blob: b20de45e9d81616631830c65f131b5316f4b9dea [file] [log] [blame]
/* md5.c - an implementation of the MD5 algorithm, based on RFC 1321.
*
* Copyright: 2007-2012 Aleksey Kravchenko <rhash.admin@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk!
*/
#include <string.h>
#include "byte_order.h"
#include "md5.h"
/**
* Initialize context before calculaing hash.
*
* @param ctx context to initialize
*/
void rhash_md5_init(md5_ctx *ctx)
{
ctx->length = 0;
/* initialize state */
ctx->hash[0] = 0x67452301;
ctx->hash[1] = 0xefcdab89;
ctx->hash[2] = 0x98badcfe;
ctx->hash[3] = 0x10325476;
}
/* First, define four auxiliary functions that each take as input
* three 32-bit words and returns a 32-bit word.*/
/* F(x,y,z) = ((y XOR z) AND x) XOR z - is faster then original version */
#define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define MD5_H(x, y, z) ((x) ^ (y) ^ (z))
#define MD5_I(x, y, z) ((y) ^ ((x) | (~z)))
/* transformations for rounds 1, 2, 3, and 4. */
#define MD5_ROUND1(a, b, c, d, x, s, ac) { \
(a) += MD5_F((b), (c), (d)) + (x) + (ac); \
(a) = ROTL32((a), (s)); \
(a) += (b); \
}
#define MD5_ROUND2(a, b, c, d, x, s, ac) { \
(a) += MD5_G((b), (c), (d)) + (x) + (ac); \
(a) = ROTL32((a), (s)); \
(a) += (b); \
}
#define MD5_ROUND3(a, b, c, d, x, s, ac) { \
(a) += MD5_H((b), (c), (d)) + (x) + (ac); \
(a) = ROTL32((a), (s)); \
(a) += (b); \
}
#define MD5_ROUND4(a, b, c, d, x, s, ac) { \
(a) += MD5_I((b), (c), (d)) + (x) + (ac); \
(a) = ROTL32((a), (s)); \
(a) += (b); \
}
/**
* The core transformation. Process a 512-bit block.
* The function has been taken from RFC 1321 with little changes.
*
* @param state algorithm state
* @param x the message block to process
*/
static void rhash_md5_process_block(unsigned state[4], const unsigned* x)
{
register unsigned a, b, c, d;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD5_ROUND1(a, b, c, d, x[ 0], 7, 0xd76aa478);
MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756);
MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db);
MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee);
MD5_ROUND1(a, b, c, d, x[ 4], 7, 0xf57c0faf);
MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a);
MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613);
MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501);
MD5_ROUND1(a, b, c, d, x[ 8], 7, 0x698098d8);
MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af);
MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1);
MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be);
MD5_ROUND1(a, b, c, d, x[12], 7, 0x6b901122);
MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193);
MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e);
MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821);
MD5_ROUND2(a, b, c, d, x[ 1], 5, 0xf61e2562);
MD5_ROUND2(d, a, b, c, x[ 6], 9, 0xc040b340);
MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51);
MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa);
MD5_ROUND2(a, b, c, d, x[ 5], 5, 0xd62f105d);
MD5_ROUND2(d, a, b, c, x[10], 9, 0x2441453);
MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681);
MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8);
MD5_ROUND2(a, b, c, d, x[ 9], 5, 0x21e1cde6);
MD5_ROUND2(d, a, b, c, x[14], 9, 0xc33707d6);
MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87);
MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed);
MD5_ROUND2(a, b, c, d, x[13], 5, 0xa9e3e905);
MD5_ROUND2(d, a, b, c, x[ 2], 9, 0xfcefa3f8);
MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9);
MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
MD5_ROUND3(a, b, c, d, x[ 5], 4, 0xfffa3942);
MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681);
MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122);
MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c);
MD5_ROUND3(a, b, c, d, x[ 1], 4, 0xa4beea44);
MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9);
MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60);
MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70);
MD5_ROUND3(a, b, c, d, x[13], 4, 0x289b7ec6);
MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa);
MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085);
MD5_ROUND3(b, c, d, a, x[ 6], 23, 0x4881d05);
MD5_ROUND3(a, b, c, d, x[ 9], 4, 0xd9d4d039);
MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5);
MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8);
MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665);
MD5_ROUND4(a, b, c, d, x[ 0], 6, 0xf4292244);
MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97);
MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7);
MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039);
MD5_ROUND4(a, b, c, d, x[12], 6, 0x655b59c3);
MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92);
MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d);
MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1);
MD5_ROUND4(a, b, c, d, x[ 8], 6, 0x6fa87e4f);
MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314);
MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1);
MD5_ROUND4(a, b, c, d, x[ 4], 6, 0xf7537e82);
MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235);
MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb);
MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/**
* Calculate message hash.
* Can be called repeatedly with chunks of the message to be hashed.
*
* @param ctx the algorithm context containing current hashing state
* @param msg message chunk
* @param size length of the message chunk
*/
void rhash_md5_update(md5_ctx *ctx, const unsigned char* msg, size_t size)
{
unsigned index = (unsigned)ctx->length & 63;
ctx->length += size;
/* fill partial block */
if (index) {
unsigned left = md5_block_size - index;
le32_copy((char*)ctx->message, index, msg, (size < left ? size : left));
if (size < left) return;
/* process partial block */
rhash_md5_process_block(ctx->hash, ctx->message);
msg += left;
size -= left;
}
while (size >= md5_block_size) {
unsigned* aligned_message_block;
if (IS_LITTLE_ENDIAN && IS_ALIGNED_32(msg)) {
/* the most common case is processing a 32-bit aligned message
on a little-endian CPU without copying it */
aligned_message_block = (unsigned*)msg;
} else {
le32_copy(ctx->message, 0, msg, md5_block_size);
aligned_message_block = ctx->message;
}
rhash_md5_process_block(ctx->hash, aligned_message_block);
msg += md5_block_size;
size -= md5_block_size;
}
if (size) {
/* save leftovers */
le32_copy(ctx->message, 0, msg, size);
}
}
/**
* Store calculated hash into the given array.
*
* @param ctx the algorithm context containing current hashing state
* @param result calculated hash in binary form
*/
void rhash_md5_final(md5_ctx *ctx, unsigned char* result)
{
unsigned index = ((unsigned)ctx->length & 63) >> 2;
unsigned shift = ((unsigned)ctx->length & 3) * 8;
/* pad message and run for last block */
/* append the byte 0x80 to the message */
ctx->message[index] &= ~(0xFFFFFFFFu << shift);
ctx->message[index++] ^= 0x80u << shift;
/* if no room left in the message to store 64-bit message length */
if (index > 14) {
/* then fill the rest with zeros and process it */
while (index < 16) {
ctx->message[index++] = 0;
}
rhash_md5_process_block(ctx->hash, ctx->message);
index = 0;
}
while (index < 14) {
ctx->message[index++] = 0;
}
ctx->message[14] = (unsigned)(ctx->length << 3);
ctx->message[15] = (unsigned)(ctx->length >> 29);
rhash_md5_process_block(ctx->hash, ctx->message);
if (result) le32_copy(result, 0, &ctx->hash, 16);
}