blob: ce714fc735da29e084248249a99c03dac48263fb [file] [log] [blame]
//===-- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
#ifdef CAPSTONE_HAS_ARM
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <capstone/platform.h>
#include "ARMAddressingModes.h"
#include "ARMBaseInfo.h"
#include "../../MCFixedLenDisassembler.h"
#include "../../MCInst.h"
#include "../../MCInstrDesc.h"
#include "../../MCRegisterInfo.h"
#include "../../LEB128.h"
#include "../../MCDisassembler.h"
#include "../../cs_priv.h"
#include "../../utils.h"
#include "ARMDisassembler.h"
//#define GET_REGINFO_ENUM
//#include "X86GenRegisterInfo.inc"
#define GET_SUBTARGETINFO_ENUM
#include "ARMGenSubtargetInfo.inc"
#define GET_INSTRINFO_MC_DESC
#include "ARMGenInstrInfo.inc"
#define GET_INSTRINFO_ENUM
#include "ARMGenInstrInfo.inc"
static bool ITStatus_push_back(ARM_ITStatus *it, char v)
{
if (it->size >= sizeof(it->ITStates)) {
// TODO: consider warning user.
it->size = 0;
}
it->ITStates[it->size] = v;
it->size++;
return true;
}
// Returns true if the current instruction is in an IT block
static bool ITStatus_instrInITBlock(ARM_ITStatus *it)
{
//return !ITStates.empty();
return (it->size > 0);
}
// Returns true if current instruction is the last instruction in an IT block
static bool ITStatus_instrLastInITBlock(ARM_ITStatus *it)
{
return (it->size == 1);
}
// Handles the condition code status of instructions in IT blocks
// Returns the condition code for instruction in IT block
static unsigned ITStatus_getITCC(ARM_ITStatus *it)
{
unsigned CC = ARMCC_AL;
if (ITStatus_instrInITBlock(it))
//CC = ITStates.back();
CC = it->ITStates[it->size-1];
return CC;
}
// Advances the IT block state to the next T or E
static void ITStatus_advanceITState(ARM_ITStatus *it)
{
//ITStates.pop_back();
it->size--;
}
// Called when decoding an IT instruction. Sets the IT state for the following
// instructions that for the IT block. Firstcond and Mask correspond to the
// fields in the IT instruction encoding.
static void ITStatus_setITState(ARM_ITStatus *it, char Firstcond, char Mask)
{
// (3 - the number of trailing zeros) is the number of then / else.
unsigned CondBit0 = Firstcond & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
unsigned char CCBits = (unsigned char)Firstcond & 0xf;
unsigned Pos;
//assert(NumTZ <= 3 && "Invalid IT mask!");
// push condition codes onto the stack the correct order for the pops
for (Pos = NumTZ+1; Pos <= 3; ++Pos) {
bool T = ((Mask >> Pos) & 1) == (int)CondBit0;
if (T)
ITStatus_push_back(it, CCBits);
else
ITStatus_push_back(it, CCBits ^ 1);
}
ITStatus_push_back(it, CCBits);
}
/// ThumbDisassembler - Thumb disassembler for all Thumb platforms.
static bool Check(DecodeStatus *Out, DecodeStatus In)
{
switch (In) {
case MCDisassembler_Success:
// Out stays the same.
return true;
case MCDisassembler_SoftFail:
*Out = In;
return true;
case MCDisassembler_Fail:
*Out = In;
return false;
default: // never reached
return false;
}
}
// Forward declare these because the autogenerated code will reference them.
// Definitions are further down.
static DecodeStatus DecodeGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeGPRnopcRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address, const void *Decoder);
static DecodeStatus DecodeGPRwithAPSRRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address, const void *Decoder);
static DecodeStatus DecodetGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodetcGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecoderGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeGPRPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDPR_8RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDPR_VFP2RegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address, const void *Decoder);
static DecodeStatus DecodeQPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDPairSpacedRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address, const void *Decoder);
static DecodeStatus DecodePredicateOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeCCOutOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeRegListOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSPRRegListOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDPRRegListOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeBitfieldMaskOperand(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeCopMemInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeAddrMode2IdxInstruction(MCInst *Inst,
unsigned Insn, uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSORegMemOperand(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeAddrMode3Instruction(MCInst *Inst,unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSORegImmOperand(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSORegRegOperand(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeMemMultipleWritebackInstruction(MCInst * Inst,
unsigned Insn, uint64_t Adddress, const void *Decoder);
static DecodeStatus DecodeT2MOVTWInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeArmMOVTWInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSMLAInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeCPSInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2CPSInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeAddrModeImm12Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeAddrMode5Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeAddrMode7Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2BInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeBranchImmInstruction(MCInst *Inst,unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeAddrMode6Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLDST1Instruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLDST2Instruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLDST3Instruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLDST4Instruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLDInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVSTInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD1DupInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD2DupInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD3DupInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD4DupInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeNEONModImmInstruction(MCInst *Inst,unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVSHLMaxInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeShiftRight8Imm(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeShiftRight16Imm(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeShiftRight32Imm(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeShiftRight64Imm(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeTBLInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodePostIdxReg(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeCoprocessor(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeMemBarrierOption(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeInstSyncBarrierOption(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeMSRMask(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeBankedReg(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDoubleRegLoad(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeDoubleRegStore(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeLDRPreImm(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeLDRPreReg(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSTRPreImm(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSTRPreReg(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD1LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD2LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD3LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVLD4LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVST1LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVST2LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVST3LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVST4LN(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVMOVSRR(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVMOVRRS(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeSwap(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVCVTD(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeVCVTQ(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddSpecialReg(MCInst *Inst, uint16_t Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbBROperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2BROperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbCmpBROperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddrModeRR(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddrModeIS(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddrModePC(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddrModeSP(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2AddrModeSOReg(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2LoadShift(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2LoadImm8(MCInst *Inst, unsigned Insn,
uint64_t Address, const void* Decoder);
static DecodeStatus DecodeT2LoadImm12(MCInst *Inst, unsigned Insn,
uint64_t Address, const void* Decoder);
static DecodeStatus DecodeT2LoadT(MCInst *Inst, unsigned Insn,
uint64_t Address, const void* Decoder);
static DecodeStatus DecodeT2LoadLabel(MCInst *Inst, unsigned Insn,
uint64_t Address, const void* Decoder);
static DecodeStatus DecodeT2Imm8S4(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2AddrModeImm8s4(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2AddrModeImm0_1020s4(MCInst *Inst,unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2Imm8(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2AddrModeImm8(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddSPImm(MCInst *Inst, uint16_t Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbAddSPReg(MCInst *Inst, uint16_t Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbCPS(MCInst *Inst, uint16_t Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeQADDInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbBLXOffset(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2AddrModeImm12(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbTableBranch(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumb2BCCInstruction(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2SOImm(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbBCCTargetOperand(MCInst *Inst,unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeThumbBLTargetOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeIT(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2LDRDPreInstruction(MCInst *Inst,unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2STRDPreInstruction(MCInst *Inst,unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2Adr(MCInst *Inst, uint32_t Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2LdStPre(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeT2ShifterImmOperand(MCInst *Inst, uint32_t Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeLDR(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeMRRC2(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder);
// Hacky: enable all features for disassembler
uint64_t ARM_getFeatureBits(unsigned int mode)
{
uint64_t Bits = (uint64_t)-1; // everything by default
// FIXME: ARM_FeatureVFPOnlySP is conflicting with everything else??
Bits &= (~ARM_FeatureVFPOnlySP);
// FIXME: no Armv8 support?
//Bits -= ARM_HasV7Ops;
//Bits &= ~ARM_FeatureMP;
if ((mode & CS_MODE_V8) == 0)
Bits &= ~ARM_HasV8Ops;
//Bits &= ~ARM_HasV6Ops;
if ((mode & CS_MODE_MCLASS) == 0)
Bits &= (~ARM_FeatureMClass);
// some features are mutually exclusive
if (mode & CS_MODE_THUMB) {
//Bits &= ~ARM_HasV6Ops;
//Bits &= ~ARM_FeatureCRC;
//Bits &= ~ARM_HasV5TEOps;
//Bits &= ~ARM_HasV4TOps;
//Bits &= ~ARM_HasV6T2Ops;
//Bits &= ~ARM_FeatureDB;
//Bits &= ~ARM_FeatureHWDivARM;
//Bits &= ~ARM_FeatureNaClTrap;
//Bits &= ~ARM_FeatureMClass;
// ArmV8
} else { // ARM mode
Bits &= ~ARM_ModeThumb;
Bits &= ~ARM_FeatureThumb2;
}
return Bits;
}
#include "ARMGenDisassemblerTables.inc"
static DecodeStatus DecodePredicateOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
if (Val == 0xF) return MCDisassembler_Fail;
// AL predicate is not allowed on Thumb1 branches.
if (MCInst_getOpcode(Inst) == ARM_tBcc && Val == 0xE)
return MCDisassembler_Fail;
MCOperand_CreateImm0(Inst, Val);
if (Val == ARMCC_AL) {
MCOperand_CreateReg0(Inst, 0);
} else
MCOperand_CreateReg0(Inst, ARM_CPSR);
return MCDisassembler_Success;
}
#define GET_REGINFO_MC_DESC
#include "ARMGenRegisterInfo.inc"
void ARM_init(MCRegisterInfo *MRI)
{
/*
InitMCRegisterInfo(ARMRegDesc, 289,
RA, PC,
ARMMCRegisterClasses, 100,
ARMRegUnitRoots, 77, ARMRegDiffLists, ARMRegStrings,
ARMSubRegIdxLists, 57,
ARMSubRegIdxRanges, ARMRegEncodingTable);
*/
MCRegisterInfo_InitMCRegisterInfo(MRI, ARMRegDesc, 289,
0, 0,
ARMMCRegisterClasses, 100,
0, 0, ARMRegDiffLists, 0,
ARMSubRegIdxLists, 57,
0);
}
// Post-decoding checks
static DecodeStatus checkDecodedInstruction(MCInst *MI,
uint32_t Insn,
DecodeStatus Result)
{
switch (MCInst_getOpcode(MI)) {
case ARM_HVC: {
// HVC is undefined if condition = 0xf otherwise upredictable
// if condition != 0xe
uint32_t Cond = (Insn >> 28) & 0xF;
if (Cond == 0xF)
return MCDisassembler_Fail;
if (Cond != 0xE)
return MCDisassembler_SoftFail;
return Result;
}
default:
return Result;
}
}
static DecodeStatus _ARM_getInstruction(cs_struct *ud, MCInst *MI, const uint8_t *code, size_t code_len,
uint16_t *Size, uint64_t Address)
{
uint32_t insn, i;
DecodeStatus result;
if (code_len < 4)
// not enough data
return MCDisassembler_Fail;
if (MI->flat_insn->detail) {
memset(MI->flat_insn->detail, 0, offsetof(cs_detail, arm)+sizeof(cs_arm));
for (i = 0; i < ARR_SIZE(MI->flat_insn->detail->arm.operands); i++) {
MI->flat_insn->detail->arm.operands[i].vector_index = -1;
MI->flat_insn->detail->arm.operands[i].neon_lane = -1;
}
}
if (MODE_IS_BIG_ENDIAN(ud->mode))
insn = (code[3] << 0) |
(code[2] << 8) |
(code[1] << 16) |
((uint32_t) code[0] << 24);
else
insn = ((uint32_t) code[3] << 24) |
(code[2] << 16) |
(code[1] << 8) |
(code[0] << 0);
// Calling the auto-generated decoder function.
result = decodeInstruction_4(DecoderTableARM32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
result = checkDecodedInstruction(MI, insn, result);
if (result != MCDisassembler_Fail)
*Size = 4;
return result;
}
// VFP and NEON instructions, similarly, are shared between ARM
// and Thumb modes.
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableVFP32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableVFPV832, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableNEONData32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, NULL))
return MCDisassembler_Fail;
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableNEONLoadStore32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, NULL))
return MCDisassembler_Fail;
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableNEONDup32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
// Add a fake predicate operand, because we share these instruction
// definitions with Thumb2 where these instructions are predicable.
if (!DecodePredicateOperand(MI, 0xE, Address, NULL))
return MCDisassembler_Fail;
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTablev8NEON32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTablev8Crypto32, MI, insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
*Size = 0;
return MCDisassembler_Fail;
}
// Thumb1 instructions don't have explicit S bits. Rather, they
// implicitly set CPSR. Since it's not represented in the encoding, the
// auto-generated decoder won't inject the CPSR operand. We need to fix
// that as a post-pass.
static void AddThumb1SBit(MCInst *MI, bool InITBlock)
{
const MCOperandInfo *OpInfo = ARMInsts[MCInst_getOpcode(MI)].OpInfo;
unsigned short NumOps = ARMInsts[MCInst_getOpcode(MI)].NumOperands;
unsigned i;
for (i = 0; i < NumOps; ++i) {
if (i == MCInst_getNumOperands(MI)) break;
if (MCOperandInfo_isOptionalDef(&OpInfo[i]) && OpInfo[i].RegClass == ARM_CCRRegClassID) {
if (i > 0 && MCOperandInfo_isPredicate(&OpInfo[i-1])) continue;
MCInst_insert0(MI, i, MCOperand_CreateReg1(MI, InITBlock ? 0 : ARM_CPSR));
return;
}
}
//MI.insert(I, MCOperand_CreateReg0(Inst, InITBlock ? 0 : ARM_CPSR));
MCInst_insert0(MI, i, MCOperand_CreateReg1(MI, InITBlock ? 0 : ARM_CPSR));
}
// Most Thumb instructions don't have explicit predicates in the
// encoding, but rather get their predicates from IT context. We need
// to fix up the predicate operands using this context information as a
// post-pass.
static DecodeStatus AddThumbPredicate(cs_struct *ud, MCInst *MI)
{
DecodeStatus S = MCDisassembler_Success;
const MCOperandInfo *OpInfo;
unsigned short NumOps;
unsigned int i;
unsigned CC;
// A few instructions actually have predicates encoded in them. Don't
// try to overwrite it if we're seeing one of those.
switch (MCInst_getOpcode(MI)) {
case ARM_tBcc:
case ARM_t2Bcc:
case ARM_tCBZ:
case ARM_tCBNZ:
case ARM_tCPS:
case ARM_t2CPS3p:
case ARM_t2CPS2p:
case ARM_t2CPS1p:
case ARM_tMOVSr:
case ARM_tSETEND:
// Some instructions (mostly conditional branches) are not
// allowed in IT blocks.
if (ITStatus_instrInITBlock(&(ud->ITBlock)))
S = MCDisassembler_SoftFail;
else
return MCDisassembler_Success;
break;
case ARM_tB:
case ARM_t2B:
case ARM_t2TBB:
case ARM_t2TBH:
// Some instructions (mostly unconditional branches) can
// only appears at the end of, or outside of, an IT.
//if (ITBlock.instrInITBlock() && !ITBlock.instrLastInITBlock())
if (ITStatus_instrInITBlock(&(ud->ITBlock)) && !ITStatus_instrLastInITBlock(&(ud->ITBlock)))
S = MCDisassembler_SoftFail;
break;
default:
break;
}
// If we're in an IT block, base the predicate on that. Otherwise,
// assume a predicate of AL.
CC = ITStatus_getITCC(&(ud->ITBlock));
if (CC == 0xF)
CC = ARMCC_AL;
if (ITStatus_instrInITBlock(&(ud->ITBlock)))
ITStatus_advanceITState(&(ud->ITBlock));
OpInfo = ARMInsts[MCInst_getOpcode(MI)].OpInfo;
NumOps = ARMInsts[MCInst_getOpcode(MI)].NumOperands;
for (i = 0; i < NumOps; ++i) {
if (i == MCInst_getNumOperands(MI)) break;
if (MCOperandInfo_isPredicate(&OpInfo[i])) {
MCInst_insert0(MI, i, MCOperand_CreateImm1(MI, CC));
if (CC == ARMCC_AL)
MCInst_insert0(MI, i+1, MCOperand_CreateReg1(MI, 0));
else
MCInst_insert0(MI, i+1, MCOperand_CreateReg1(MI, ARM_CPSR));
return S;
}
}
MCInst_insert0(MI, i, MCOperand_CreateImm1(MI, CC));
if (CC == ARMCC_AL)
MCInst_insert0(MI, i+1, MCOperand_CreateReg1(MI, 0));
else
MCInst_insert0(MI, i+1, MCOperand_CreateReg1(MI, ARM_CPSR));
return S;
}
// Thumb VFP instructions are a special case. Because we share their
// encodings between ARM and Thumb modes, and they are predicable in ARM
// mode, the auto-generated decoder will give them an (incorrect)
// predicate operand. We need to rewrite these operands based on the IT
// context as a post-pass.
static void UpdateThumbVFPPredicate(cs_struct *ud, MCInst *MI)
{
unsigned CC;
unsigned short NumOps;
const MCOperandInfo *OpInfo;
unsigned i;
CC = ITStatus_getITCC(&(ud->ITBlock));
if (ITStatus_instrInITBlock(&(ud->ITBlock)))
ITStatus_advanceITState(&(ud->ITBlock));
OpInfo = ARMInsts[MCInst_getOpcode(MI)].OpInfo;
NumOps = ARMInsts[MCInst_getOpcode(MI)].NumOperands;
for (i = 0; i < NumOps; ++i) {
if (MCOperandInfo_isPredicate(&OpInfo[i])) {
MCOperand_setImm(MCInst_getOperand(MI, i), CC);
if (CC == ARMCC_AL)
MCOperand_setReg(MCInst_getOperand(MI, i+1), 0);
else
MCOperand_setReg(MCInst_getOperand(MI, i+1), ARM_CPSR);
return;
}
}
}
static DecodeStatus _Thumb_getInstruction(cs_struct *ud, MCInst *MI, const uint8_t *code, size_t code_len,
uint16_t *Size, uint64_t Address)
{
uint16_t insn16;
DecodeStatus result;
bool InITBlock;
unsigned Firstcond, Mask;
uint32_t NEONLdStInsn, insn32, NEONDataInsn, NEONCryptoInsn, NEONv8Insn;
size_t i;
// We want to read exactly 2 bytes of data.
if (code_len < 2)
// not enough data
return MCDisassembler_Fail;
if (MI->flat_insn->detail) {
memset(MI->flat_insn->detail, 0, offsetof(cs_detail, arm)+sizeof(cs_arm));
for (i = 0; i < ARR_SIZE(MI->flat_insn->detail->arm.operands); i++) {
MI->flat_insn->detail->arm.operands[i].vector_index = -1;
MI->flat_insn->detail->arm.operands[i].neon_lane = -1;
}
}
if (MODE_IS_BIG_ENDIAN(ud->mode))
insn16 = (code[0] << 8) | code[1];
else
insn16 = (code[1] << 8) | code[0];
result = decodeInstruction_2(DecoderTableThumb16, MI, insn16, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 2;
Check(&result, AddThumbPredicate(ud, MI));
return result;
}
MCInst_clear(MI);
result = decodeInstruction_2(DecoderTableThumbSBit16, MI, insn16, Address, NULL, ud->mode);
if (result) {
*Size = 2;
InITBlock = ITStatus_instrInITBlock(&(ud->ITBlock));
Check(&result, AddThumbPredicate(ud, MI));
AddThumb1SBit(MI, InITBlock);
return result;
}
MCInst_clear(MI);
result = decodeInstruction_2(DecoderTableThumb216, MI, insn16, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 2;
// Nested IT blocks are UNPREDICTABLE. Must be checked before we add
// the Thumb predicate.
if (MCInst_getOpcode(MI) == ARM_t2IT && ITStatus_instrInITBlock(&(ud->ITBlock)))
return MCDisassembler_SoftFail;
Check(&result, AddThumbPredicate(ud, MI));
// If we find an IT instruction, we need to parse its condition
// code and mask operands so that we can apply them correctly
// to the subsequent instructions.
if (MCInst_getOpcode(MI) == ARM_t2IT) {
Firstcond = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, 0));
Mask = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, 1));
ITStatus_setITState(&(ud->ITBlock), (char)Firstcond, (char)Mask);
}
return result;
}
// We want to read exactly 4 bytes of data.
if (code_len < 4)
// not enough data
return MCDisassembler_Fail;
if (MODE_IS_BIG_ENDIAN(ud->mode))
insn32 = (code[3] << 0) |
(code[2] << 8) |
(code[1] << 16) |
((uint32_t) code[0] << 24);
else
insn32 = (code[3] << 8) |
(code[2] << 0) |
((uint32_t) code[1] << 24) |
(code[0] << 16);
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableThumb32, MI, insn32, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
InITBlock = ITStatus_instrInITBlock(&(ud->ITBlock));
Check(&result, AddThumbPredicate(ud, MI));
AddThumb1SBit(MI, InITBlock);
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableThumb232, MI, insn32, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
Check(&result, AddThumbPredicate(ud, MI));
return result;
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableVFP32, MI, insn32, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
UpdateThumbVFPPredicate(ud, MI);
return result;
}
if (fieldFromInstruction_4(insn32, 28, 4) == 0xE) {
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableVFP32, MI, insn32, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
UpdateThumbVFPPredicate(ud, MI);
return result;
}
}
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableVFPV832, MI, insn32, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
if (fieldFromInstruction_4(insn32, 28, 4) == 0xE) {
MCInst_clear(MI);
result = decodeInstruction_4(DecoderTableNEONDup32, MI, insn32, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
Check(&result, AddThumbPredicate(ud, MI));
return result;
}
}
if (fieldFromInstruction_4(insn32, 24, 8) == 0xF9) {
MCInst_clear(MI);
NEONLdStInsn = insn32;
NEONLdStInsn &= 0xF0FFFFFF;
NEONLdStInsn |= 0x04000000;
result = decodeInstruction_4(DecoderTableNEONLoadStore32, MI, NEONLdStInsn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
Check(&result, AddThumbPredicate(ud, MI));
return result;
}
}
if (fieldFromInstruction_4(insn32, 24, 4) == 0xF) {
MCInst_clear(MI);
NEONDataInsn = insn32;
NEONDataInsn &= 0xF0FFFFFF; // Clear bits 27-24
NEONDataInsn |= (NEONDataInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
NEONDataInsn |= 0x12000000; // Set bits 28 and 25
result = decodeInstruction_4(DecoderTableNEONData32, MI, NEONDataInsn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
Check(&result, AddThumbPredicate(ud, MI));
return result;
}
}
MCInst_clear(MI);
NEONCryptoInsn = insn32;
NEONCryptoInsn &= 0xF0FFFFFF; // Clear bits 27-24
NEONCryptoInsn |= (NEONCryptoInsn & 0x10000000) >> 4; // Move bit 28 to bit 24
NEONCryptoInsn |= 0x12000000; // Set bits 28 and 25
result = decodeInstruction_4(DecoderTablev8Crypto32, MI, NEONCryptoInsn,
Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
NEONv8Insn = insn32;
NEONv8Insn &= 0xF3FFFFFF; // Clear bits 27-26
result = decodeInstruction_4(DecoderTablev8NEON32, MI, NEONv8Insn, Address, NULL, ud->mode);
if (result != MCDisassembler_Fail) {
*Size = 4;
return result;
}
MCInst_clear(MI);
*Size = 0;
return MCDisassembler_Fail;
}
bool Thumb_getInstruction(csh ud, const uint8_t *code, size_t code_len, MCInst *instr,
uint16_t *size, uint64_t address, void *info)
{
DecodeStatus status = _Thumb_getInstruction((cs_struct *)ud, instr, code, code_len, size, address);
//return status == MCDisassembler_Success;
return status != MCDisassembler_Fail;
}
bool ARM_getInstruction(csh ud, const uint8_t *code, size_t code_len, MCInst *instr,
uint16_t *size, uint64_t address, void *info)
{
DecodeStatus status = _ARM_getInstruction((cs_struct *)ud, instr, code, code_len, size, address);
//return status == MCDisassembler_Success;
return status != MCDisassembler_Fail;
}
static const uint16_t GPRDecoderTable[] = {
ARM_R0, ARM_R1, ARM_R2, ARM_R3,
ARM_R4, ARM_R5, ARM_R6, ARM_R7,
ARM_R8, ARM_R9, ARM_R10, ARM_R11,
ARM_R12, ARM_SP, ARM_LR, ARM_PC
};
static DecodeStatus DecodeGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned Register;
if (RegNo > 15)
return MCDisassembler_Fail;
Register = GPRDecoderTable[RegNo];
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static DecodeStatus DecodeGPRnopcRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
if (RegNo == 15)
S = MCDisassembler_SoftFail;
Check(&S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder));
return S;
}
static DecodeStatus DecodeGPRwithAPSRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
if (RegNo == 15) {
MCOperand_CreateReg0(Inst, ARM_APSR_NZCV);
return MCDisassembler_Success;
}
Check(&S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder));
return S;
}
static DecodeStatus DecodetGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
if (RegNo > 7)
return MCDisassembler_Fail;
return DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder);
}
static const uint16_t GPRPairDecoderTable[] = {
ARM_R0_R1, ARM_R2_R3, ARM_R4_R5, ARM_R6_R7,
ARM_R8_R9, ARM_R10_R11, ARM_R12_SP
};
static DecodeStatus DecodeGPRPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned RegisterPair;
DecodeStatus S = MCDisassembler_Success;
if (RegNo > 13)
return MCDisassembler_Fail;
if ((RegNo & 1) || RegNo == 0xe)
S = MCDisassembler_SoftFail;
RegisterPair = GPRPairDecoderTable[RegNo/2];
MCOperand_CreateReg0(Inst, RegisterPair);
return S;
}
static DecodeStatus DecodetcGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned Register = 0;
switch (RegNo) {
case 0:
Register = ARM_R0;
break;
case 1:
Register = ARM_R1;
break;
case 2:
Register = ARM_R2;
break;
case 3:
Register = ARM_R3;
break;
case 9:
Register = ARM_R9;
break;
case 12:
Register = ARM_R12;
break;
default:
return MCDisassembler_Fail;
}
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static DecodeStatus DecoderGPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
if (RegNo == 13 || RegNo == 15)
S = MCDisassembler_SoftFail;
Check(&S, DecodeGPRRegisterClass(Inst, RegNo, Address, Decoder));
return S;
}
static const uint16_t SPRDecoderTable[] = {
ARM_S0, ARM_S1, ARM_S2, ARM_S3,
ARM_S4, ARM_S5, ARM_S6, ARM_S7,
ARM_S8, ARM_S9, ARM_S10, ARM_S11,
ARM_S12, ARM_S13, ARM_S14, ARM_S15,
ARM_S16, ARM_S17, ARM_S18, ARM_S19,
ARM_S20, ARM_S21, ARM_S22, ARM_S23,
ARM_S24, ARM_S25, ARM_S26, ARM_S27,
ARM_S28, ARM_S29, ARM_S30, ARM_S31
};
static DecodeStatus DecodeSPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned Register;
if (RegNo > 31)
return MCDisassembler_Fail;
Register = SPRDecoderTable[RegNo];
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static const uint16_t DPRDecoderTable[] = {
ARM_D0, ARM_D1, ARM_D2, ARM_D3,
ARM_D4, ARM_D5, ARM_D6, ARM_D7,
ARM_D8, ARM_D9, ARM_D10, ARM_D11,
ARM_D12, ARM_D13, ARM_D14, ARM_D15,
ARM_D16, ARM_D17, ARM_D18, ARM_D19,
ARM_D20, ARM_D21, ARM_D22, ARM_D23,
ARM_D24, ARM_D25, ARM_D26, ARM_D27,
ARM_D28, ARM_D29, ARM_D30, ARM_D31
};
static DecodeStatus DecodeDPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned Register;
//uint64_t featureBits = ARM_getFeatureBits(Inst->csh->mode);
//bool hasD16 = featureBits & ARM_FeatureD16;
//if (RegNo > 31 || (hasD16 && RegNo > 15)) // FIXME
if (RegNo > 31)
return MCDisassembler_Fail;
Register = DPRDecoderTable[RegNo];
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static DecodeStatus DecodeDPR_8RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
if (RegNo > 7)
return MCDisassembler_Fail;
return DecodeDPRRegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus
DecodeDPR_VFP2RegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
if (RegNo > 15)
return MCDisassembler_Fail;
return DecodeDPRRegisterClass(Inst, RegNo, Address, Decoder);
}
static const uint16_t QPRDecoderTable[] = {
ARM_Q0, ARM_Q1, ARM_Q2, ARM_Q3,
ARM_Q4, ARM_Q5, ARM_Q6, ARM_Q7,
ARM_Q8, ARM_Q9, ARM_Q10, ARM_Q11,
ARM_Q12, ARM_Q13, ARM_Q14, ARM_Q15
};
static DecodeStatus DecodeQPRRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned Register;
if (RegNo > 31 || (RegNo & 1) != 0)
return MCDisassembler_Fail;
RegNo >>= 1;
Register = QPRDecoderTable[RegNo];
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static const uint16_t DPairDecoderTable[] = {
ARM_Q0, ARM_D1_D2, ARM_Q1, ARM_D3_D4, ARM_Q2, ARM_D5_D6,
ARM_Q3, ARM_D7_D8, ARM_Q4, ARM_D9_D10, ARM_Q5, ARM_D11_D12,
ARM_Q6, ARM_D13_D14, ARM_Q7, ARM_D15_D16, ARM_Q8, ARM_D17_D18,
ARM_Q9, ARM_D19_D20, ARM_Q10, ARM_D21_D22, ARM_Q11, ARM_D23_D24,
ARM_Q12, ARM_D25_D26, ARM_Q13, ARM_D27_D28, ARM_Q14, ARM_D29_D30,
ARM_Q15
};
static DecodeStatus DecodeDPairRegisterClass(MCInst *Inst, unsigned RegNo,
uint64_t Address, const void *Decoder)
{
unsigned Register;
if (RegNo > 30)
return MCDisassembler_Fail;
Register = DPairDecoderTable[RegNo];
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static const uint16_t DPairSpacedDecoderTable[] = {
ARM_D0_D2, ARM_D1_D3, ARM_D2_D4, ARM_D3_D5,
ARM_D4_D6, ARM_D5_D7, ARM_D6_D8, ARM_D7_D9,
ARM_D8_D10, ARM_D9_D11, ARM_D10_D12, ARM_D11_D13,
ARM_D12_D14, ARM_D13_D15, ARM_D14_D16, ARM_D15_D17,
ARM_D16_D18, ARM_D17_D19, ARM_D18_D20, ARM_D19_D21,
ARM_D20_D22, ARM_D21_D23, ARM_D22_D24, ARM_D23_D25,
ARM_D24_D26, ARM_D25_D27, ARM_D26_D28, ARM_D27_D29,
ARM_D28_D30, ARM_D29_D31
};
static DecodeStatus DecodeDPairSpacedRegisterClass(MCInst *Inst,
unsigned RegNo, uint64_t Address, const void *Decoder)
{
unsigned Register;
if (RegNo > 29)
return MCDisassembler_Fail;
Register = DPairSpacedDecoderTable[RegNo];
MCOperand_CreateReg0(Inst, Register);
return MCDisassembler_Success;
}
static DecodeStatus DecodeCCOutOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
if (Val)
MCOperand_CreateReg0(Inst, ARM_CPSR);
else
MCOperand_CreateReg0(Inst, 0);
return MCDisassembler_Success;
}
static DecodeStatus DecodeSORegImmOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
ARM_AM_ShiftOpc Shift;
unsigned Op;
unsigned Rm = fieldFromInstruction_4(Val, 0, 4);
unsigned type = fieldFromInstruction_4(Val, 5, 2);
unsigned imm = fieldFromInstruction_4(Val, 7, 5);
// Register-immediate
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
Shift = ARM_AM_lsl;
switch (type) {
case 0:
Shift = ARM_AM_lsl;
break;
case 1:
Shift = ARM_AM_lsr;
break;
case 2:
Shift = ARM_AM_asr;
break;
case 3:
Shift = ARM_AM_ror;
break;
}
if (Shift == ARM_AM_ror && imm == 0)
Shift = ARM_AM_rrx;
Op = Shift | (imm << 3);
MCOperand_CreateImm0(Inst, Op);
return S;
}
static DecodeStatus DecodeSORegRegOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
ARM_AM_ShiftOpc Shift;
unsigned Rm = fieldFromInstruction_4(Val, 0, 4);
unsigned type = fieldFromInstruction_4(Val, 5, 2);
unsigned Rs = fieldFromInstruction_4(Val, 8, 4);
// Register-register
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rs, Address, Decoder)))
return MCDisassembler_Fail;
Shift = ARM_AM_lsl;
switch (type) {
case 0:
Shift = ARM_AM_lsl;
break;
case 1:
Shift = ARM_AM_lsr;
break;
case 2:
Shift = ARM_AM_asr;
break;
case 3:
Shift = ARM_AM_ror;
break;
}
MCOperand_CreateImm0(Inst, Shift);
return S;
}
static DecodeStatus DecodeRegListOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
unsigned i;
DecodeStatus S = MCDisassembler_Success;
unsigned opcode;
bool NeedDisjointWriteback = false;
unsigned WritebackReg = 0;
opcode = MCInst_getOpcode(Inst);
switch (opcode) {
default:
break;
case ARM_LDMIA_UPD:
case ARM_LDMDB_UPD:
case ARM_LDMIB_UPD:
case ARM_LDMDA_UPD:
case ARM_t2LDMIA_UPD:
case ARM_t2LDMDB_UPD:
case ARM_t2STMIA_UPD:
case ARM_t2STMDB_UPD:
NeedDisjointWriteback = true;
WritebackReg = MCOperand_getReg(MCInst_getOperand(Inst, 0));
break;
}
// Empty register lists are not allowed.
if (Val == 0) return MCDisassembler_Fail;
for (i = 0; i < 16; ++i) {
if (Val & (1 << i)) {
if (!Check(&S, DecodeGPRRegisterClass(Inst, i, Address, Decoder)))
return MCDisassembler_Fail;
// Writeback not allowed if Rn is in the target list.
if (NeedDisjointWriteback && WritebackReg == MCOperand_getReg(&(Inst->Operands[Inst->size-1])))
Check(&S, MCDisassembler_SoftFail);
}
}
if (opcode == ARM_t2LDMIA_UPD && WritebackReg == ARM_SP) {
if (Val & (1 << 13) || ((Val & (1 << 15)) && (Val & (1 << 14)))) {
// invalid thumb2 pop
// needs no sp in reglist and not both pc and lr set at the same time
return MCDisassembler_Fail;
}
}
return S;
}
static DecodeStatus DecodeSPRRegListOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned i;
unsigned Vd = fieldFromInstruction_4(Val, 8, 5);
unsigned regs = fieldFromInstruction_4(Val, 0, 8);
// In case of unpredictable encoding, tweak the operands.
if (regs == 0 || (Vd + regs) > 32) {
regs = Vd + regs > 32 ? 32 - Vd : regs;
regs = (1u > regs? 1u : regs);
S = MCDisassembler_SoftFail;
}
if (!Check(&S, DecodeSPRRegisterClass(Inst, Vd, Address, Decoder)))
return MCDisassembler_Fail;
for (i = 0; i < (regs - 1); ++i) {
if (!Check(&S, DecodeSPRRegisterClass(Inst, ++Vd, Address, Decoder)))
return MCDisassembler_Fail;
}
return S;
}
static DecodeStatus DecodeDPRRegListOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned i;
unsigned Vd = fieldFromInstruction_4(Val, 8, 5);
unsigned regs = fieldFromInstruction_4(Val, 1, 7);
// In case of unpredictable encoding, tweak the operands.
if (regs == 0 || regs > 16 || (Vd + regs) > 32) {
regs = Vd + regs > 32 ? 32 - Vd : regs;
regs = (1u > regs? 1u : regs);
regs = (16u > regs? regs : 16u);
S = MCDisassembler_SoftFail;
}
if (!Check(&S, DecodeDPRRegisterClass(Inst, Vd, Address, Decoder)))
return MCDisassembler_Fail;
for (i = 0; i < (regs - 1); ++i) {
if (!Check(&S, DecodeDPRRegisterClass(Inst, ++Vd, Address, Decoder)))
return MCDisassembler_Fail;
}
return S;
}
static DecodeStatus DecodeBitfieldMaskOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
// This operand encodes a mask of contiguous zeros between a specified MSB
// and LSB. To decode it, we create the mask of all bits MSB-and-lower,
// the mask of all bits LSB-and-lower, and then xor them to create
// the mask of that's all ones on [msb, lsb]. Finally we not it to
// create the final mask.
unsigned msb = fieldFromInstruction_4(Val, 5, 5);
unsigned lsb = fieldFromInstruction_4(Val, 0, 5);
uint32_t lsb_mask, msb_mask;
DecodeStatus S = MCDisassembler_Success;
if (lsb > msb) {
Check(&S, MCDisassembler_SoftFail);
// The check above will cause the warning for the "potentially undefined
// instruction encoding" but we can't build a bad MCOperand value here
// with a lsb > msb or else printing the MCInst will cause a crash.
lsb = msb;
}
msb_mask = 0xFFFFFFFF;
if (msb != 31) msb_mask = (1U << (msb+1)) - 1;
lsb_mask = (1U << lsb) - 1;
MCOperand_CreateImm0(Inst, ~(msb_mask ^ lsb_mask));
return S;
}
static DecodeStatus DecodeCopMemInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
unsigned CRd = fieldFromInstruction_4(Insn, 12, 4);
unsigned coproc = fieldFromInstruction_4(Insn, 8, 4);
unsigned imm = fieldFromInstruction_4(Insn, 0, 8);
unsigned Rn = fieldFromInstruction_4(Insn, 16, 4);
unsigned U = fieldFromInstruction_4(Insn, 23, 1);
switch (MCInst_getOpcode(Inst)) {
case ARM_LDC_OFFSET:
case ARM_LDC_PRE:
case ARM_LDC_POST:
case ARM_LDC_OPTION:
case ARM_LDCL_OFFSET:
case ARM_LDCL_PRE:
case ARM_LDCL_POST:
case ARM_LDCL_OPTION:
case ARM_STC_OFFSET:
case ARM_STC_PRE:
case ARM_STC_POST:
case ARM_STC_OPTION:
case ARM_STCL_OFFSET:
case ARM_STCL_PRE:
case ARM_STCL_POST:
case ARM_STCL_OPTION:
case ARM_t2LDC_OFFSET:
case ARM_t2LDC_PRE:
case ARM_t2LDC_POST:
case ARM_t2LDC_OPTION:
case ARM_t2LDCL_OFFSET:
case ARM_t2LDCL_PRE:
case ARM_t2LDCL_POST:
case ARM_t2LDCL_OPTION:
case ARM_t2STC_OFFSET:
case ARM_t2STC_PRE:
case ARM_t2STC_POST:
case ARM_t2STC_OPTION:
case ARM_t2STCL_OFFSET:
case ARM_t2STCL_PRE:
case ARM_t2STCL_POST:
case ARM_t2STCL_OPTION:
if (coproc == 0xA || coproc == 0xB)
return MCDisassembler_Fail;
break;
default:
break;
}
MCOperand_CreateImm0(Inst, coproc);
MCOperand_CreateImm0(Inst, CRd);
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
switch (MCInst_getOpcode(Inst)) {
case ARM_t2LDC2_OFFSET:
case ARM_t2LDC2L_OFFSET:
case ARM_t2LDC2_PRE:
case ARM_t2LDC2L_PRE:
case ARM_t2STC2_OFFSET:
case ARM_t2STC2L_OFFSET:
case ARM_t2STC2_PRE:
case ARM_t2STC2L_PRE:
case ARM_LDC2_OFFSET:
case ARM_LDC2L_OFFSET:
case ARM_LDC2_PRE:
case ARM_LDC2L_PRE:
case ARM_STC2_OFFSET:
case ARM_STC2L_OFFSET:
case ARM_STC2_PRE:
case ARM_STC2L_PRE:
case ARM_t2LDC_OFFSET:
case ARM_t2LDCL_OFFSET:
case ARM_t2LDC_PRE:
case ARM_t2LDCL_PRE:
case ARM_t2STC_OFFSET:
case ARM_t2STCL_OFFSET:
case ARM_t2STC_PRE:
case ARM_t2STCL_PRE:
case ARM_LDC_OFFSET:
case ARM_LDCL_OFFSET:
case ARM_LDC_PRE:
case ARM_LDCL_PRE:
case ARM_STC_OFFSET:
case ARM_STCL_OFFSET:
case ARM_STC_PRE:
case ARM_STCL_PRE:
imm = ARM_AM_getAM5Opc(U ? ARM_AM_add : ARM_AM_sub, (unsigned char)imm);
MCOperand_CreateImm0(Inst, imm);
break;
case ARM_t2LDC2_POST:
case ARM_t2LDC2L_POST:
case ARM_t2STC2_POST:
case ARM_t2STC2L_POST:
case ARM_LDC2_POST:
case ARM_LDC2L_POST:
case ARM_STC2_POST:
case ARM_STC2L_POST:
case ARM_t2LDC_POST:
case ARM_t2LDCL_POST:
case ARM_t2STC_POST:
case ARM_t2STCL_POST:
case ARM_LDC_POST:
case ARM_LDCL_POST:
case ARM_STC_POST:
case ARM_STCL_POST:
imm |= U << 8;
// fall through.
default:
// The 'option' variant doesn't encode 'U' in the immediate since
// the immediate is unsigned [0,255].
MCOperand_CreateImm0(Inst, imm);
break;
}
switch (MCInst_getOpcode(Inst)) {
case ARM_LDC_OFFSET:
case ARM_LDC_PRE:
case ARM_LDC_POST:
case ARM_LDC_OPTION:
case ARM_LDCL_OFFSET:
case ARM_LDCL_PRE:
case ARM_LDCL_POST:
case ARM_LDCL_OPTION:
case ARM_STC_OFFSET:
case ARM_STC_PRE:
case ARM_STC_POST:
case ARM_STC_OPTION:
case ARM_STCL_OFFSET:
case ARM_STCL_PRE:
case ARM_STCL_POST:
case ARM_STCL_OPTION:
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
return S;
}
static DecodeStatus DecodeAddrMode2IdxInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
ARM_AM_AddrOpc Op;
ARM_AM_ShiftOpc Opc;
bool writeback;
unsigned Rn = fieldFromInstruction_4(Insn, 16, 4);
unsigned Rt = fieldFromInstruction_4(Insn, 12, 4);
unsigned Rm = fieldFromInstruction_4(Insn, 0, 4);
unsigned imm = fieldFromInstruction_4(Insn, 0, 12);
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
unsigned reg = fieldFromInstruction_4(Insn, 25, 1);
unsigned P = fieldFromInstruction_4(Insn, 24, 1);
unsigned W = fieldFromInstruction_4(Insn, 21, 1);
unsigned idx_mode = 0, amt, tmp;
// On stores, the writeback operand precedes Rt.
switch (MCInst_getOpcode(Inst)) {
case ARM_STR_POST_IMM:
case ARM_STR_POST_REG:
case ARM_STRB_POST_IMM:
case ARM_STRB_POST_REG:
case ARM_STRT_POST_REG:
case ARM_STRT_POST_IMM:
case ARM_STRBT_POST_REG:
case ARM_STRBT_POST_IMM:
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler_Fail;
// On loads, the writeback operand comes after Rt.
switch (MCInst_getOpcode(Inst)) {
case ARM_LDR_POST_IMM:
case ARM_LDR_POST_REG:
case ARM_LDRB_POST_IMM:
case ARM_LDRB_POST_REG:
case ARM_LDRBT_POST_REG:
case ARM_LDRBT_POST_IMM:
case ARM_LDRT_POST_REG:
case ARM_LDRT_POST_IMM:
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
Op = ARM_AM_add;
if (!fieldFromInstruction_4(Insn, 23, 1))
Op = ARM_AM_sub;
writeback = (P == 0) || (W == 1);
if (P && writeback)
idx_mode = ARMII_IndexModePre;
else if (!P && writeback)
idx_mode = ARMII_IndexModePost;
if (writeback && (Rn == 15 || Rn == Rt))
S = MCDisassembler_SoftFail; // UNPREDICTABLE
if (reg) {
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
Opc = ARM_AM_lsl;
switch( fieldFromInstruction_4(Insn, 5, 2)) {
case 0:
Opc = ARM_AM_lsl;
break;
case 1:
Opc = ARM_AM_lsr;
break;
case 2:
Opc = ARM_AM_asr;
break;
case 3:
Opc = ARM_AM_ror;
break;
default:
return MCDisassembler_Fail;
}
amt = fieldFromInstruction_4(Insn, 7, 5);
if (Opc == ARM_AM_ror && amt == 0)
Opc = ARM_AM_rrx;
imm = ARM_AM_getAM2Opc(Op, amt, Opc, idx_mode);
MCOperand_CreateImm0(Inst, imm);
} else {
MCOperand_CreateReg0(Inst, 0);
tmp = ARM_AM_getAM2Opc(Op, imm, ARM_AM_lsl, idx_mode);
MCOperand_CreateImm0(Inst, tmp);
}
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeSORegMemOperand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
ARM_AM_ShiftOpc ShOp;
unsigned shift;
unsigned Rn = fieldFromInstruction_4(Val, 13, 4);
unsigned Rm = fieldFromInstruction_4(Val, 0, 4);
unsigned type = fieldFromInstruction_4(Val, 5, 2);
unsigned imm = fieldFromInstruction_4(Val, 7, 5);
unsigned U = fieldFromInstruction_4(Val, 12, 1);
ShOp = ARM_AM_lsl;
switch (type) {
case 0:
ShOp = ARM_AM_lsl;
break;
case 1:
ShOp = ARM_AM_lsr;
break;
case 2:
ShOp = ARM_AM_asr;
break;
case 3:
ShOp = ARM_AM_ror;
break;
}
if (ShOp == ARM_AM_ror && imm == 0)
ShOp = ARM_AM_rrx;
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
if (U)
shift = ARM_AM_getAM2Opc(ARM_AM_add, imm, ShOp, 0);
else
shift = ARM_AM_getAM2Opc(ARM_AM_sub, imm, ShOp, 0);
MCOperand_CreateImm0(Inst, shift);
return S;
}
static DecodeStatus DecodeAddrMode3Instruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rt = fieldFromInstruction_4(Insn, 12, 4);
unsigned Rn = fieldFromInstruction_4(Insn, 16, 4);
unsigned Rm = fieldFromInstruction_4(Insn, 0, 4);
unsigned type = fieldFromInstruction_4(Insn, 22, 1);
unsigned imm = fieldFromInstruction_4(Insn, 8, 4);
unsigned U = ((~fieldFromInstruction_4(Insn, 23, 1)) & 1) << 8;
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
unsigned W = fieldFromInstruction_4(Insn, 21, 1);
unsigned P = fieldFromInstruction_4(Insn, 24, 1);
unsigned Rt2 = Rt + 1;
bool writeback = (W == 1) | (P == 0);
// For {LD,ST}RD, Rt must be even, else undefined.
switch (MCInst_getOpcode(Inst)) {
case ARM_STRD:
case ARM_STRD_PRE:
case ARM_STRD_POST:
case ARM_LDRD:
case ARM_LDRD_PRE:
case ARM_LDRD_POST:
if (Rt & 0x1) S = MCDisassembler_SoftFail;
break;
default:
break;
}
switch (MCInst_getOpcode(Inst)) {
case ARM_STRD:
case ARM_STRD_PRE:
case ARM_STRD_POST:
if (P == 0 && W == 1)
S = MCDisassembler_SoftFail;
if (writeback && (Rn == 15 || Rn == Rt || Rn == Rt2))
S = MCDisassembler_SoftFail;
if (type && Rm == 15)
S = MCDisassembler_SoftFail;
if (Rt2 == 15)
S = MCDisassembler_SoftFail;
if (!type && fieldFromInstruction_4(Insn, 8, 4))
S = MCDisassembler_SoftFail;
break;
case ARM_STRH:
case ARM_STRH_PRE:
case ARM_STRH_POST:
if (Rt == 15)
S = MCDisassembler_SoftFail;
if (writeback && (Rn == 15 || Rn == Rt))
S = MCDisassembler_SoftFail;
if (!type && Rm == 15)
S = MCDisassembler_SoftFail;
break;
case ARM_LDRD:
case ARM_LDRD_PRE:
case ARM_LDRD_POST:
if (type && Rn == 15){
if (Rt2 == 15)
S = MCDisassembler_SoftFail;
break;
}
if (P == 0 && W == 1)
S = MCDisassembler_SoftFail;
if (!type && (Rt2 == 15 || Rm == 15 || Rm == Rt || Rm == Rt2))
S = MCDisassembler_SoftFail;
if (!type && writeback && Rn == 15)
S = MCDisassembler_SoftFail;
if (writeback && (Rn == Rt || Rn == Rt2))
S = MCDisassembler_SoftFail;
break;
case ARM_LDRH:
case ARM_LDRH_PRE:
case ARM_LDRH_POST:
if (type && Rn == 15){
if (Rt == 15)
S = MCDisassembler_SoftFail;
break;
}
if (Rt == 15)
S = MCDisassembler_SoftFail;
if (!type && Rm == 15)
S = MCDisassembler_SoftFail;
if (!type && writeback && (Rn == 15 || Rn == Rt))
S = MCDisassembler_SoftFail;
break;
case ARM_LDRSH:
case ARM_LDRSH_PRE:
case ARM_LDRSH_POST:
case ARM_LDRSB:
case ARM_LDRSB_PRE:
case ARM_LDRSB_POST:
if (type && Rn == 15){
if (Rt == 15)
S = MCDisassembler_SoftFail;
break;
}
if (type && (Rt == 15 || (writeback && Rn == Rt)))
S = MCDisassembler_SoftFail;
if (!type && (Rt == 15 || Rm == 15))
S = MCDisassembler_SoftFail;
if (!type && writeback && (Rn == 15 || Rn == Rt))
S = MCDisassembler_SoftFail;
break;
default:
break;
}
if (writeback) { // Writeback
Inst->writeback = true;
if (P)
U |= ARMII_IndexModePre << 9;
else
U |= ARMII_IndexModePost << 9;
// On stores, the writeback operand precedes Rt.
switch (MCInst_getOpcode(Inst)) {
case ARM_STRD:
case ARM_STRD_PRE:
case ARM_STRD_POST:
case ARM_STRH:
case ARM_STRH_PRE:
case ARM_STRH_POST:
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
}
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler_Fail;
switch (MCInst_getOpcode(Inst)) {
case ARM_STRD:
case ARM_STRD_PRE:
case ARM_STRD_POST:
case ARM_LDRD:
case ARM_LDRD_PRE:
case ARM_LDRD_POST:
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rt+1, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
if (writeback) {
// On loads, the writeback operand comes after Rt.
switch (MCInst_getOpcode(Inst)) {
case ARM_LDRD:
case ARM_LDRD_PRE:
case ARM_LDRD_POST:
case ARM_LDRH:
case ARM_LDRH_PRE:
case ARM_LDRH_POST:
case ARM_LDRSH:
case ARM_LDRSH_PRE:
case ARM_LDRSH_POST:
case ARM_LDRSB:
case ARM_LDRSB_PRE:
case ARM_LDRSB_POST:
case ARM_LDRHTr:
case ARM_LDRSBTr:
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
}
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (type) {
MCOperand_CreateReg0(Inst, 0);
MCOperand_CreateImm0(Inst, U | (imm << 4) | Rm);
} else {
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
MCOperand_CreateImm0(Inst, U);
}
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeRFEInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rn = fieldFromInstruction_4(Insn, 16, 4);
unsigned mode = fieldFromInstruction_4(Insn, 23, 2);
switch (mode) {
case 0:
mode = ARM_AM_da;
break;
case 1:
mode = ARM_AM_ia;
break;
case 2:
mode = ARM_AM_db;
break;
case 3:
mode = ARM_AM_ib;
break;
}
MCOperand_CreateImm0(Inst, mode);
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeQADDInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rd = fieldFromInstruction_4(Insn, 12, 4);
unsigned Rm = fieldFromInstruction_4(Insn, 0, 4);
unsigned Rn = fieldFromInstruction_4(Insn, 16, 4);
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
if (pred == 0xF)
return DecodeCPSInstruction(Inst, Insn, Address, Decoder);
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeMemMultipleWritebackInstruction(MCInst *Inst,
unsigned Insn, uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rn = fieldFromInstruction_4(Insn, 16, 4);
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
unsigned reglist = fieldFromInstruction_4(Insn, 0, 16);
if (pred == 0xF) {
// Ambiguous with RFE and SRS
switch (MCInst_getOpcode(Inst)) {
case ARM_LDMDA:
MCInst_setOpcode(Inst, ARM_RFEDA);
break;
case ARM_LDMDA_UPD:
MCInst_setOpcode(Inst, ARM_RFEDA_UPD);
break;
case ARM_LDMDB:
MCInst_setOpcode(Inst, ARM_RFEDB);
break;
case ARM_LDMDB_UPD:
MCInst_setOpcode(Inst, ARM_RFEDB_UPD);
break;
case ARM_LDMIA:
MCInst_setOpcode(Inst, ARM_RFEIA);
break;
case ARM_LDMIA_UPD:
MCInst_setOpcode(Inst, ARM_RFEIA_UPD);
break;
case ARM_LDMIB:
MCInst_setOpcode(Inst, ARM_RFEIB);
break;
case ARM_LDMIB_UPD:
MCInst_setOpcode(Inst, ARM_RFEIB_UPD);
break;
case ARM_STMDA:
MCInst_setOpcode(Inst, ARM_SRSDA);
break;
case ARM_STMDA_UPD:
MCInst_setOpcode(Inst, ARM_SRSDA_UPD);
break;
case ARM_STMDB:
MCInst_setOpcode(Inst, ARM_SRSDB);
break;
case ARM_STMDB_UPD:
MCInst_setOpcode(Inst, ARM_SRSDB_UPD);
break;
case ARM_STMIA:
MCInst_setOpcode(Inst, ARM_SRSIA);
break;
case ARM_STMIA_UPD:
MCInst_setOpcode(Inst, ARM_SRSIA_UPD);
break;
case ARM_STMIB:
MCInst_setOpcode(Inst, ARM_SRSIB);
break;
case ARM_STMIB_UPD:
MCInst_setOpcode(Inst, ARM_SRSIB_UPD);
break;
default:
return MCDisassembler_Fail;
}
// For stores (which become SRS's, the only operand is the mode.
if (fieldFromInstruction_4(Insn, 20, 1) == 0) {
// Check SRS encoding constraints
if (!(fieldFromInstruction_4(Insn, 22, 1) == 1 &&
fieldFromInstruction_4(Insn, 20, 1) == 0))
return MCDisassembler_Fail;
MCOperand_CreateImm0(Inst, fieldFromInstruction_4(Insn, 0, 4));
return S;
}
return DecodeRFEInstruction(Inst, Insn, Address, Decoder);
}
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail; // Tied
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeRegListOperand(Inst, reglist, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeCPSInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
unsigned imod = fieldFromInstruction_4(Insn, 18, 2);
unsigned M = fieldFromInstruction_4(Insn, 17, 1);
unsigned iflags = fieldFromInstruction_4(Insn, 6, 3);
unsigned mode = fieldFromInstruction_4(Insn, 0, 5);
DecodeStatus S = MCDisassembler_Success;
// This decoder is called from multiple location that do not check
// the full encoding is valid before they do.
if (fieldFromInstruction_4(Insn, 5, 1) != 0 ||
fieldFromInstruction_4(Insn, 16, 1) != 0 ||
fieldFromInstruction_4(Insn, 20, 8) != 0x10)
return MCDisassembler_Fail;
// imod == '01' --> UNPREDICTABLE
// NOTE: Even though this is technically UNPREDICTABLE, we choose to
// return failure here. The '01' imod value is unprintable, so there's
// nothing useful we could do even if we returned UNPREDICTABLE.
if (imod == 1) return MCDisassembler_Fail;
if (imod && M) {
MCInst_setOpcode(Inst, ARM_CPS3p);
MCOperand_CreateImm0(Inst, imod);
MCOperand_CreateImm0(Inst, iflags);
MCOperand_CreateImm0(Inst, mode);
} else if (imod && !M) {
MCInst_setOpcode(Inst, ARM_CPS2p);
MCOperand_CreateImm0(Inst, imod);
MCOperand_CreateImm0(Inst, iflags);
if (mode) S = MCDisassembler_SoftFail;
} else if (!imod && M) {
MCInst_setOpcode(Inst, ARM_CPS1p);
MCOperand_CreateImm0(Inst, mode);
if (iflags) S = MCDisassembler_SoftFail;
} else {
// imod == '00' && M == '0' --> UNPREDICTABLE
MCInst_setOpcode(Inst, ARM_CPS1p);
MCOperand_CreateImm0(Inst, mode);
S = MCDisassembler_SoftFail;
}
return S;
}
static DecodeStatus DecodeT2CPSInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
unsigned imod = fieldFromInstruction_4(Insn, 9, 2);
unsigned M = fieldFromInstruction_4(Insn, 8, 1);
unsigned iflags = fieldFromInstruction_4(Insn, 5, 3);
unsigned mode = fieldFromInstruction_4(Insn, 0, 5);
DecodeStatus S = MCDisassembler_Success;
// imod == '01' --> UNPREDICTABLE
// NOTE: Even though this is technically UNPREDICTABLE, we choose to
// return failure here. The '01' imod value is unprintable, so there's
// nothing useful we could do even if we returned UNPREDICTABLE.
if (imod == 1) return MCDisassembler_Fail;
if (imod && M) {
MCInst_setOpcode(Inst, ARM_t2CPS3p);
MCOperand_CreateImm0(Inst, imod);
MCOperand_CreateImm0(Inst, iflags);
MCOperand_CreateImm0(Inst, mode);
} else if (imod && !M) {
MCInst_setOpcode(Inst, ARM_t2CPS2p);
MCOperand_CreateImm0(Inst, imod);
MCOperand_CreateImm0(Inst, iflags);
if (mode) S = MCDisassembler_SoftFail;
} else if (!imod && M) {
MCInst_setOpcode(Inst, ARM_t2CPS1p);
MCOperand_CreateImm0(Inst, mode);
if (iflags) S = MCDisassembler_SoftFail;
} else {
// imod == '00' && M == '0' --> this is a HINT instruction
int imm = fieldFromInstruction_4(Insn, 0, 8);
// HINT are defined only for immediate in [0..4]
if(imm > 4) return MCDisassembler_Fail;
MCInst_setOpcode(Inst, ARM_t2HINT);
MCOperand_CreateImm0(Inst, imm);
}
return S;
}
static DecodeStatus DecodeT2MOVTWInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rd = fieldFromInstruction_4(Insn, 8, 4);
unsigned imm = 0;
imm |= (fieldFromInstruction_4(Insn, 0, 8) << 0);
imm |= (fieldFromInstruction_4(Insn, 12, 3) << 8);
imm |= (fieldFromInstruction_4(Insn, 16, 4) << 12);
imm |= (fieldFromInstruction_4(Insn, 26, 1) << 11);
if (MCInst_getOpcode(Inst) == ARM_t2MOVTi16)
if (!Check(&S, DecoderGPRRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecoderGPRRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
MCOperand_CreateImm0(Inst, imm);
return S;
}
static DecodeStatus DecodeArmMOVTWInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rd = fieldFromInstruction_4(Insn, 12, 4);
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
unsigned imm = 0;
imm |= (fieldFromInstruction_4(Insn, 0, 12) << 0);
imm |= (fieldFromInstruction_4(Insn, 16, 4) << 12);
if (MCInst_getOpcode(Inst) == ARM_MOVTi16)
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
MCOperand_CreateImm0(Inst, imm);
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeSMLAInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rd = fieldFromInstruction_4(Insn, 16, 4);
unsigned Rn = fieldFromInstruction_4(Insn, 0, 4);
unsigned Rm = fieldFromInstruction_4(Insn, 8, 4);
unsigned Ra = fieldFromInstruction_4(Insn, 12, 4);
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
if (pred == 0xF)
return DecodeCPSInstruction(Inst, Insn, Address, Decoder);
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodeGPRnopcRegisterClass(Inst, Ra, Address, Decoder)))
return MCDisassembler_Fail;
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeAddrModeImm12Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned add = fieldFromInstruction_4(Val, 12, 1);
unsigned imm = fieldFromInstruction_4(Val, 0, 12);
unsigned Rn = fieldFromInstruction_4(Val, 13, 4);
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (!add) imm *= (unsigned int)-1;
if (imm == 0 && !add) imm = (unsigned int)INT32_MIN;
MCOperand_CreateImm0(Inst, imm);
//if (Rn == 15)
// tryAddingPcLoadReferenceComment(Address, Address + imm + 8, Decoder);
return S;
}
static DecodeStatus DecodeAddrMode5Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rn = fieldFromInstruction_4(Val, 9, 4);
unsigned U = fieldFromInstruction_4(Val, 8, 1);
unsigned imm = fieldFromInstruction_4(Val, 0, 8);
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
if (U)
MCOperand_CreateImm0(Inst, ARM_AM_getAM5Opc(ARM_AM_add, (unsigned char)imm));
else
MCOperand_CreateImm0(Inst, ARM_AM_getAM5Opc(ARM_AM_sub, (unsigned char)imm));
return S;
}
static DecodeStatus DecodeAddrMode7Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
return DecodeGPRRegisterClass(Inst, Val, Address, Decoder);
}
static DecodeStatus DecodeT2BInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus Status = MCDisassembler_Success;
// Note the J1 and J2 values are from the encoded instruction. So here
// change them to I1 and I2 values via as documented:
// I1 = NOT(J1 EOR S);
// I2 = NOT(J2 EOR S);
// and build the imm32 with one trailing zero as documented:
// imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
unsigned S = fieldFromInstruction_4(Insn, 26, 1);
unsigned J1 = fieldFromInstruction_4(Insn, 13, 1);
unsigned J2 = fieldFromInstruction_4(Insn, 11, 1);
unsigned I1 = !(J1 ^ S);
unsigned I2 = !(J2 ^ S);
unsigned imm10 = fieldFromInstruction_4(Insn, 16, 10);
unsigned imm11 = fieldFromInstruction_4(Insn, 0, 11);
unsigned tmp = (S << 23) | (I1 << 22) | (I2 << 21) | (imm10 << 11) | imm11;
int imm32 = SignExtend32(tmp << 1, 25);
MCOperand_CreateImm0(Inst, imm32);
return Status;
}
static DecodeStatus DecodeBranchImmInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned pred = fieldFromInstruction_4(Insn, 28, 4);
unsigned imm = fieldFromInstruction_4(Insn, 0, 24) << 2;
if (pred == 0xF) {
MCInst_setOpcode(Inst, ARM_BLXi);
imm |= fieldFromInstruction_4(Insn, 24, 1) << 1;
MCOperand_CreateImm0(Inst, SignExtend32(imm, 26));
return S;
}
MCOperand_CreateImm0(Inst, SignExtend32(imm, 26));
if (!Check(&S, DecodePredicateOperand(Inst, pred, Address, Decoder)))
return MCDisassembler_Fail;
return S;
}
static DecodeStatus DecodeAddrMode6Operand(MCInst *Inst, unsigned Val,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned Rm = fieldFromInstruction_4(Val, 0, 4);
unsigned align = fieldFromInstruction_4(Val, 4, 2);
if (!Check(&S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
if (!align)
MCOperand_CreateImm0(Inst, 0);
else
MCOperand_CreateImm0(Inst, 4 << align);
return S;
}
static DecodeStatus DecodeVLDInstruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
DecodeStatus S = MCDisassembler_Success;
unsigned wb, Rn, Rm;
unsigned Rd = fieldFromInstruction_4(Insn, 12, 4);
Rd |= fieldFromInstruction_4(Insn, 22, 1) << 4;
wb = fieldFromInstruction_4(Insn, 16, 4);
Rn = fieldFromInstruction_4(Insn, 16, 4);
Rn |= fieldFromInstruction_4(Insn, 4, 2) << 4;
Rm = fieldFromInstruction_4(Insn, 0, 4);
// First output register
switch (MCInst_getOpcode(Inst)) {
case ARM_VLD1q16: case ARM_VLD1q32: case ARM_VLD1q64: case ARM_VLD1q8:
case ARM_VLD1q16wb_fixed: case ARM_VLD1q16wb_register:
case ARM_VLD1q32wb_fixed: case ARM_VLD1q32wb_register:
case ARM_VLD1q64wb_fixed: case ARM_VLD1q64wb_register:
case ARM_VLD1q8wb_fixed: case ARM_VLD1q8wb_register:
case ARM_VLD2d16: case ARM_VLD2d32: case ARM_VLD2d8:
case ARM_VLD2d16wb_fixed: case ARM_VLD2d16wb_register:
case ARM_VLD2d32wb_fixed: case ARM_VLD2d32wb_register:
case ARM_VLD2d8wb_fixed: case ARM_VLD2d8wb_register:
if (!Check(&S, DecodeDPairRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
break;
case ARM_VLD2b16:
case ARM_VLD2b32:
case ARM_VLD2b8:
case ARM_VLD2b16wb_fixed:
case ARM_VLD2b16wb_register:
case ARM_VLD2b32wb_fixed:
case ARM_VLD2b32wb_register:
case ARM_VLD2b8wb_fixed:
case ARM_VLD2b8wb_register:
if (!Check(&S, DecodeDPairSpacedRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
if (!Check(&S, DecodeDPRRegisterClass(Inst, Rd, Address, Decoder)))
return MCDisassembler_Fail;
}
// Second output register
switch (MCInst_getOpcode(Inst)) {
case ARM_VLD3d8:
case ARM_VLD3d16:
case ARM_VLD3d32:
case ARM_VLD3d8_UPD:
case ARM_VLD3d16_UPD:
case ARM_VLD3d32_UPD:
case ARM_VLD4d8:
case ARM_VLD4d16:
case ARM_VLD4d32:
case ARM_VLD4d8_UPD:
case ARM_VLD4d16_UPD:
case ARM_VLD4d32_UPD:
if (!Check(&S, DecodeDPRRegisterClass(Inst, (Rd+1)%32, Address, Decoder)))
return MCDisassembler_Fail;
break;
case ARM_VLD3q8:
case ARM_VLD3q16:
case ARM_VLD3q32:
case ARM_VLD3q8_UPD:
case ARM_VLD3q16_UPD:
case ARM_VLD3q32_UPD:
case ARM_VLD4q8:
case ARM_VLD4q16:
case ARM_VLD4q32:
case ARM_VLD4q8_UPD:
case ARM_VLD4q16_UPD:
case ARM_VLD4q32_UPD:
if (!Check(&S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder)))
return MCDisassembler_Fail;
default:
break;
}
// Third output register
switch(MCInst_getOpcode(Inst)) {
case ARM_VLD3d8:
case ARM_VLD3d16:
case ARM_VLD3d32:
case ARM_VLD3d8_UPD:
case ARM_VLD3d16_UPD:
case ARM_VLD3d32_UPD:
case ARM_VLD4d8:
case ARM_VLD4d16:
case ARM_VLD4d32:
case ARM_VLD4d8_UPD:
case ARM_VLD4d16_UPD:
case ARM_VLD4d32_UPD:
if (!Check(&S, DecodeDPRRegisterClass(Inst, (Rd+2)%32, Address, Decoder)))
return MCDisassembler_Fail;
break;
case ARM_VLD3q8:
case ARM_VLD3q16:
case ARM_VLD3q32:
case ARM_VLD3q8_UPD:
case ARM_VLD3q16_UPD:
case ARM_VLD3q32_UPD:
case ARM_VLD4q8:
case ARM_VLD4q16:
case ARM_VLD4q32:
case ARM_VLD4q8_UPD:
case ARM_VLD4q16_UPD:
case ARM_VLD4q32_UPD:
if (!Check(&S, DecodeDPRRegisterClass(Inst, (Rd+4)%32, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
// Fourth output register
switch (MCInst_getOpcode(Inst)) {
case ARM_VLD4d8:
case ARM_VLD4d16:
case ARM_VLD4d32:
case ARM_VLD4d8_UPD:
case ARM_VLD4d16_UPD:
case ARM_VLD4d32_UPD:
if (!Check(&S, DecodeDPRRegisterClass(Inst, (Rd+3)%32, Address, Decoder)))
return MCDisassembler_Fail;
break;
case ARM_VLD4q8:
case ARM_VLD4q16:
case ARM_VLD4q32:
case ARM_VLD4q8_UPD:
case ARM_VLD4q16_UPD:
case ARM_VLD4q32_UPD:
if (!Check(&S, DecodeDPRRegisterClass(Inst, (Rd+6)%32, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
// Writeback operand
switch (MCInst_getOpcode(Inst)) {
case ARM_VLD1d8wb_fixed:
case ARM_VLD1d16wb_fixed:
case ARM_VLD1d32wb_fixed:
case ARM_VLD1d64wb_fixed:
case ARM_VLD1d8wb_register:
case ARM_VLD1d16wb_register:
case ARM_VLD1d32wb_register:
case ARM_VLD1d64wb_register:
case ARM_VLD1q8wb_fixed:
case ARM_VLD1q16wb_fixed:
case ARM_VLD1q32wb_fixed:
case ARM_VLD1q64wb_fixed:
case ARM_VLD1q8wb_register:
case ARM_VLD1q16wb_register:
case ARM_VLD1q32wb_register:
case ARM_VLD1q64wb_register:
case ARM_VLD1d8Twb_fixed:
case ARM_VLD1d8Twb_register:
case ARM_VLD1d16Twb_fixed:
case ARM_VLD1d16Twb_register:
case ARM_VLD1d32Twb_fixed:
case ARM_VLD1d32Twb_register:
case ARM_VLD1d64Twb_fixed:
case ARM_VLD1d64Twb_register:
case ARM_VLD1d8Qwb_fixed:
case ARM_VLD1d8Qwb_register:
case ARM_VLD1d16Qwb_fixed:
case ARM_VLD1d16Qwb_register:
case ARM_VLD1d32Qwb_fixed:
case ARM_VLD1d32Qwb_register:
case ARM_VLD1d64Qwb_fixed:
case ARM_VLD1d64Qwb_register:
case ARM_VLD2d8wb_fixed:
case ARM_VLD2d16wb_fixed:
case ARM_VLD2d32wb_fixed:
case ARM_VLD2q8wb_fixed:
case ARM_VLD2q16wb_fixed:
case ARM_VLD2q32wb_fixed:
case ARM_VLD2d8wb_register:
case ARM_VLD2d16wb_register:
case ARM_VLD2d32wb_register:
case ARM_VLD2q8wb_register:
case ARM_VLD2q16wb_register:
case ARM_VLD2q32wb_register:
case ARM_VLD2b8wb_fixed:
case ARM_VLD2b16wb_fixed:
case ARM_VLD2b32wb_fixed:
case ARM_VLD2b8wb_register:
case ARM_VLD2b16wb_register:
case ARM_VLD2b32wb_register:
MCOperand_CreateImm0(Inst, 0);
break;
case ARM_VLD3d8_UPD:
case ARM_VLD3d16_UPD:
case ARM_VLD3d32_UPD:
case ARM_VLD3q8_UPD:
case ARM_VLD3q16_UPD:
case ARM_VLD3q32_UPD:
case ARM_VLD4d8_UPD:
case ARM_VLD4d16_UPD:
case ARM_VLD4d32_UPD:
case ARM_VLD4q8_UPD:
case ARM_VLD4q16_UPD:
case ARM_VLD4q32_UPD:
if (!Check(&S, DecodeGPRRegisterClass(Inst, wb, Address, Decoder)))
return MCDisassembler_Fail;
break;
default:
break;
}
// AddrMode6 Base (register+alignment)
if (!Check(&S, DecodeAddrMode6Operand(Inst, Rn, Address, Decoder)))
return MCDisassembler_Fail;
// AddrMode6 Offset (register)
switch (MCInst_getOpcode(Inst)) {
default:
// The below have been updated to have explicit am6offset split
// between fixed and register offset. For those instructions not
// yet updated, we need to add an additional reg0 operand for the
// fixed variant.
//
// The fixed offset encodes as Rm == 0xd, so we check for that.
if (Rm == 0xd) {
MCOperand_CreateReg0(Inst, 0);
break;
}
// Fall through to handle the register offset variant.
case ARM_VLD1d8wb_fixed:
case ARM_VLD1d16wb_fixed:
case ARM_VLD1d32wb_fixed:
case ARM_VLD1d64wb_fixed:
case ARM_VLD1d8Twb_fixed:
case ARM_VLD1d16Twb_fixed:
case ARM_VLD1d32Twb_fixed:
case ARM_VLD1d64Twb_fixed:
case ARM_VLD1d8Qwb_fixed:
case ARM_VLD1d16Qwb_fixed:
case ARM_VLD1d32Qwb_fixed:
case ARM_VLD1d64Qwb_fixed:
case ARM_VLD1d8wb_register:
case ARM_VLD1d16wb_register:
case ARM_VLD1d32wb_register:
case ARM_VLD1d64wb_register:
case ARM_VLD1q8wb_fixed:
case ARM_VLD1q16wb_fixed:
case ARM_VLD1q32wb_fixed:
case ARM_VLD1q64wb_fixed:
case ARM_VLD1q8wb_register:
case ARM_VLD1q16wb_register:
case ARM_VLD1q32wb_register:
case ARM_VLD1q64wb_register:
// The fixed offset post-increment encodes Rm == 0xd. The no-writeback
// variant encodes Rm == 0xf. Anything else is a register offset post-
// increment and we need to add the register operand to the instruction.
if (Rm != 0xD && Rm != 0xF &&
!Check(&S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder)))
return MCDisassembler_Fail;
break;
case ARM_VLD2d8wb_fixed:
case ARM_VLD2d16wb_fixed:
case ARM_VLD2d32wb_fixed:
case ARM_VLD2b8wb_fixed:
case ARM_VLD2b16wb_fixed:
case ARM_VLD2b32wb_fixed:
case ARM_VLD2q8wb_fixed:
case ARM_VLD2q16wb_fixed:
case ARM_VLD2q32wb_fixed:
break;
}
return S;
}
static DecodeStatus DecodeVLDST1Instruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
unsigned load;
unsigned type = fieldFromInstruction_4(Insn, 8, 4);
unsigned align = fieldFromInstruction_4(Insn, 4, 2);
if (type == 6 && (align & 2)) return MCDisassembler_Fail;
if (type == 7 && (align & 2)) return MCDisassembler_Fail;
if (type == 10 && align == 3) return MCDisassembler_Fail;
load = fieldFromInstruction_4(Insn, 21, 1);
return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
: DecodeVSTInstruction(Inst, Insn, Address, Decoder);
}
static DecodeStatus DecodeVLDST2Instruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
unsigned type, align, load;
unsigned size = fieldFromInstruction_4(Insn, 6, 2);
if (size == 3) return MCDisassembler_Fail;
type = fieldFromInstruction_4(Insn, 8, 4);
align = fieldFromInstruction_4(Insn, 4, 2);
if (type == 8 && align == 3) return MCDisassembler_Fail;
if (type == 9 && align == 3) return MCDisassembler_Fail;
load = fieldFromInstruction_4(Insn, 21, 1);
return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
: DecodeVSTInstruction(Inst, Insn, Address, Decoder);
}
static DecodeStatus DecodeVLDST3Instruction(MCInst *Inst, unsigned Insn,
uint64_t Address, const void *Decoder)
{
unsigned align, load;
unsigned size = fieldFromInstruction_4(Insn, 6, 2);
if (size == 3) return MCDisassembler_Fail;
align = fieldFromInstruction_4(Insn, 4, 2);
if (align & 2) return MCDisassembler_Fail;
load = fieldFromInstruction_4(Insn, 21, 1);
return load ? DecodeVLDInstruction(Inst, Insn, Address, Decoder)
: DecodeVSTInstruction(Inst, Insn, Address, Decoder);