blob: e9e3beee242ca15ae0bf6cd973704473e281af93 [file] [log] [blame]
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#include "cmCTestBinPacker.h"
#include <algorithm>
#include <utility>
bool cmCTestBinPackerAllocation::operator==(
const cmCTestBinPackerAllocation& other) const
{
return this->ProcessIndex == other.ProcessIndex &&
this->SlotsNeeded == other.SlotsNeeded && this->Id == other.Id;
}
bool cmCTestBinPackerAllocation::operator!=(
const cmCTestBinPackerAllocation& other) const
{
return !(*this == other);
}
namespace {
/*
* The following algorithm is used to do two things:
*
* 1) Determine if a test's hardware requirements can fit within the hardware
* present on the system, and
* 2) Do the actual allocation
*
* This algorithm performs a recursive search, looking for a bin pack that will
* fit the specified requirements. It has a template to specify different
* optimization strategies. If it ever runs out of room, it backtracks as far
* down the stack as it needs to and tries a different combination until no
* more combinations can be tried.
*/
template <typename AllocationStrategy>
static bool AllocateCTestHardware(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
const std::vector<std::string>& hardwareSorted, std::size_t currentIndex,
std::vector<cmCTestBinPackerAllocation*>& allocations)
{
// Iterate through all large enough resources until we find a solution
std::size_t hardwareIndex = 0;
while (hardwareIndex < hardwareSorted.size()) {
auto const& resource = hardware.at(hardwareSorted[hardwareIndex]);
if (resource.Free() >=
static_cast<unsigned int>(allocations[currentIndex]->SlotsNeeded)) {
// Preemptively allocate the resource
allocations[currentIndex]->Id = hardwareSorted[hardwareIndex];
if (currentIndex + 1 >= allocations.size()) {
// We have a solution
return true;
}
// Move the resource up the list until it is sorted again
auto hardware2 = hardware;
auto hardwareSorted2 = hardwareSorted;
hardware2[hardwareSorted2[hardwareIndex]].Locked +=
allocations[currentIndex]->SlotsNeeded;
AllocationStrategy::IncrementalSort(hardware2, hardwareSorted2,
hardwareIndex);
// Recurse one level deeper
if (AllocateCTestHardware<AllocationStrategy>(
hardware2, hardwareSorted2, currentIndex + 1, allocations)) {
return true;
}
}
// No solution found here, deallocate the resource and try the next one
allocations[currentIndex]->Id.clear();
auto freeSlots = hardware.at(hardwareSorted.at(hardwareIndex)).Free();
do {
++hardwareIndex;
} while (hardwareIndex < hardwareSorted.size() &&
hardware.at(hardwareSorted.at(hardwareIndex)).Free() ==
freeSlots);
}
// No solution was found
return false;
}
template <typename AllocationStrategy>
static bool AllocateCTestHardware(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<cmCTestBinPackerAllocation>& allocations)
{
// Sort the resource requirements in descending order by slots needed
std::vector<cmCTestBinPackerAllocation*> allocationsPtr;
allocationsPtr.reserve(allocations.size());
for (auto& allocation : allocations) {
allocationsPtr.push_back(&allocation);
}
std::stable_sort(
allocationsPtr.rbegin(), allocationsPtr.rend(),
[](cmCTestBinPackerAllocation* a1, cmCTestBinPackerAllocation* a2) {
return a1->SlotsNeeded < a2->SlotsNeeded;
});
// Sort the resources according to sort strategy
std::vector<std::string> hardwareSorted;
hardwareSorted.reserve(hardware.size());
for (auto const& hw : hardware) {
hardwareSorted.push_back(hw.first);
}
AllocationStrategy::InitialSort(hardware, hardwareSorted);
// Do the actual allocation
return AllocateCTestHardware<AllocationStrategy>(
hardware, hardwareSorted, std::size_t(0), allocationsPtr);
}
class RoundRobinAllocationStrategy
{
public:
static void InitialSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted);
static void IncrementalSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted, std::size_t lastAllocatedIndex);
};
void RoundRobinAllocationStrategy::InitialSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted)
{
std::stable_sort(
hardwareSorted.rbegin(), hardwareSorted.rend(),
[&hardware](const std::string& id1, const std::string& id2) {
return hardware.at(id1).Free() < hardware.at(id2).Free();
});
}
void RoundRobinAllocationStrategy::IncrementalSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted, std::size_t lastAllocatedIndex)
{
auto tmp = hardwareSorted[lastAllocatedIndex];
std::size_t i = lastAllocatedIndex;
while (i < hardwareSorted.size() - 1 &&
hardware.at(hardwareSorted[i + 1]).Free() > hardware.at(tmp).Free()) {
hardwareSorted[i] = hardwareSorted[i + 1];
++i;
}
hardwareSorted[i] = tmp;
}
class BlockAllocationStrategy
{
public:
static void InitialSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted);
static void IncrementalSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted, std::size_t lastAllocatedIndex);
};
void BlockAllocationStrategy::InitialSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<std::string>& hardwareSorted)
{
std::stable_sort(
hardwareSorted.rbegin(), hardwareSorted.rend(),
[&hardware](const std::string& id1, const std::string& id2) {
return hardware.at(id1).Free() < hardware.at(id2).Free();
});
}
void BlockAllocationStrategy::IncrementalSort(
const std::map<std::string, cmCTestHardwareAllocator::Resource>&,
std::vector<std::string>& hardwareSorted, std::size_t lastAllocatedIndex)
{
auto tmp = hardwareSorted[lastAllocatedIndex];
std::size_t i = lastAllocatedIndex;
while (i > 0) {
hardwareSorted[i] = hardwareSorted[i - 1];
--i;
}
hardwareSorted[i] = tmp;
}
}
bool cmAllocateCTestHardwareRoundRobin(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<cmCTestBinPackerAllocation>& allocations)
{
return AllocateCTestHardware<RoundRobinAllocationStrategy>(hardware,
allocations);
}
bool cmAllocateCTestHardwareBlock(
const std::map<std::string, cmCTestHardwareAllocator::Resource>& hardware,
std::vector<cmCTestBinPackerAllocation>& allocations)
{
return AllocateCTestHardware<BlockAllocationStrategy>(hardware, allocations);
}