0xff);
_lookAhead--;
_strStart++;
}
if (bflush) {
_flushBlockOnly(false);
}
}
_flushBlockOnly(flush == FINISH);
return flush == FINISH ? FINISH_DONE : BLOCK_DONE;
}
/**
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
int _deflateSlow(int flush) {
int hash_head = 0; // head of hash chain
bool bflush; // set if current block must be flushed
// Process the input block.
while (true) {
// Make sure that we always have enough lookahead, except
// at the end of the input file. We need MAX_MATCH bytes
// for the next match, plus MIN_MATCH bytes to insert the
// string following the next match.
if (_lookAhead < MIN_LOOKAHEAD) {
_fillWindow();
if (_lookAhead < MIN_LOOKAHEAD && flush == NO_FLUSH) {
return NEED_MORE;
}
if (_lookAhead == 0) {
break; // flush the current block
}
}
// Insert the string window[strstart .. strstart+2] in the
// dictionary, and set hash_head to the head of the hash chain:
if (_lookAhead >= MIN_MATCH) {
_insertHash = (((_insertHash) << _hashShift) ^
(_window[(_strStart) + (MIN_MATCH - 1)] & 0xff)) & _hashMask;
hash_head = (_head[_insertHash] & 0xffff);
_prev[_strStart & _windowMask] = _head[_insertHash];
_head[_insertHash] = _strStart;
}
// Find the longest match, discarding those <= prev_length.
_prevLength = _matchLength;
_prevMatch = _matchStart;
_matchLength = MIN_MATCH - 1;
if (hash_head != 0 && _prevLength < _config.maxLazy &&
((_strStart - hash_head) & 0xffff) <= _windowSize - MIN_LOOKAHEAD) {
// To simplify the code, we prevent matches with the string
// of window index 0 (in particular we have to avoid a match
// of the string with itself at the start of the input file).
if (_strategy != Z_HUFFMAN_ONLY) {
_matchLength = _longestMatch(hash_head);
}
// longest_match() sets match_start
if (_matchLength <= 5 &&
(_strategy == Z_FILTERED ||
(_matchLength == MIN_MATCH && _strStart - _matchStart > 4096))) {
// If prev_match is also MIN_MATCH, match_start is garbage
// but we will ignore the current match anyway.
_matchLength = MIN_MATCH - 1;
}
}
// If there was a match at the previous step and the current
// match is not better, output the previous match:
if (_prevLength >= MIN_MATCH && _matchLength <= _prevLength) {
int max_insert = _strStart + _lookAhead - MIN_MATCH;
// Do not insert strings in hash table beyond this.
bflush = _trTally(_strStart - 1 - _prevMatch, _prevLength - MIN_MATCH);
// Insert in hash table all strings up to the end of the match.
// strstart-1 and strstart are already inserted. If there is not
// enough lookahead, the last two strings are not inserted in
// the hash table.
_lookAhead -= (_prevLength - 1);
_prevLength -= 2;
do {
if (++_strStart <= max_insert) {
_insertHash = (((_insertHash) << _hashShift) ^
(_window[(_strStart) + (MIN_MATCH - 1)] & 0xff)) & _hashMask;
hash_head = (_head[_insertHash] & 0xffff);
_prev[_strStart & _windowMask] = _head[_insertHash];
_head[_insertHash] = _strStart;
}
} while (--_prevLength != 0);
_matchAvailable = 0;
_matchLength = MIN_MATCH - 1;
_strStart++;
if (bflush) {
_flushBlockOnly(false);
}
} else if (_matchAvailable != 0) {
// If there was no match at the previous position, output a
// single literal. If there was a match but the current match
// is longer, truncate the previous match to a single literal.
bflush = _trTally(0, _window[_strStart - 1] & 0xff);
if (bflush) {
_flushBlockOnly(false);
}
_strStart++;
_lookAhead--;
} else {
// There is no previous match to compare with, wait for
// the next step to decide.
_matchAvailable = 1;
_strStart++;
_lookAhead--;
}
}
if (_matchAvailable != 0) {
bflush = _trTally(0, _window[_strStart - 1] & 0xff);
_matchAvailable = 0;
}
_flushBlockOnly(flush == FINISH);
return flush == FINISH ? FINISH_DONE : BLOCK_DONE;
}
int _longestMatch(int cur_match) {
int chain_length = _config.maxChain; // max hash chain length
int scan = _strStart; // current string
int match; // matched string
int len; // length of current match
int best_len = _prevLength; // best match length so far
int limit = _strStart > (_windowSize - MIN_LOOKAHEAD) ?
_strStart - (_windowSize - MIN_LOOKAHEAD) : 0;
int nice_match = _config.niceLength;
// Stop when cur_match becomes <= limit. To simplify the code,
// we prevent matches with the string of window index 0.
int wmask = _windowMask;
int strend = _strStart + MAX_MATCH;
int scan_end1 = _window[scan + best_len - 1];
int scan_end = _window[scan + best_len];
// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
// It is easy to get rid of this optimization if necessary.
// Do not waste too much time if we already have a good match:
if (_prevLength >= _config.goodLength) {
chain_length >>= 2;
}
// Do not look for matches beyond the end of the input. This is necessary
// to make deflate deterministic.
if (nice_match > _lookAhead) {
nice_match = _lookAhead;
}
do {
match = cur_match;
// Skip to next match if the match length cannot increase
// or if the match length is less than 2:
if (_window[match + best_len] != scan_end ||
_window[match + best_len - 1] != scan_end1 ||
_window[match] != _window[scan] ||
_window[++match] != _window[scan + 1]) {
continue;
}
// The check at best_len-1 can be removed because it will be made
// again later. (This heuristic is not always a win.)
// It is not necessary to compare scan[2] and match[2] since they
// are always equal when the other bytes match, given that
// the hash keys are equal and that HASH_BITS >= 8.
scan += 2;
match++;
// We check for insufficient lookahead only every 8th comparison;
// the 256th check will be made at strstart+258.
do {
} while (_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
_window[++scan] == _window[++match] &&
scan < strend);
len = MAX_MATCH - (strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
_matchStart = cur_match;
best_len = len;
if (len >= nice_match) {
break;
}
scan_end1 = _window[scan + best_len - 1];
scan_end = _window[scan + best_len];
}
} while ((cur_match = (_prev[cur_match & wmask] & 0xffff)) > limit &&
--chain_length != 0);
if (best_len <= _lookAhead) {
return best_len;
}
return _lookAhead;
}
/**
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
int _readBuf(Uint8List buf, int start, int size) {
int len = _input.length;
if (len > size) {
len = size;
}
if (len == 0) {
return 0;
}
InputStream bytes = _input.readBytes(len);
buf.setRange(start, start + len, bytes.toUint8List());
return len;
}
/**
* Flush as much pending output as possible. All deflate() output goes
* through this function so some applications may wish to modify it
* to avoid allocating a large strm->next_out buffer and copying into it.
*/
void _flushPending() {
int len = _pending;
_output.writeBytes(_pendingBuffer, len);
_pendingOut += len;
_pending -= len;
if (_pending == 0) {
_pendingOut = 0;
}
}
_DeflaterConfig _getConfig(int level) {
switch (level) {
// good lazy nice chain
case 0: return new _DeflaterConfig(0, 0, 0, 0, STORED);
case 1: return new _DeflaterConfig(4, 4, 8, 4, FAST);
case 2: return new _DeflaterConfig(4, 5, 16, 8, FAST);
case 3: return new _DeflaterConfig(4, 6, 32, 32, FAST);
case 4: return new _DeflaterConfig(4, 4, 16, 16, SLOW);
case 5: return new _DeflaterConfig(8, 16, 32, 32, SLOW);
case 6: return new _DeflaterConfig(8, 16, 128, 128, SLOW);
case 7: return new _DeflaterConfig(8, 32, 128, 256, SLOW);
case 8: return new _DeflaterConfig(32, 128, 258, 1024, SLOW);
case 9: return new _DeflaterConfig(32, 258, 258, 4096, SLOW);
}
return null;
}
static const int MAX_MEM_LEVEL = 9;
static const int Z_DEFAULT_COMPRESSION = - 1;
/// 32K LZ77 window
static const int MAX_WBITS = 15;
static const int DEF_MEM_LEVEL = 8;
static const int STORED = 0;
static const int FAST = 1;
static const int SLOW = 2;
static _DeflaterConfig _config;
/// block not completed, need more input or more output
static const int NEED_MORE = 0;
/// block flush performed
static const int BLOCK_DONE = 1;
/// finish started, need only more output at next deflate
static const int FINISH_STARTED = 2;
/// finish done, accept no more input or output
static const int FINISH_DONE = 3;
static const int Z_FILTERED = 1;
static const int Z_HUFFMAN_ONLY = 2;
static const int Z_DEFAULT_STRATEGY = 0;
static const int Z_OK = 0;
static const int Z_STREAM_END = 1;
static const int Z_NEED_DICT = 2;
static const int Z_ERRNO = - 1;
static const int Z_STREAM_ERROR = - 2;
static const int Z_DATA_ERROR = - 3;
static const int Z_MEM_ERROR = - 4;
static const int Z_BUF_ERROR = - 5;
static const int Z_VERSION_ERROR = - 6;
static const int INIT_STATE = 42;
static const int BUSY_STATE = 113;
static const int FINISH_STATE = 666;
/// The deflate compression method
static const int Z_DEFLATED = 8;
static const int STORED_BLOCK = 0;
static const int STATIC_TREES = 1;
static const int DYN_TREES = 2;
// The three kinds of block type
static const int Z_BINARY = 0;
static const int Z_ASCII = 1;
static const int Z_UNKNOWN = 2;
static const int BUF_SIZE = 8 * 2;
/// repeat previous bit length 3-6 times (2 bits of repeat count)
static const int REP_3_6 = 16;
/// repeat a zero length 3-10 times (3 bits of repeat count)
static const int REPZ_3_10 = 17;
/// repeat a zero length 11-138 times (7 bits of repeat count)
static const int REPZ_11_138 = 18;
static const int MIN_MATCH = 3;
static const int MAX_MATCH = 258;
static const int MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
static const int MAX_BITS = 15;
static const int D_CODES = 30;
static const int BL_CODES = 19;
static const int LENGTH_CODES = 29;
static const int LITERALS = 256;
static const int L_CODES = (LITERALS + 1 + LENGTH_CODES);
static const int HEAP_SIZE = (2 * L_CODES + 1);
static const int END_BLOCK = 256;
InputStream _input;
OutputStream _output = new OutputStream();
int _status;
/// output still pending
Uint8List _pendingBuffer;
/// size of pending_buf
int _pendingBufferSize;
/// next pending byte to output to the stream
int _pendingOut; // ignore: unused_field
/// nb of bytes in the pending buffer
int _pending;
/// UNKNOWN, BINARY or ASCII
int _dataType;
/// STORED (for zip only) or DEFLATED
int _method; // ignore: unused_field
/// value of flush param for previous deflate call
int _lastFlush; // ignore: unused_field
/// LZ77 window size (32K by default)
int _windowSize;
/// log2(w_size) (8..16)
int _windowBits;
/// w_size - 1
int _windowMask;
/// Sliding window. Input bytes are read into the second half of the window,
/// and move to the first half later to keep a dictionary of at least wSize
/// bytes. With this organization, matches are limited to a distance of
/// wSize-MAX_MATCH bytes, but this ensures that IO is always
/// performed with a length multiple of the block size. Also, it limits
/// the window size to 64K, which is quite useful on MSDOS.
/// To do: use the user input buffer as sliding window.
Uint8List _window;
/// Actual size of window: 2*wSize, except when the user input buffer
/// is directly used as sliding window.
int _actualWindowSize;
/// Link to older string with same hash index. To limit the size of this
/// array to 64K, this link is maintained only for the last 32K strings.
/// An index in this array is thus a window index modulo 32K.
Uint16List _prev;
/// Heads of the hash chains or NIL.
Uint16List _head;
/// hash index of string to be inserted
int _insertHash;
/// number of elements in hash table
int _hashSize;
/// log2(hash_size)
int _hashBits;
/// hash_size-1
int _hashMask;
/// Number of bits by which ins_h must be shifted at each input
/// step. It must be such that after MIN_MATCH steps, the oldest
/// byte no longer takes part in the hash key, that is:
/// hash_shift * MIN_MATCH >= hash_bits
int _hashShift;
/// Window position at the beginning of the current output block. Gets
/// negative when the window is moved backwards.
int _blockStart;
/// length of best match
int _matchLength;
/// previous match
int _prevMatch;
/// set if previous match exists
int _matchAvailable;
/// start of string to insert
int _strStart;
/// start of matching string
int _matchStart = 0;
/// number of valid bytes ahead in window
int _lookAhead;
/// Length of the best match at previous step. Matches not greater than this
/// are discarded. This is used in the lazy match evaluation.
int _prevLength;
// Insert new strings in the hash table only if the match length is not
// greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.
/// compression level (1..9)
int _level;
/// favor or force Huffman coding
int _strategy;
/// literal and length tree
Uint16List _dynamicLengthTree;
/// distance tree
Uint16List _dynamicDistTree;
/// Huffman tree for bit lengths
Uint16List _bitLengthTree;
/// desc for literal tree
_HuffmanTree _lDesc = new _HuffmanTree();
/// desc for distance tree
_HuffmanTree _dDesc = new _HuffmanTree();
/// desc for bit length tree
_HuffmanTree _blDesc = new _HuffmanTree();
/// number of codes at each bit length for an optimal tree
Uint16List _bitLengthCount = new Uint16List(MAX_BITS + 1);
/// heap used to build the Huffman trees
Uint32List _heap = new Uint32List(2 * L_CODES + 1);
/// number of elements in the heap
int _heapLen;
/// element of largest frequency
int _heapMax;
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
// The same heap array is used to build all trees.
/// Depth of each subtree used as tie breaker for trees of equal frequency
Uint8List _depth = new Uint8List(2 * L_CODES + 1);
/// index for literals or lengths
int _lbuf;
/// Size of match buffer for literals/lengths. There are 4 reasons for
/// limiting lit_bufsize to 64K:
/// - frequencies can be kept in 16 bit counters
/// - if compression is not successful for the first block, all input
/// data is still in the window so we can still emit a stored block even
/// when input comes from standard input. (This can also be done for
/// all blocks if lit_bufsize is not greater than 32K.)
/// - if compression is not successful for a file smaller than 64K, we can
/// even emit a stored file instead of a stored block (saving 5 bytes).
/// This is applicable only for zip (not gzip or zlib).
/// - creating new Huffman trees less frequently may not provide fast
/// adaptation to changes in the input data statistics. (Take for
/// example a binary file with poorly compressible code followed by
/// a highly compressible string table.) Smaller buffer sizes give
/// fast adaptation but have of course the overhead of transmitting
/// trees more frequently.
/// - I can't count above 4
int _litBufferSize;
/// running index in l_buf
int _lastLit;
// Buffer for distances. To simplify the code, d_buf and l_buf have
// the same number of elements. To use different lengths, an extra flag
// array would be necessary.
/// index of pendig_buf
int _dbuf;
/// bit length of current block with optimal trees
int _optimalLen;
/// bit length of current block with static trees
int _staticLen;
/// number of string matches in current block
int _matches;
/// bit length of EOB code for last block
int _lastEOBLen;
/// Output buffer. bits are inserted starting at the bottom (least
/// significant bits).
int _bitBuffer;
/// Number of valid bits in bi_buf. All bits above the last valid bit
/// are always zero.
int _numValidBits;
}
class _DeflaterConfig {
/// Use a faster search when the previous match is longer than this
int goodLength;
/// Attempt to find a better match only when the current match is strictly
/// smaller than this value. This mechanism is used only for compression
/// levels >= 4.
int maxLazy;
/// Stop searching when current match exceeds this
int niceLength;
/// To speed up deflation, hash chains are never searched beyond this
/// length. A higher limit improves compression ratio but degrades the speed.
int maxChain;
/// STORED, FAST, or SLOW
int function;
_DeflaterConfig(this.goodLength, this.maxLazy, this.niceLength,
this.maxChain, this.function);
}
class _HuffmanTree {
static const int MAX_BITS = 15;
static const int BL_CODES = 19;
static const int D_CODES = 30;
static const int LITERALS = 256;
static const int LENGTH_CODES = 29;
static const int L_CODES = (LITERALS + 1 + LENGTH_CODES);
static const int HEAP_SIZE = (2 * L_CODES + 1);
/// Bit length codes must not exceed MAX_BL_BITS bits
static const int MAX_BL_BITS = 7;
/// end of block literal code
static const int END_BLOCK = 256;
/// repeat previous bit length 3-6 times (2 bits of repeat count)
static const int REP_3_6 = 16;
/// repeat a zero length 3-10 times (3 bits of repeat count)
static const int REPZ_3_10 = 17;
/// repeat a zero length 11-138 times (7 bits of repeat count)
static const int REPZ_11_138 = 18;
/// extra bits for each length code
static const List<int> EXTRA_L_BITS = const [
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5, 0];
/// extra bits for each distance code
static const List<int> EXTRA_D_BITS = const [
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10,
11, 11, 12, 12, 13, 13];
/// extra bits for each bit length code
static const List<int> EXTRA_BL_BITS = const [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7];
static const List<int> BL_ORDER = const [
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15];
/// The lengths of the bit length codes are sent in order of decreasing
/// probability, to avoid transmitting the lengths for unused bit
/// length codes.
static const int BUF_SIZE = 8 * 2;
/// see definition of array dist_code below
static const int DIST_CODE_LEN = 512;
static const List<int> _DIST_CODE = const [
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18,
18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22,
22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29];
static const List<int> LENGTH_CODE = const [
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13,
13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16,
16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19,
19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
28];
static const List<int> BASE_LENGTH = const [
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 0];
static const List<int> BASE_DIST = const [
0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512,
768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576];
/// the dynamic tree
Uint16List dynamicTree;
/// largest code with non zero frequency
int maxCode;
/// the corresponding static tree
_StaticTree staticDesc;
/**
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
void _genBitlen(Deflate s) {
Uint16List tree = dynamicTree;
List<int> stree = staticDesc.staticTree;
List<int> extra = staticDesc.extraBits;
int base_Renamed = staticDesc.extraBase;
int max_length = staticDesc.maxLength;
int h; // heap index
int n, m; // iterate over the tree elements
int bits; // bit length
int xbits; // extra bits
int f; // frequency
int overflow = 0; // number of elements with bit length too large
for (bits = 0; bits <= MAX_BITS; bits++) {
s._bitLengthCount[bits] = 0;
}
// In a first pass, compute the optimal bit lengths (which may
// overflow in the case of the bit length tree).
tree[s._heap[s._heapMax] * 2 + 1] = 0; // root of the heap
for (h = s._heapMax + 1; h < HEAP_SIZE; h++) {
n = s._heap[h];
bits = tree[tree[n * 2 + 1] * 2 + 1] + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n * 2 + 1] = bits;
// We overwrite tree[n*2+1] which is no longer needed
if (n > maxCode) {
continue; // not a leaf node
}
s._bitLengthCount[bits]++;
xbits = 0;
if (n >= base_Renamed) {
xbits = extra[n - base_Renamed];
}
f = tree[n * 2];
s._optimalLen += f * (bits + xbits);
if (stree != null) {
s._staticLen += f * (stree[n * 2 + 1] + xbits);
}
}
if (overflow == 0) {
return ;
}
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do {
bits = max_length - 1;
while (s._bitLengthCount[bits] == 0) {
bits--;
}
s._bitLengthCount[bits]--; // move one leaf down the tree
// move one overflow item as its brother
s._bitLengthCount[bits + 1] = (s._bitLengthCount[bits + 1] + 2);
s._bitLengthCount[max_length]--;
// The brother of the overflow item also moves one step up,
// but this does not affect bl_count[max_length]
overflow -= 2;
} while (overflow > 0);
for (bits = max_length; bits != 0; bits--) {
n = s._bitLengthCount[bits];
while (n != 0) {
m = s._heap[--h];
if (m > maxCode) {
continue;
}
if (tree[m * 2 + 1] != bits) {
s._optimalLen = (s._optimalLen + (bits - tree[m * 2 + 1]) * tree[m * 2]);
tree[m * 2 + 1] = bits;
}
n--;
}
}
}
/**
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
void _buildTree(Deflate s) {
Uint16List tree = dynamicTree;
List<int> stree = staticDesc.staticTree;
int elems = staticDesc.numElements;
int n, m; // iterate over heap elements
int max_code = - 1; // largest code with non zero frequency
int node; // new node being created
// Construct the initial heap, with least frequent element in
// heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
// heap[0] is not used.
s._heapLen = 0;
s._heapMax = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n * 2] != 0) {
s._heap[++s._heapLen] = max_code = n;
s._depth[n] = 0;
} else {
tree[n * 2 + 1] = 0;
}
}
// The pkzip format requires that at least one distance code exists,
// and that at least one bit should be sent even if there is only one
// possible code. So to avoid special checks later on we force at least
// two codes of non zero frequency.
while (s._heapLen < 2) {
node = s._heap[++s._heapLen] = (max_code < 2?++max_code:0);
tree[node * 2] = 1;
s._depth[node] = 0;
s._optimalLen--;
if (stree != null) {
s._staticLen -= stree[node * 2 + 1];
}
// node is 0 or 1 so it does not have extra bits
}
this.maxCode = max_code;
// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
// establish sub-heaps of increasing lengths:
for (n = s._heapLen ~/ 2; n >= 1; n--) {
s._pqdownheap(tree, n);
}
// Construct the Huffman tree by repeatedly combining the least two
// frequent nodes.
node = elems; // next node of the tree
do {
// n = node of least frequency
n = s._heap[1];
s._heap[1] = s._heap[s._heapLen--];
s._pqdownheap(tree, 1);
m = s._heap[1]; // m = node of next least frequency
s._heap[--s._heapMax] = n; // keep the nodes sorted by frequency
s._heap[--s._heapMax] = m;
// Create a new node father of n and m
tree[node * 2] = (tree[n * 2] + tree[m * 2]);
s._depth[node] = (_max(s._depth[n], s._depth[m]) + 1);
tree[n * 2 + 1] = tree[m * 2 + 1] = node;
// and insert the new node in the heap
s._heap[1] = node++;
s._pqdownheap(tree, 1);
} while (s._heapLen >= 2);
s._heap[--s._heapMax] = s._heap[1];
// At this point, the fields freq and dad are set. We can now
// generate the bit lengths.
_genBitlen(s);
// The field len is now set, we can generate the bit codes
_genCodes(tree, max_code, s._bitLengthCount);
}
static int _max(int a, int b) => a > b ? a : b;
/**
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
static void _genCodes(Uint16List tree, int max_code, Uint16List bl_count) {
Uint16List next_code = new Uint16List(MAX_BITS + 1);
int code = 0; // running code value
int bits; // bit index
int n; // code index
// The distribution counts are first used to generate the code values
// without bit reversal.
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = ((code + bl_count[bits - 1]) << 1);
}
for (n = 0; n <= max_code; n++) {
int len = tree[n * 2 + 1];
if (len == 0) {
continue;
}
// Now reverse the bits
tree[n * 2] = (_reverseBits(next_code[len]++, len));
}
}
/**
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
static int _reverseBits(int code, int len) {
int res = 0;
do {
res |= code & 1;
code = _rshift(code, 1);
res <<= 1;
} while (--len > 0);
return _rshift(res, 1);
}
/**
* Mapping from a distance to a distance code. dist is the distance - 1 and
* must not have side effects. _dist_code[256] and _dist_code[257] are never
* used.
*/
static int _dCode(int dist) {
return ((dist) < 256 ? _DIST_CODE[dist] :
_DIST_CODE[256 + (_rshift((dist), 7))]);
}
}
class _StaticTree {
static const int MAX_BITS = 15;
static const int BL_CODES = 19;
static const int D_CODES = 30;
static const int LITERALS = 256;
static const int LENGTH_CODES = 29;
static const int L_CODES = (LITERALS + 1 + LENGTH_CODES);
// Bit length codes must not exceed MAX_BL_BITS bits
static const int MAX_BL_BITS = 7;
static const List<int> STATIC_LTREE = const [
12, 8, 140, 8, 76, 8, 204, 8, 44, 8, 172, 8, 108, 8, 236, 8, 28, 8, 156,
8, 92, 8, 220, 8, 60, 8, 188, 8, 124, 8, 252, 8, 2, 8, 130, 8, 66, 8, 194,
8, 34, 8, 162, 8, 98, 8, 226, 8, 18, 8, 146, 8, 82, 8, 210, 8, 50, 8, 178,
8, 114, 8, 242, 8, 10, 8, 138, 8, 74, 8, 202, 8, 42, 8, 170, 8, 106, 8,
234, 8, 26, 8, 154, 8, 90, 8, 218, 8, 58, 8, 186, 8, 122, 8, 250, 8, 6, 8,
134, 8, 70, 8, 198, 8, 38, 8, 166, 8, 102, 8, 230, 8, 22, 8, 150, 8, 86,
8, 214, 8, 54, 8, 182, 8, 118, 8, 246, 8, 14, 8, 142, 8, 78, 8, 206, 8,
46, 8, 174, 8, 110, 8, 238, 8, 30, 8, 158, 8, 94, 8, 222, 8, 62, 8, 190,
8, 126, 8, 254, 8, 1, 8, 129, 8, 65, 8, 193, 8, 33, 8, 161, 8, 97, 8,
225, 8, 17, 8, 145, 8, 81, 8, 209, 8, 49, 8, 177, 8, 113, 8, 241, 8, 9,
8, 137, 8, 73, 8, 201, 8, 41, 8, 169, 8, 105, 8, 233, 8, 25, 8, 153, 8,
89, 8, 217, 8, 57, 8, 185, 8, 121, 8, 249, 8, 5, 8, 133, 8, 69, 8, 197,
8, 37, 8, 165, 8, 101, 8, 229, 8, 21, 8, 149, 8, 85, 8, 213, 8, 53, 8,
181, 8, 117, 8, 245, 8, 13, 8, 141, 8, 77, 8, 205, 8, 45, 8, 173, 8, 109,
8, 237, 8, 29, 8, 157, 8, 93, 8, 221, 8, 61, 8, 189, 8, 125, 8, 253, 8,
19, 9, 275, 9, 147, 9, 403, 9, 83, 9, 339, 9, 211, 9, 467, 9, 51, 9, 307,
9, 179, 9, 435, 9, 115, 9, 371, 9, 243, 9, 499, 9, 11, 9, 267, 9, 139, 9,
395, 9, 75, 9, 331, 9, 203, 9, 459, 9, 43, 9, 299, 9, 171, 9, 427, 9, 107,
9, 363, 9, 235, 9, 491, 9, 27, 9, 283, 9, 155, 9, 411, 9, 91, 9, 347, 9,
219, 9, 475, 9, 59, 9, 315, 9, 187, 9, 443, 9, 123, 9, 379, 9, 251, 9,
507, 9, 7, 9, 263, 9, 135, 9, 391, 9, 71, 9, 327, 9, 199, 9, 455, 9, 39,
9, 295, 9, 167, 9, 423, 9, 103, 9, 359, 9, 231, 9, 487, 9, 23, 9, 279, 9,
151, 9, 407, 9, 87, 9, 343, 9, 215, 9, 471, 9, 55, 9, 311, 9, 183, 9, 439,
9, 119, 9, 375, 9, 247, 9, 503, 9, 15, 9, 271, 9, 143, 9, 399, 9, 79, 9,
335, 9, 207, 9, 463, 9, 47, 9, 303, 9, 175, 9, 431, 9, 111, 9, 367, 9,
239, 9, 495, 9, 31, 9, 287, 9, 159, 9, 415, 9, 95, 9, 351, 9, 223, 9, 479,
9, 63, 9, 319, 9, 191, 9, 447, 9, 127, 9, 383, 9, 255, 9, 511, 9, 0, 7,
64, 7, 32, 7, 96, 7, 16, 7, 80, 7, 48, 7, 112, 7, 8, 7, 72, 7, 40, 7, 104,
7, 24, 7, 88, 7, 56, 7, 120, 7, 4, 7, 68, 7, 36, 7, 100, 7, 20, 7, 84, 7,
52, 7, 116, 7, 3, 8, 131, 8, 67, 8, 195, 8, 35, 8, 163, 8, 99, 8, 227, 8];
static const List<int> STATIC_DTREE = const [
0, 5, 16, 5, 8, 5, 24, 5, 4, 5, 20, 5, 12, 5, 28, 5, 2, 5, 18, 5, 10, 5,
26, 5, 6, 5, 22, 5, 14, 5, 30, 5, 1, 5, 17, 5, 9, 5, 25, 5, 5, 5, 21, 5,
13, 5, 29, 5, 3, 5, 19, 5, 11, 5, 27, 5, 7, 5, 23, 5];
static _StaticTree staticLDesc =
new _StaticTree(STATIC_LTREE, _HuffmanTree.EXTRA_L_BITS, LITERALS + 1,
L_CODES, MAX_BITS);
static _StaticTree staticDDesc =
new _StaticTree(STATIC_DTREE, _HuffmanTree.EXTRA_D_BITS, 0, D_CODES, MAX_BITS);
static _StaticTree staticBlDesc =
new _StaticTree(null, _HuffmanTree.EXTRA_BL_BITS, 0, BL_CODES, MAX_BL_BITS);
List<int> staticTree; // static tree or null
List<int> extraBits; // extra bits for each code or null
int extraBase; // base index for extra_bits
int numElements; // max number of elements in the tree
int maxLength; // max bit length for the codes
_StaticTree(this.staticTree, this.extraBits, this.extraBase,
this.numElements, this.maxLength);
}
/**
* Performs an unsigned bitwise right shift with the specified number
*/
int _rshift(int number, int bits) {
if ( number >= 0) {
return number >> bits;
} else {
int nbits = (~bits + 0x10000) & 0xffff;
return (number >> bits) + (2 << nbits);
}
}