blob: 446fd272be8f5a75d92d5b6fba3411642384fed9 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
/* For BIGNUM format macros. */
#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <utility>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../crypto/test/file_test.h"
#include "../crypto/test/scoped_types.h"
#include "../crypto/test/test_util.h"
// This program tests the BIGNUM implementation. It takes an optional -bc
// argument to write a transcript compatible with the UNIX bc utility.
//
// TODO(davidben): Rather than generate random inputs and depend on bc to check
// the results, most of these tests should use known answers.
static const int num0 = 100; // number of tests
static const int num2 = 5; // number of tests for slow functions
static int rand_neg();
static bool test_mont(FILE *fp, BN_CTX *ctx);
static bool test_mod_mul(FILE *fp, BN_CTX *ctx);
static bool test_mod_exp(FILE *fp, BN_CTX *ctx);
static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx);
static bool test_exp(FILE *fp, BN_CTX *ctx);
static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx);
static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx);
static bool test_sqrt(FILE *fp, BN_CTX *ctx);
static bool TestBN2BinPadded(BN_CTX *ctx);
static bool TestDec2BN(BN_CTX *ctx);
static bool TestHex2BN(BN_CTX *ctx);
static bool TestASC2BN(BN_CTX *ctx);
static bool TestMPI();
static bool TestRand();
static bool TestASN1();
static bool TestNegativeZero(BN_CTX *ctx);
static bool TestBadModulus(BN_CTX *ctx);
static bool TestExpModZero();
static bool TestSmallPrime(BN_CTX *ctx);
static bool RunTest(FileTest *t, void *arg);
// A wrapper around puts that takes its arguments in the same order as our *_fp
// functions.
static void puts_fp(FILE *out, const char *m) {
if (out != nullptr) {
fputs(m, out);
}
}
static void flush_fp(FILE *out) {
if (out != nullptr) {
fflush(out);
}
}
static void message(FILE *out, const char *m) {
puts_fp(out, "print \"test ");
puts_fp(out, m);
puts_fp(out, "\\n\"\n");
}
int main(int argc, char *argv[]) {
CRYPTO_library_init();
ScopedFILE bc_file;
const char *name = argv[0];
argc--;
argv++;
if (argc > 0 && strcmp(argv[0], "-bc") == 0) {
if (argc < 2) {
fprintf(stderr, "Missing parameter to -bc\n");
return 1;
}
bc_file.reset(fopen(argv[1], "w+"));
if (!bc_file) {
fprintf(stderr, "Failed to open %s: %s\n", argv[1], strerror(errno));
}
argc -= 2;
argv += 2;
}
if (argc != 1) {
fprintf(stderr, "%s [-bc BC_FILE] TEST_FILE\n", name);
return 1;
}
ScopedBN_CTX ctx(BN_CTX_new());
if (!ctx) {
return 1;
}
puts_fp(bc_file.get(), "/* This script, when run through the UNIX bc utility, "
"should produce a sequence of zeros. */\n");
puts_fp(bc_file.get(), "/* tr a-f A-F < bn_test.out | sed s/BAsE/base/ | bc "
"| grep -v 0 */\n");
puts_fp(bc_file.get(), "obase=16\nibase=16\n");
message(bc_file.get(), "BN_mod_mul");
if (!test_mod_mul(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mont");
if (!test_mont(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_exp");
if (!test_mod_exp(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_exp_mont_consttime");
if (!test_mod_exp_mont_consttime(bc_file.get(), ctx.get()) ||
!test_mod_exp_mont5(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_exp");
if (!test_exp(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_sqrt");
if (!test_mod_sqrt(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_sqrt");
if (!test_sqrt(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
if (!TestBN2BinPadded(ctx.get()) ||
!TestDec2BN(ctx.get()) ||
!TestHex2BN(ctx.get()) ||
!TestASC2BN(ctx.get()) ||
!TestMPI() ||
!TestRand() ||
!TestASN1() ||
!TestNegativeZero(ctx.get()) ||
!TestBadModulus(ctx.get()) ||
!TestExpModZero() ||
!TestSmallPrime(ctx.get())) {
return 1;
}
return FileTestMain(RunTest, ctx.get(), argv[0]);
}
static int HexToBIGNUM(ScopedBIGNUM *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_hex2bn(&raw, in);
out->reset(raw);
return ret;
}
static ScopedBIGNUM GetBIGNUM(FileTest *t, const char *attribute) {
std::string hex;
if (!t->GetAttribute(&hex, attribute)) {
return nullptr;
}
ScopedBIGNUM ret;
if (HexToBIGNUM(&ret, hex.c_str()) != static_cast<int>(hex.size())) {
t->PrintLine("Could not decode '%s'.", hex.c_str());
return nullptr;
}
return ret;
}
static bool GetInt(FileTest *t, int *out, const char *attribute) {
ScopedBIGNUM ret = GetBIGNUM(t, attribute);
if (!ret) {
return false;
}
BN_ULONG word = BN_get_word(ret.get());
if (word > INT_MAX) {
return false;
}
*out = static_cast<int>(word);
return true;
}
static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation,
const BIGNUM *expected, const BIGNUM *actual) {
if (BN_cmp(expected, actual) == 0) {
return true;
}
ScopedOpenSSLString expected_str(BN_bn2hex(expected));
ScopedOpenSSLString actual_str(BN_bn2hex(actual));
if (!expected_str || !actual_str) {
return false;
}
t->PrintLine("Got %s =", operation);
t->PrintLine("\t%s", actual_str.get());
t->PrintLine("wanted:");
t->PrintLine("\t%s", expected_str.get());
return false;
}
static bool TestSum(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM sum = GetBIGNUM(t, "Sum");
if (!a || !b || !sum) {
return false;
}
ScopedBIGNUM ret(BN_new());
if (!ret ||
!BN_add(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) ||
!BN_sub(ret.get(), sum.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) ||
!BN_sub(ret.get(), sum.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestLShift1(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM lshift1 = GetBIGNUM(t, "LShift1");
ScopedBIGNUM zero(BN_new());
if (!a || !lshift1 || !zero) {
return false;
}
BN_zero(zero.get());
ScopedBIGNUM ret(BN_new()), two(BN_new()), remainder(BN_new());
if (!ret || !two || !remainder ||
!BN_set_word(two.get(), 2) ||
!BN_add(ret.get(), a.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) ||
!BN_mul(ret.get(), a.get(), two.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) ||
!BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) ||
!BN_lshift1(ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) ||
!BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) ||
!BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) {
return false;
}
// Set the LSB to 1 and test rshift1 again.
if (BN_is_negative(lshift1.get())) {
if (!BN_sub(lshift1.get(), lshift1.get(), BN_value_one())) {
return false;
}
} else {
if (!BN_add(lshift1.get(), lshift1.get(), BN_value_one())) {
return false;
}
}
if (!BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) ||
!BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestLShift(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM lshift = GetBIGNUM(t, "LShift");
int n = 0;
if (!a || !lshift || !GetInt(t, &n, "N")) {
return false;
}
ScopedBIGNUM ret(BN_new());
if (!ret ||
!BN_lshift(ret.get(), a.get(), n) ||
!ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) ||
!BN_rshift(ret.get(), lshift.get(), n) ||
!ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestRShift(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM rshift = GetBIGNUM(t, "RShift");
int n = 0;
if (!a || !rshift || !GetInt(t, &n, "N")) {
return false;
}
ScopedBIGNUM ret(BN_new());
if (!ret ||
!BN_rshift(ret.get(), a.get(), n) ||
!ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) {
return false;
}
return true;
}
static bool TestSquare(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM square = GetBIGNUM(t, "Square");
ScopedBIGNUM zero(BN_new());
if (!a || !square || !zero) {
return false;
}
BN_zero(zero.get());
ScopedBIGNUM ret(BN_new()), remainder(BN_new());
if (!ret ||
!BN_sqr(ret.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A^2", square.get(), ret.get()) ||
!BN_mul(ret.get(), a.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) ||
!BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) {
return false;
}
BN_set_negative(a.get(), 0);
if (!BN_sqrt(ret.get(), square.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "sqrt(Square)", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestProduct(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM product = GetBIGNUM(t, "Product");
ScopedBIGNUM zero(BN_new());
if (!a || !b || !product || !zero) {
return false;
}
BN_zero(zero.get());
ScopedBIGNUM ret(BN_new()), remainder(BN_new());
if (!ret || !remainder ||
!BN_mul(ret.get(), a.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) ||
!BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) ||
!BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) {
return false;
}
return true;
}
static bool TestQuotient(FileTest *t, BN_CTX *ctx) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM quotient = GetBIGNUM(t, "Quotient");
ScopedBIGNUM remainder = GetBIGNUM(t, "Remainder");
if (!a || !b || !quotient || !remainder) {
return false;
}
ScopedBIGNUM ret(BN_new()), ret2(BN_new());
if (!ret || !ret2 ||
!BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx) ||
!ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) ||
!BN_mul(ret.get(), quotient.get(), b.get(), ctx) ||
!BN_add(ret.get(), ret.get(), remainder.get()) ||
!ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) {
return false;
}
// Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough.
BN_ULONG b_word = BN_get_word(b.get());
if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) {
BN_ULONG remainder_word = BN_get_word(remainder.get());
assert(remainder_word != (BN_ULONG)-1);
if (!BN_copy(ret.get(), a.get())) {
return false;
}
BN_ULONG ret_word = BN_div_word(ret.get(), b_word);
if (ret_word != remainder_word) {
t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1
"\n",
ret_word, remainder_word);
return false;
}
if (!ExpectBIGNUMsEqual(t, "A / B (word)", quotient.get(), ret.get())) {
return false;
}
ret_word = BN_mod_word(a.get(), b_word);
if (ret_word != remainder_word) {
t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1
"\n",
ret_word, remainder_word);
return false;
}
}
return true;
}
struct Test {
const char *name;
bool (*func)(FileTest *t, BN_CTX *ctx);
};
static const Test kTests[] = {
{"Sum", TestSum},
{"LShift1", TestLShift1},
{"LShift", TestLShift},
{"RShift", TestRShift},
{"Square", TestSquare},
{"Product", TestProduct},
{"Quotient", TestQuotient},
};
static bool RunTest(FileTest *t, void *arg) {
BN_CTX *ctx = reinterpret_cast<BN_CTX *>(arg);
for (const Test &test : kTests) {
if (t->GetType() != test.name) {
continue;
}
return test.func(t, ctx);
}
t->PrintLine("Unknown test type: %s", t->GetType().c_str());
return false;
}
static int rand_neg() {
static unsigned int neg = 0;
static const int sign[8] = {0, 0, 0, 1, 1, 0, 1, 1};
return sign[(neg++) % 8];
}
static bool test_mont(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM A(BN_new());
ScopedBIGNUM B(BN_new());
ScopedBIGNUM n(BN_new());
ScopedBN_MONT_CTX mont(BN_MONT_CTX_new());
if (!a || !b || !c || !d || !A || !B || !n || !mont) {
return false;
}
if (!BN_rand(a.get(), 100, 0, 0) ||
!BN_rand(b.get(), 100, 0, 0)) {
return false;
}
for (int i = 0; i < num2; i++) {
int bits = (200 * (i + 1)) / num2;
if (bits == 0) {
continue;
}
if (!BN_rand(n.get(), bits, 0, 1) ||
!BN_MONT_CTX_set(mont.get(), n.get(), ctx) ||
!BN_nnmod(a.get(), a.get(), n.get(), ctx) ||
!BN_nnmod(b.get(), b.get(), n.get(), ctx) ||
!BN_to_montgomery(A.get(), a.get(), mont.get(), ctx) ||
!BN_to_montgomery(B.get(), b.get(), mont.get(), ctx) ||
!BN_mod_mul_montgomery(c.get(), A.get(), B.get(), mont.get(), ctx) ||
!BN_from_montgomery(A.get(), c.get(), mont.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, &mont->N);
puts_fp(fp, " - ");
BN_print_fp(fp, A.get());
puts_fp(fp, "\n");
}
if (!BN_mod_mul(d.get(), a.get(), b.get(), n.get(), ctx) ||
!BN_sub(d.get(), d.get(), A.get())) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Montgomery multiplication test failed!\n");
return false;
}
}
return true;
}
static bool test_mod_mul(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e) {
return false;
}
for (int j = 0; j < 3; j++) {
if (!BN_rand(c.get(), 1024, 0, 0)) {
return false;
}
for (int i = 0; i < num0; i++) {
if (!BN_rand(a.get(), 475 + i * 10, 0, 0) ||
!BN_rand(b.get(), 425 + i * 11, 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
if (!BN_mod_mul(e.get(), a.get(), b.get(), c.get(), ctx)) {
ERR_print_errors_fp(stderr);
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, c.get());
if (a->neg != b->neg && !BN_is_zero(e.get())) {
// If (a*b) % c is negative, c must be added
// in order to obtain the normalized remainder
// (new with OpenSSL 0.9.7, previous versions of
// BN_mod_mul could generate negative results)
puts_fp(fp, " + ");
BN_print_fp(fp, c.get());
}
puts_fp(fp, " - ");
BN_print_fp(fp, e.get());
puts_fp(fp, "\n");
}
if (!BN_mul(d.get(), a.get(), b.get(), ctx) ||
!BN_sub(d.get(), d.get(), e.get()) ||
!BN_div(a.get(), b.get(), d.get(), c.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Modulo multiply test failed!\n");
ERR_print_errors_fp(stderr);
return false;
}
}
}
return true;
}
static bool test_mod_exp(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e) {
return false;
}
if (!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery
return false;
}
for (int i = 0; i < num2; i++) {
if (!BN_rand(a.get(), 20 + i * 5, 0, 0) ||
!BN_rand(b.get(), 2 + i, 0, 0) ||
!BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " ^ ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, c.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
}
if (!BN_exp(e.get(), a.get(), b.get(), ctx) ||
!BN_sub(e.get(), e.get(), d.get()) ||
!BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Modulo exponentiation test failed!\n");
return false;
}
}
// Regression test for carry propagation bug in sqr8x_reduction.
if (!HexToBIGNUM(&a, "050505050505") ||
!HexToBIGNUM(&b, "02") ||
!HexToBIGNUM(
&c,
"4141414141414141414141274141414141414141414141414141414141414141"
"4141414141414141414141414141414141414141414141414141414141414141"
"4141414141414141414141800000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000001") ||
!BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx) ||
!BN_mul(e.get(), a.get(), a.get(), ctx)) {
return false;
}
if (BN_cmp(d.get(), e.get()) != 0) {
fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n");
return false;
}
return true;
}
static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e) {
return false;
}
if (!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery
return false;
}
for (int i = 0; i < num2; i++) {
if (!BN_rand(a.get(), 20 + i * 5, 0, 0) ||
!BN_rand(b.get(), 2 + i, 0, 0) ||
!BN_mod_exp_mont_consttime(d.get(), a.get(), b.get(), c.get(), ctx,
NULL)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " ^ ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, c.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
}
if (!BN_exp(e.get(), a.get(), b.get(), ctx) ||
!BN_sub(e.get(), e.get(), d.get()) ||
!BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Modulo exponentiation test failed!\n");
return false;
}
}
return true;
}
// Test constant-time modular exponentiation with 1024-bit inputs,
// which on x86_64 cause a different code branch to be taken.
static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM p(BN_new());
ScopedBIGNUM m(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !p || !m || !d || !e ||
!BN_rand(m.get(), 1024, 0, 1) || // must be odd for montgomery
!BN_rand(a.get(), 1024, 0, 0)) {
return false;
}
// Zero exponent.
BN_zero(p.get());
if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx,
NULL)) {
return false;
}
if (!BN_is_one(d.get())) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
if (!BN_rand(p.get(), 1024, 0, 0)) {
return false;
}
// Zero input.
BN_zero(a.get());
if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx,
NULL)) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
// Craft an input whose Montgomery representation is 1, i.e., shorter than the
// modulus m, in order to test the const time precomputation
// scattering/gathering.
ScopedBN_MONT_CTX mont(BN_MONT_CTX_new());
if (!mont || !BN_one(a.get()) ||
!BN_MONT_CTX_set(mont.get(), m.get(), ctx) ||
!BN_from_montgomery(e.get(), a.get(), mont.get(), ctx) ||
!BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx,
NULL) ||
!BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) {
return false;
}
if (BN_cmp(a.get(), d.get()) != 0) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
// Finally, some regular test vectors.
if (!BN_rand(e.get(), 1024, 0, 0) ||
!BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx,
NULL) ||
!BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) {
return false;
}
if (BN_cmp(a.get(), d.get()) != 0) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
return true;
}
static bool test_exp(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !d || !e) {
return false;
}
for (int i = 0; i < num2; i++) {
if (!BN_rand(a.get(), 20 + i * 5, 0, 0) ||
!BN_rand(b.get(), 2 + i, 0, 0) ||
!BN_exp(d.get(), a.get(), b.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " ^ ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
}
if (!BN_one(e.get())) {
return false;
}
while (!BN_is_zero(b.get())) {
if (!BN_mul(e.get(), e.get(), a.get(), ctx) ||
!BN_sub(b.get(), b.get(), BN_value_one())) {
return false;
}
}
if (!BN_sub(e.get(), e.get(), d.get())) {
return false;
}
if (!BN_is_zero(e.get())) {
fprintf(stderr, "Exponentiation test failed!\n");
return false;
}
}
return true;
}
static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM p(BN_new());
ScopedBIGNUM r(BN_new());
if (!a || !p || !r) {
return false;
}
for (int i = 0; i < 16; i++) {
if (i < 8) {
const unsigned kPrimes[8] = {2, 3, 5, 7, 11, 13, 17, 19};
if (!BN_set_word(p.get(), kPrimes[i])) {
return false;
}
} else {
if (!BN_set_word(a.get(), 32) ||
!BN_set_word(r.get(), 2 * i + 1) ||
!BN_generate_prime_ex(p.get(), 256, 0, a.get(), r.get(), nullptr)) {
return false;
}
}
p->neg = rand_neg();
for (int j = 0; j < num2; j++) {
// construct 'a' such that it is a square modulo p, but in general not a
// proper square and not reduced modulo p
if (!BN_rand(r.get(), 256, 0, 3) ||
!BN_nnmod(r.get(), r.get(), p.get(), ctx) ||
!BN_mod_sqr(r.get(), r.get(), p.get(), ctx) ||
!BN_rand(a.get(), 256, 0, 3) ||
!BN_nnmod(a.get(), a.get(), p.get(), ctx) ||
!BN_mod_sqr(a.get(), a.get(), p.get(), ctx) ||
!BN_mul(a.get(), a.get(), r.get(), ctx)) {
return false;
}
if (rand_neg() && !BN_sub(a.get(), a.get(), p.get())) {
return false;
}
if (!BN_mod_sqrt(r.get(), a.get(), p.get(), ctx) ||
!BN_mod_sqr(r.get(), r.get(), p.get(), ctx) ||
!BN_nnmod(a.get(), a.get(), p.get(), ctx)) {
return false;
}
if (BN_cmp(a.get(), r.get()) != 0) {
fprintf(stderr, "BN_mod_sqrt failed: a = ");
BN_print_fp(stderr, a.get());
fprintf(stderr, ", r = ");
BN_print_fp(stderr, r.get());
fprintf(stderr, ", p = ");
BN_print_fp(stderr, p.get());
fprintf(stderr, "\n");
return false;
}
}
}
return true;
}
static bool test_sqrt(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM n(BN_new());
ScopedBIGNUM nn(BN_new());
ScopedBIGNUM sqrt(BN_new());
if (!n || !nn || !sqrt) {
return false;
}
// Test some random squares.
for (int i = 0; i < 100; i++) {
if (!BN_rand(n.get(), 1024 /* bit length */,
-1 /* no modification of top bits */,
0 /* don't modify bottom bit */) ||
!BN_mul(nn.get(), n.get(), n.get(), ctx) ||
!BN_sqrt(sqrt.get(), nn.get(), ctx)) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_cmp(n.get(), sqrt.get()) != 0) {
fprintf(stderr, "Bad result from BN_sqrt.\n");
return false;
}
}
// Test some non-squares.
for (int i = 0; i < 100; i++) {
if (!BN_rand(n.get(), 1024 /* bit length */,
-1 /* no modification of top bits */,
0 /* don't modify bottom bit */) ||
!BN_mul(nn.get(), n.get(), n.get(), ctx) ||
!BN_add(nn.get(), nn.get(), BN_value_one())) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_sqrt(sqrt.get(), nn.get(), ctx)) {
char *nn_str = BN_bn2dec(nn.get());
fprintf(stderr, "BIO_sqrt didn't fail on a non-square: %s\n", nn_str);
OPENSSL_free(nn_str);
}
}
return true;
}
static bool TestBN2BinPadded(BN_CTX *ctx) {
uint8_t zeros[256], out[256], reference[128];
memset(zeros, 0, sizeof(zeros));
// Test edge case at 0.
ScopedBIGNUM n(BN_new());
if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in an empty buffer.\n");
return false;
}
memset(out, -1, sizeof(out));
if (!BN_bn2bin_padded(out, sizeof(out), n.get())) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n");
return false;
}
if (memcmp(zeros, out, sizeof(out))) {
fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n");
return false;
}
// Test a random numbers at various byte lengths.
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
if (!BN_rand(n.get(), bytes * 8, 0 /* make sure top bit is 1 */,
0 /* don't modify bottom bit */)) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_num_bytes(n.get()) != bytes ||
BN_bn2bin(n.get(), reference) != bytes) {
fprintf(stderr, "Bad result from BN_rand; bytes.\n");
return false;
}
// Empty buffer should fail.
if (BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"BN_bn2bin_padded incorrectly succeeded on empty buffer.\n");
return false;
}
// One byte short should fail.
if (BN_bn2bin_padded(out, bytes - 1, n.get())) {
fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n");
return false;
}
// Exactly right size should encode.
if (!BN_bn2bin_padded(out, bytes, n.get()) ||
memcmp(out, reference, bytes) != 0) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up one byte extra.
if (!BN_bn2bin_padded(out, bytes + 1, n.get()) ||
memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up to 256.
if (!BN_bn2bin_padded(out, sizeof(out), n.get()) ||
memcmp(out + sizeof(out) - bytes, reference, bytes) ||
memcmp(out, zeros, sizeof(out) - bytes)) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
}
return true;
}
static int DecimalToBIGNUM(ScopedBIGNUM *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_dec2bn(&raw, in);
out->reset(raw);
return ret;
}
static bool TestDec2BN(BN_CTX *ctx) {
ScopedBIGNUM bn;
int ret = DecimalToBIGNUM(&bn, "0");
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored");
if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
return true;
}
static bool TestHex2BN(BN_CTX *ctx) {
ScopedBIGNUM bn;
int ret = HexToBIGNUM(&bn, "0");
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored");
if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
return true;
}
static ScopedBIGNUM ASCIIToBIGNUM(const char *in) {
BIGNUM *raw = NULL;
if (!BN_asc2bn(&raw, in)) {
return nullptr;
}
return ScopedBIGNUM(raw);
}
static bool TestASC2BN(BN_CTX *ctx) {
ScopedBIGNUM bn = ASCIIToBIGNUM("0");
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("256");
if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-42");
if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("0x1234");
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("0X1234");
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-0xabcd");
if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-0");
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("123trailing garbage is ignored");
if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
return true;
}
struct MPITest {
const char *base10;
const char *mpi;
size_t mpi_len;
};
static const MPITest kMPITests[] = {
{ "0", "\x00\x00\x00\x00", 4 },
{ "1", "\x00\x00\x00\x01\x01", 5 },
{ "-1", "\x00\x00\x00\x01\x81", 5 },
{ "128", "\x00\x00\x00\x02\x00\x80", 6 },
{ "256", "\x00\x00\x00\x02\x01\x00", 6 },
{ "-256", "\x00\x00\x00\x02\x81\x00", 6 },
};
static bool TestMPI() {
uint8_t scratch[8];
for (size_t i = 0; i < sizeof(kMPITests) / sizeof(kMPITests[0]); i++) {
const MPITest &test = kMPITests[i];
ScopedBIGNUM bn(ASCIIToBIGNUM(test.base10));
const size_t mpi_len = BN_bn2mpi(bn.get(), NULL);
if (mpi_len > sizeof(scratch)) {
fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n",
(unsigned)i);
return false;
}
const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch);
if (mpi_len != mpi_len2) {
fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i);
return false;
}
if (mpi_len != test.mpi_len ||
memcmp(test.mpi, scratch, mpi_len) != 0) {
fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i);
hexdump(stderr, "Expected: ", test.mpi, test.mpi_len);
hexdump(stderr, "Got: ", scratch, mpi_len);
return false;
}
ScopedBIGNUM bn2(BN_mpi2bn(scratch, mpi_len, NULL));
if (bn2.get() == nullptr) {
fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i);
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i);
return false;
}
}
return true;
}
static bool TestRand() {
ScopedBIGNUM bn(BN_new());
if (!bn) {
return false;
}
// Test BN_rand accounts for degenerate cases with |top| and |bottom|
// parameters.
if (!BN_rand(bn.get(), 0, 0 /* top */, 0 /* bottom */) ||
!BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 0, 1 /* top */, 1 /* bottom */) ||
!BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, 0 /* top */, 0 /* bottom */) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, 1 /* top */, 0 /* bottom */) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, -1 /* top */, 1 /* bottom */) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 2, 1 /* top */, 0 /* bottom */) ||
!BN_is_word(bn.get(), 3)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
return true;
}
struct ASN1Test {
const char *value_ascii;
const char *der;
size_t der_len;
};
static const ASN1Test kASN1Tests[] = {
{"0", "\x02\x01\x00", 3},
{"1", "\x02\x01\x01", 3},
{"127", "\x02\x01\x7f", 3},
{"128", "\x02\x02\x00\x80", 4},
{"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7},
{"0x0102030405060708",
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
{"0xffffffffffffffff",
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
};
struct ASN1InvalidTest {
const char *der;
size_t der_len;
};
static const ASN1InvalidTest kASN1InvalidTests[] = {
// Bad tag.
{"\x03\x01\x00", 3},
// Empty contents.
{"\x02\x00", 2},
};
// kASN1BuggyTests contains incorrect encodings and the corresponding, expected
// results of |BN_parse_asn1_unsigned_buggy| given that input.
static const ASN1Test kASN1BuggyTests[] = {
// Negative numbers.
{"128", "\x02\x01\x80", 3},
{"255", "\x02\x01\xff", 3},
// Unnecessary leading zeros.
{"1", "\x02\x02\x00\x01", 4},
};
static bool TestASN1() {
for (const ASN1Test &test : kASN1Tests) {
ScopedBIGNUM bn = ASCIIToBIGNUM(test.value_ascii);
if (!bn) {
return false;
}
// Test that the input is correctly parsed.
ScopedBIGNUM bn2(BN_new());
if (!bn2) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "Bad parse.\n");
return false;
}
// Test the value serializes correctly.
CBB cbb;
uint8_t *der;
size_t der_len;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
!BN_marshal_asn1(&cbb, bn.get()) ||
!CBB_finish(&cbb, &der, &der_len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes delete_der(der);
if (der_len != test.der_len ||
memcmp(der, reinterpret_cast<const uint8_t*>(test.der), der_len) != 0) {
fprintf(stderr, "Bad serialization.\n");
return false;
}
// |BN_parse_asn1_unsigned_buggy| parses all valid input.
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "Bad parse.\n");
return false;
}
}
for (const ASN1InvalidTest &test : kASN1InvalidTests) {
ScopedBIGNUM bn(BN_new());
if (!bn) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_parse_asn1_unsigned(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
// All tests in kASN1InvalidTests are also rejected by
// |BN_parse_asn1_unsigned_buggy|.
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
}
for (const ASN1Test &test : kASN1BuggyTests) {
// These broken encodings are rejected by |BN_parse_asn1_unsigned|.
ScopedBIGNUM bn(BN_new());
if (!bn) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_parse_asn1_unsigned(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
// However |BN_parse_asn1_unsigned_buggy| accepts them.
ScopedBIGNUM bn2 = ASCIIToBIGNUM(test.value_ascii);
if (!bn2) {
return false;
}
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "\"Bad\" parse.\n");
return false;
}
}
// Serializing negative numbers is not supported.
ScopedBIGNUM bn = ASCIIToBIGNUM("-1");
if (!bn) {
return false;
}
CBB cbb;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
BN_marshal_asn1(&cbb, bn.get())) {
fprintf(stderr, "Serialized negative number.\n");
CBB_cleanup(&cbb);
return false;
}
ERR_clear_error();
CBB_cleanup(&cbb);
return true;
}
static bool TestNegativeZero(BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
if (!a || !b || !c || !d) {
return false;
}
// Test that BN_mul never gives negative zero.
if (!BN_set_word(a.get(), 1)) {
return false;
}
BN_set_negative(a.get(), 1);
BN_zero(b.get());
if (!BN_mul(c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
fprintf(stderr, "Multiplication test failed!\n");
return false;
}
// Test that BN_div never gives negative zero in the quotient.
if (!BN_set_word(a.get(), 1) ||
!BN_set_word(b.get(), 2)) {
return false;
}
BN_set_negative(a.get(), 1);
if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (!BN_is_zero(d.get()) || BN_is_negative(d.get())) {
fprintf(stderr, "Division test failed!\n");
return false;
}
// Test that BN_div never gives negative zero in the remainder.
if (!BN_set_word(b.get(), 1)) {
return false;
}
if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
fprintf(stderr, "Division test failed!\n");
return false;
}
return true;
}
static bool TestBadModulus(BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM zero(BN_new());
ScopedBN_MONT_CTX mont(BN_MONT_CTX_new());
if (!a || !b || !zero || !mont) {
return false;
}
BN_zero(zero.get());
if (BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx)) {
fprintf(stderr, "Division by zero succeeded!\n");
return false;
}
ERR_clear_error();
if (BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) {
fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n");
return false;
}
ERR_clear_error();
if (BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) {
fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n");
return 0;
}
ERR_clear_error();
if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(),
zero.get(), ctx, nullptr)) {
fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus succeeded!\n");
return 0;
}
ERR_clear_error();
if (BN_MONT_CTX_set(mont.get(), zero.get(), ctx)) {
fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n");
return false;
}
ERR_clear_error();
// Some operations also may not be used with an even modulus.
if (!BN_set_word(b.get(), 16)) {
return false;
}
if (BN_MONT_CTX_set(mont.get(), b.get(), ctx)) {
fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n");
return false;
}
ERR_clear_error();
if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(),
b.get(), ctx, nullptr)) {
fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus succeeded!\n");
return 0;
}
ERR_clear_error();
return true;
}
// TestExpModZero tests that 1**0 mod 1 == 0.
static bool TestExpModZero() {
ScopedBIGNUM zero(BN_new()), a(BN_new()), r(BN_new());
if (!zero || !a || !r || !BN_rand(a.get(), 1024, 0, 0)) {
return false;
}
BN_zero(zero.get());
if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) ||
!BN_is_zero(r.get()) ||
!BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr,
nullptr) ||
!BN_is_zero(r.get()) ||
!BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(),
nullptr, nullptr) ||
!BN_is_zero(r.get()) ||
!BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr,
nullptr) ||
!BN_is_zero(r.get())) {
return false;
}
return true;
}
static bool TestSmallPrime(BN_CTX *ctx) {
static const unsigned kBits = 10;
ScopedBIGNUM r(BN_new());
if (!r || !BN_generate_prime_ex(r.get(), static_cast<int>(kBits), 0, NULL,
NULL, NULL)) {
return false;
}
if (BN_num_bits(r.get()) != kBits) {
fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits,
BN_num_bits(r.get()));
return false;
}
return true;
}