This commit was manufactured by cvs2svn to create tag
'gdb_5_2-2002-04-29-release'.

Sprout from gdb_5_2-branch 2002-04-29 23:20:22 UTC gdbadmin <gdbadmin@sourceware.org> 'GDB 5.2'
Delete:
    gdb/avr-tdep.c
    gdb/config/avr/avr.mt
diff --git a/gdb/avr-tdep.c b/gdb/avr-tdep.c
deleted file mode 100644
index 71c7796..0000000
--- a/gdb/avr-tdep.c
+++ /dev/null
@@ -1,1374 +0,0 @@
-/* Target-dependent code for Atmel AVR, for GDB.
-   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
-   Free Software Foundation, Inc.
-
-   This file is part of GDB.
-
-   This program is free software; you can redistribute it and/or modify
-   it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
-   (at your option) any later version.
-
-   This program is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-   GNU General Public License for more details.
-
-   You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
-
-/* Contributed by Theodore A. Roth, troth@verinet.com */
-
-/* Portions of this file were taken from the original gdb-4.18 patch developed
-   by Denis Chertykov, denisc@overta.ru */
-
-#include "defs.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "inferior.h"
-#include "symfile.h"
-#include "arch-utils.h"
-#include "regcache.h"
-
-/* AVR Background:
-
-   (AVR micros are pure Harvard Architecture processors.)
-
-   The AVR family of microcontrollers have three distinctly different memory
-   spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
-   the most part to store program instructions. The sram is 8 bits wide and is
-   used for the stack and the heap. Some devices lack sram and some can have
-   an additional external sram added on as a peripheral.
-
-   The eeprom is 8 bits wide and is used to store data when the device is
-   powered down. Eeprom is not directly accessible, it can only be accessed
-   via io-registers using a special algorithm. Accessing eeprom via gdb's
-   remote serial protocol ('m' or 'M' packets) looks difficult to do and is
-   not included at this time.
-
-   [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
-   written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to
-   work, the remote target must be able to handle eeprom accesses and perform
-   the address translation.]
-
-   All three memory spaces have physical addresses beginning at 0x0. In
-   addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
-   bytes instead of the 16 bit wide words used by the real device for the
-   Program Counter.
-
-   In order for remote targets to work correctly, extra bits must be added to
-   addresses before they are send to the target or received from the target
-   via the remote serial protocol. The extra bits are the MSBs and are used to
-   decode which memory space the address is referring to. */
-
-#undef XMALLOC
-#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
-
-#undef EXTRACT_INSN
-#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
-
-/* Constants: prefixed with AVR_ to avoid name space clashes */
-
-enum
-{
-  AVR_REG_W = 24,
-  AVR_REG_X = 26,
-  AVR_REG_Y = 28,
-  AVR_FP_REGNUM = 28,
-  AVR_REG_Z = 30,
-
-  AVR_SREG_REGNUM = 32,
-  AVR_SP_REGNUM = 33,
-  AVR_PC_REGNUM = 34,
-
-  AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
-  AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
-
-  AVR_PC_REG_INDEX = 35,	/* index into array of registers */
-
-  AVR_MAX_PROLOGUE_SIZE = 56,	/* bytes */
-
-  /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
-  AVR_MAX_PUSHES = 18,
-
-  /* Number of the last pushed register. r17 for current avr-gcc */
-  AVR_LAST_PUSHED_REGNUM = 17,
-
-  /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
-     bits? Do these have to match the bfd vma values?. It sure would make
-     things easier in the future if they didn't need to match.
-
-     Note: I chose these values so as to be consistent with bfd vma
-     addresses.
-
-     TRoth/2002-04-08: There is already a conflict with very large programs
-     in the mega128. The mega128 has 128K instruction bytes (64K words),
-     thus the Most Significant Bit is 0x10000 which gets masked off my
-     AVR_MEM_MASK.
-
-     The problem manifests itself when trying to set a breakpoint in a
-     function which resides in the upper half of the instruction space and
-     thus requires a 17-bit address.
-
-     For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
-     from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
-     but could be for some remote targets by just adding the correct offset
-     to the address and letting the remote target handle the low-level
-     details of actually accessing the eeprom. */
-
-  AVR_IMEM_START = 0x00000000,	/* INSN memory */
-  AVR_SMEM_START = 0x00800000,	/* SRAM memory */
-#if 1
-  /* No eeprom mask defined */
-  AVR_MEM_MASK = 0x00f00000,	/* mask to determine memory space */
-#else
-  AVR_EMEM_START = 0x00810000,	/* EEPROM memory */
-  AVR_MEM_MASK = 0x00ff0000,	/* mask to determine memory space */
-#endif
-};
-
-/* Any function with a frame looks like this
-   .......    <-SP POINTS HERE
-   LOCALS1    <-FP POINTS HERE
-   LOCALS0
-   SAVED FP
-   SAVED R3
-   SAVED R2
-   RET PC
-   FIRST ARG
-   SECOND ARG */
-
-struct frame_extra_info
-{
-  CORE_ADDR return_pc;
-  CORE_ADDR args_pointer;
-  int locals_size;
-  int framereg;
-  int framesize;
-  int is_main;
-};
-
-struct gdbarch_tdep
-{
-  /* FIXME: TRoth: is there anything to put here? */
-  int foo;
-};
-
-/* Lookup the name of a register given it's number. */
-
-static char *
-avr_register_name (int regnum)
-{
-  static char *register_names[] = {
-    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
-    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
-    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
-    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
-    "SREG", "SP", "PC"
-  };
-  if (regnum < 0)
-    return NULL;
-  if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
-    return NULL;
-  return register_names[regnum];
-}
-
-/* Index within `registers' of the first byte of the space for
-   register REGNUM.  */
-
-static int
-avr_register_byte (int regnum)
-{
-  if (regnum < AVR_PC_REGNUM)
-    return regnum;
-  else
-    return AVR_PC_REG_INDEX;
-}
-
-/* Number of bytes of storage in the actual machine representation for
-   register REGNUM.  */
-
-static int
-avr_register_raw_size (int regnum)
-{
-  switch (regnum)
-    {
-    case AVR_PC_REGNUM:
-      return 4;
-    case AVR_SP_REGNUM:
-    case AVR_FP_REGNUM:
-      return 2;
-    default:
-      return 1;
-    }
-}
-
-/* Number of bytes of storage in the program's representation
-   for register N.  */
-
-static int
-avr_register_virtual_size (int regnum)
-{
-  return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
-}
-
-/* Return the GDB type object for the "standard" data type
-   of data in register N.  */
-
-static struct type *
-avr_register_virtual_type (int regnum)
-{
-  switch (regnum)
-    {
-    case AVR_PC_REGNUM:
-      return builtin_type_unsigned_long;
-    case AVR_SP_REGNUM:
-      return builtin_type_unsigned_short;
-    default:
-      return builtin_type_unsigned_char;
-    }
-}
-
-/* Instruction address checks and convertions. */
-
-static CORE_ADDR
-avr_make_iaddr (CORE_ADDR x)
-{
-  return ((x) | AVR_IMEM_START);
-}
-
-static int
-avr_iaddr_p (CORE_ADDR x)
-{
-  return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
-}
-
-/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
-   devices are already up to 128KBytes of flash space.
-
-   TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
-
-static CORE_ADDR
-avr_convert_iaddr_to_raw (CORE_ADDR x)
-{
-  return ((x) & 0xffffffff);
-}
-
-/* SRAM address checks and convertions. */
-
-static CORE_ADDR
-avr_make_saddr (CORE_ADDR x)
-{
-  return ((x) | AVR_SMEM_START);
-}
-
-static int
-avr_saddr_p (CORE_ADDR x)
-{
-  return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
-}
-
-static CORE_ADDR
-avr_convert_saddr_to_raw (CORE_ADDR x)
-{
-  return ((x) & 0xffffffff);
-}
-
-/* EEPROM address checks and convertions. I don't know if these will ever
-   actually be used, but I've added them just the same. TRoth */
-
-/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
-   programs in the mega128. */
-
-/*  static CORE_ADDR */
-/*  avr_make_eaddr (CORE_ADDR x) */
-/*  { */
-/*    return ((x) | AVR_EMEM_START); */
-/*  } */
-
-/*  static int */
-/*  avr_eaddr_p (CORE_ADDR x) */
-/*  { */
-/*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
-/*  } */
-
-/*  static CORE_ADDR */
-/*  avr_convert_eaddr_to_raw (CORE_ADDR x) */
-/*  { */
-/*    return ((x) & 0xffffffff); */
-/*  } */
-
-/* Convert from address to pointer and vice-versa. */
-
-static void
-avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
-{
-  /* Is it a code address?  */
-  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
-      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
-    {
-      store_unsigned_integer (buf, TYPE_LENGTH (type),
-			      avr_convert_iaddr_to_raw (addr));
-    }
-  else
-    {
-      /* Strip off any upper segment bits.  */
-      store_unsigned_integer (buf, TYPE_LENGTH (type),
-			      avr_convert_saddr_to_raw (addr));
-    }
-}
-
-static CORE_ADDR
-avr_pointer_to_address (struct type *type, void *buf)
-{
-  CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
-
-  if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
-    {
-      fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
-			  addr);
-      fprintf_unfiltered (gdb_stderr,
-			  "+++ If you see this, please send me an email <troth@verinet.com>\n");
-    }
-
-  /* Is it a code address?  */
-  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
-      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
-      || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
-    return avr_make_iaddr (addr);
-  else
-    return avr_make_saddr (addr);
-}
-
-static CORE_ADDR
-avr_read_pc (ptid_t ptid)
-{
-  ptid_t save_ptid;
-  CORE_ADDR pc;
-  CORE_ADDR retval;
-
-  save_ptid = inferior_ptid;
-  inferior_ptid = ptid;
-  pc = (int) read_register (AVR_PC_REGNUM);
-  inferior_ptid = save_ptid;
-  retval = avr_make_iaddr (pc);
-  return retval;
-}
-
-static void
-avr_write_pc (CORE_ADDR val, ptid_t ptid)
-{
-  ptid_t save_ptid;
-
-  save_ptid = inferior_ptid;
-  inferior_ptid = ptid;
-  write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
-  inferior_ptid = save_ptid;
-}
-
-static CORE_ADDR
-avr_read_sp (void)
-{
-  return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
-}
-
-static void
-avr_write_sp (CORE_ADDR val)
-{
-  write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
-}
-
-static CORE_ADDR
-avr_read_fp (void)
-{
-  return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
-}
-
-/* Translate a GDB virtual ADDR/LEN into a format the remote target
-   understands.  Returns number of bytes that can be transfered
-   starting at TARG_ADDR.  Return ZERO if no bytes can be transfered
-   (segmentation fault).
-
-   TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
-   pointer? */
-
-static void
-avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
-				   CORE_ADDR *targ_addr, int *targ_len)
-{
-  long out_addr;
-  long out_len;
-
-  /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
-     point and see if the high bit are set with the masks that we want. */
-
-  *targ_addr = memaddr;
-  *targ_len = nr_bytes;
-}
-
-/* Function pointers obtained from the target are half of what gdb expects so
-   multiply by 2. */
-
-static CORE_ADDR
-avr_convert_from_func_ptr_addr (CORE_ADDR addr)
-{
-  return addr * 2;
-}
-
-/* avr_scan_prologue is also used as the frame_init_saved_regs().
-
-   Put here the code to store, into fi->saved_regs, the addresses of
-   the saved registers of frame described by FRAME_INFO.  This
-   includes special registers such as pc and fp saved in special ways
-   in the stack frame.  sp is even more special: the address we return
-   for it IS the sp for the next frame. */
-
-/* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
-   This function decodes a AVR function prologue to determine:
-     1) the size of the stack frame
-     2) which registers are saved on it
-     3) the offsets of saved regs
-   This information is stored in the "extra_info" field of the frame_info.
-
-   A typical AVR function prologue might look like this:
-        push rXX
-        push r28
-        push r29
-        in r28,__SP_L__
-        in r29,__SP_H__
-        sbiw r28,<LOCALS_SIZE>
-        in __tmp_reg__,__SREG__
-        cli
-        out __SP_L__,r28
-        out __SREG__,__tmp_reg__
-        out __SP_H__,r29
-
-  A `-mcall-prologues' prologue look like this:
-        ldi r26,<LOCALS_SIZE>
-        ldi r27,<LOCALS_SIZE>/265
-        ldi r30,pm_lo8(.L_foo_body)
-        ldi r31,pm_hi8(.L_foo_body)
-        rjmp __prologue_saves__+RRR
-  .L_foo_body:  */
-
-static void
-avr_scan_prologue (struct frame_info *fi)
-{
-  CORE_ADDR prologue_start;
-  CORE_ADDR prologue_end;
-  int i;
-  unsigned short insn;
-  int regno;
-  int scan_stage = 0;
-  char *name;
-  struct minimal_symbol *msymbol;
-  int prologue_len;
-  unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
-  int vpc = 0;
-
-  fi->extra_info->framereg = AVR_SP_REGNUM;
-
-  if (find_pc_partial_function
-      (fi->pc, &name, &prologue_start, &prologue_end))
-    {
-      struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
-      if (sal.line == 0)	/* no line info, use current PC */
-	prologue_end = fi->pc;
-      else if (sal.end < prologue_end)	/* next line begins after fn end */
-	prologue_end = sal.end;	/* (probably means no prologue)  */
-    }
-  else
-    /* We're in the boondocks: allow for */
-    /* 19 pushes, an add, and "mv fp,sp" */
-    prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
-
-  prologue_end = min (prologue_end, fi->pc);
-
-  /* Search the prologue looking for instructions that set up the
-     frame pointer, adjust the stack pointer, and save registers.  */
-
-  fi->extra_info->framesize = 0;
-  prologue_len = prologue_end - prologue_start;
-  read_memory (prologue_start, prologue, prologue_len);
-
-  /* Scanning main()'s prologue
-     ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
-     ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
-     out __SP_H__,r29
-     out __SP_L__,r28 */
-
-  if (name && strcmp ("main", name) == 0 && prologue_len == 8)
-    {
-      CORE_ADDR locals;
-      unsigned char img[] = {
-	0xde, 0xbf,		/* out __SP_H__,r29 */
-	0xcd, 0xbf		/* out __SP_L__,r28 */
-      };
-
-      fi->extra_info->framereg = AVR_FP_REGNUM;
-      insn = EXTRACT_INSN (&prologue[vpc]);
-      /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
-      if ((insn & 0xf0f0) == 0xe0c0)
-	{
-	  locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
-	  insn = EXTRACT_INSN (&prologue[vpc + 2]);
-	  /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
-	  if ((insn & 0xf0f0) == 0xe0d0)
-	    {
-	      locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
-	      if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
-		{
-		  fi->frame = locals;
-
-		  /* TRoth: Does -1 mean we're in main? */
-		  fi->extra_info->is_main = 1;
-		  return;
-		}
-	    }
-	}
-    }
-
-  /* Scanning `-mcall-prologues' prologue
-     FIXME: mega prologue have a 12 bytes long */
-
-  while (prologue_len <= 12)	/* I'm use while to avoit many goto's */
-    {
-      int loc_size;
-      int body_addr;
-      unsigned num_pushes;
-
-      insn = EXTRACT_INSN (&prologue[vpc]);
-      /* ldi r26,<LOCALS_SIZE> */
-      if ((insn & 0xf0f0) != 0xe0a0)
-	break;
-      loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
-
-      insn = EXTRACT_INSN (&prologue[vpc + 2]);
-      /* ldi r27,<LOCALS_SIZE> / 256 */
-      if ((insn & 0xf0f0) != 0xe0b0)
-	break;
-      loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
-
-      insn = EXTRACT_INSN (&prologue[vpc + 4]);
-      /* ldi r30,pm_lo8(.L_foo_body) */
-      if ((insn & 0xf0f0) != 0xe0e0)
-	break;
-      body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
-
-      insn = EXTRACT_INSN (&prologue[vpc + 6]);
-      /* ldi r31,pm_hi8(.L_foo_body) */
-      if ((insn & 0xf0f0) != 0xe0f0)
-	break;
-      body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
-
-      if (body_addr != (prologue_start + 10) / 2)
-	break;
-
-      msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
-      if (!msymbol)
-	break;
-
-      /* FIXME: prologue for mega have a JMP instead of RJMP */
-      insn = EXTRACT_INSN (&prologue[vpc + 8]);
-      /* rjmp __prologue_saves__+RRR */
-      if ((insn & 0xf000) != 0xc000)
-	break;
-
-      /* Extract PC relative offset from RJMP */
-      i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
-      /* Convert offset to byte addressable mode */
-      i *= 2;
-      /* Destination address */
-      i += vpc + prologue_start + 10;
-      /* Resovle offset (in words) from __prologue_saves__ symbol.
-         Which is a pushes count in `-mcall-prologues' mode */
-      num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
-
-      if (num_pushes > AVR_MAX_PUSHES)
-	num_pushes = 0;
-
-      if (num_pushes)
-	{
-	  int from;
-	  fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes;
-	  if (num_pushes >= 2)
-	    fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
-	  i = 0;
-	  for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
-	       from <= AVR_LAST_PUSHED_REGNUM; ++from)
-	    fi->saved_regs[from] = ++i;
-	}
-      fi->extra_info->locals_size = loc_size;
-      fi->extra_info->framesize = loc_size + num_pushes;
-      fi->extra_info->framereg = AVR_FP_REGNUM;
-      return;
-    }
-
-  /* Scan interrupt or signal function */
-
-  if (prologue_len >= 12)
-    {
-      unsigned char img[] = {
-	0x78, 0x94,		/* sei */
-	0x1f, 0x92,		/* push r1 */
-	0x0f, 0x92,		/* push r0 */
-	0x0f, 0xb6,		/* in r0,0x3f SREG */
-	0x0f, 0x92,		/* push r0 */
-	0x11, 0x24		/* clr r1 */
-      };
-      if (memcmp (prologue, img, sizeof (img)) == 0)
-	{
-	  vpc += sizeof (img);
-	  fi->saved_regs[0] = 2;
-	  fi->saved_regs[1] = 1;
-	  fi->extra_info->framesize += 3;
-	}
-      else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
-	{
-	  vpc += sizeof (img) - 1;
-	  fi->saved_regs[0] = 2;
-	  fi->saved_regs[1] = 1;
-	  fi->extra_info->framesize += 3;
-	}
-    }
-
-  /* First stage of the prologue scanning.
-     Scan pushes */
-
-  for (; vpc <= prologue_len; vpc += 2)
-    {
-      insn = EXTRACT_INSN (&prologue[vpc]);
-      if ((insn & 0xfe0f) == 0x920f)	/* push rXX */
-	{
-	  /* Bits 4-9 contain a mask for registers R0-R32. */
-	  regno = (insn & 0x1f0) >> 4;
-	  ++fi->extra_info->framesize;
-	  fi->saved_regs[regno] = fi->extra_info->framesize;
-	  scan_stage = 1;
-	}
-      else
-	break;
-    }
-
-  /* Second stage of the prologue scanning.
-     Scan:
-     in r28,__SP_L__
-     in r29,__SP_H__ */
-
-  if (scan_stage == 1 && vpc + 4 <= prologue_len)
-    {
-      unsigned char img[] = {
-	0xcd, 0xb7,		/* in r28,__SP_L__ */
-	0xde, 0xb7		/* in r29,__SP_H__ */
-      };
-      unsigned short insn1;
-
-      if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
-	{
-	  vpc += 4;
-	  fi->extra_info->framereg = AVR_FP_REGNUM;
-	  scan_stage = 2;
-	}
-    }
-
-  /* Third stage of the prologue scanning. (Really two stages)
-     Scan for:
-     sbiw r28,XX or subi r28,lo8(XX)
-     sbci r29,hi8(XX)
-     in __tmp_reg__,__SREG__
-     cli
-     out __SP_L__,r28
-     out __SREG__,__tmp_reg__
-     out __SP_H__,r29 */
-
-  if (scan_stage == 2 && vpc + 12 <= prologue_len)
-    {
-      int locals_size = 0;
-      unsigned char img[] = {
-	0x0f, 0xb6,		/* in r0,0x3f */
-	0xf8, 0x94,		/* cli */
-	0xcd, 0xbf,		/* out 0x3d,r28 ; SPL */
-	0x0f, 0xbe,		/* out 0x3f,r0  ; SREG */
-	0xde, 0xbf		/* out 0x3e,r29 ; SPH */
-      };
-      unsigned char img_sig[] = {
-	0xcd, 0xbf,		/* out 0x3d,r28 ; SPL */
-	0xde, 0xbf		/* out 0x3e,r29 ; SPH */
-      };
-      unsigned char img_int[] = {
-	0xf8, 0x94,		/* cli */
-	0xcd, 0xbf,		/* out 0x3d,r28 ; SPL */
-	0x78, 0x94,		/* sei */
-	0xde, 0xbf		/* out 0x3e,r29 ; SPH */
-      };
-
-      insn = EXTRACT_INSN (&prologue[vpc]);
-      vpc += 2;
-      if ((insn & 0xff30) == 0x9720)	/* sbiw r28,XXX */
-	locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
-      else if ((insn & 0xf0f0) == 0x50c0)	/* subi r28,lo8(XX) */
-	{
-	  locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
-	  insn = EXTRACT_INSN (&prologue[vpc]);
-	  vpc += 2;
-	  locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
-	}
-      else
-	return;
-      fi->extra_info->locals_size = locals_size;
-      fi->extra_info->framesize += locals_size;
-    }
-}
-
-/* This function actually figures out the frame address for a given pc and
-   sp.  This is tricky  because we sometimes don't use an explicit
-   frame pointer, and the previous stack pointer isn't necessarily recorded
-   on the stack.  The only reliable way to get this info is to
-   examine the prologue.  */
-
-static void
-avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
-  int reg;
-
-  if (fi->next)
-    fi->pc = FRAME_SAVED_PC (fi->next);
-
-  fi->extra_info = (struct frame_extra_info *)
-    frame_obstack_alloc (sizeof (struct frame_extra_info));
-  frame_saved_regs_zalloc (fi);
-
-  fi->extra_info->return_pc = 0;
-  fi->extra_info->args_pointer = 0;
-  fi->extra_info->locals_size = 0;
-  fi->extra_info->framereg = 0;
-  fi->extra_info->framesize = 0;
-  fi->extra_info->is_main = 0;
-
-  avr_scan_prologue (fi);
-
-  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-    {
-      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
-         by assuming it's always FP.  */
-      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, fi->frame);
-    }
-  else if (!fi->next)		/* this is the innermost frame? */
-    fi->frame = read_register (fi->extra_info->framereg);
-  else if (fi->extra_info->is_main != 1)	/* not the innermost frame, not `main' */
-    /* If we have an next frame,  the callee saved it. */
-    {
-      struct frame_info *next_fi = fi->next;
-      if (fi->extra_info->framereg == AVR_SP_REGNUM)
-	fi->frame =
-	  next_fi->frame + 2 /* ret addr */  + next_fi->extra_info->framesize;
-      /* FIXME: I don't analyse va_args functions  */
-      else
-	{
-	  CORE_ADDR fp = 0;
-	  CORE_ADDR fp1 = 0;
-	  unsigned int fp_low, fp_high;
-
-	  /* Scan all frames */
-	  for (; next_fi; next_fi = next_fi->next)
-	    {
-	      /* look for saved AVR_FP_REGNUM */
-	      if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
-		fp = next_fi->saved_regs[AVR_FP_REGNUM];
-	      /* look for saved AVR_FP_REGNUM + 1 */
-	      if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
-		fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
-	    }
-	  fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
-		    : read_register (AVR_FP_REGNUM)) & 0xff;
-	  fp_high =
-	    (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
-	     read_register (AVR_FP_REGNUM + 1)) & 0xff;
-	  fi->frame = fp_low | (fp_high << 8);
-	}
-    }
-
-  /* TRoth: Do we want to do this if we are in main? I don't think we should
-     since return_pc makes no sense when we are in main. */
-
-  if ((fi->pc) && (fi->extra_info->is_main == 0))	/* We are not in CALL_DUMMY */
-    {
-      CORE_ADDR addr;
-      int i;
-
-      addr = fi->frame + fi->extra_info->framesize + 1;
-
-      /* Return address in stack in different endianness */
-
-      fi->extra_info->return_pc =
-	read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
-      fi->extra_info->return_pc |=
-	read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
-
-      /* This return address in words,
-         must be converted to the bytes address */
-      fi->extra_info->return_pc *= 2;
-
-      /* Resolve a pushed registers addresses */
-      for (i = 0; i < NUM_REGS; i++)
-	{
-	  if (fi->saved_regs[i])
-	    fi->saved_regs[i] = addr - fi->saved_regs[i];
-	}
-    }
-}
-
-/* Restore the machine to the state it had before the current frame was
-   created.  Usually used either by the "RETURN" command, or by
-   call_function_by_hand after the dummy_frame is finished. */
-
-static void
-avr_pop_frame (void)
-{
-  unsigned regnum;
-  CORE_ADDR saddr;
-  struct frame_info *frame = get_current_frame ();
-
-  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
-    {
-      generic_pop_dummy_frame ();
-    }
-  else
-    {
-      /* TRoth: Why only loop over 8 registers? */
-
-      for (regnum = 0; regnum < 8; regnum++)
-	{
-	  /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
-	     actual value we want, not the address of the value we want.  */
-	  if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
-	    {
-	      saddr = avr_make_saddr (frame->saved_regs[regnum]);
-	      write_register (regnum,
-			      read_memory_unsigned_integer (saddr, 1));
-	    }
-	  else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
-	    write_register (regnum, frame->frame + 2);
-	}
-
-      /* Don't forget the update the PC too!  */
-      write_pc (frame->extra_info->return_pc);
-    }
-  flush_cached_frames ();
-}
-
-/* Return the saved PC from this frame. */
-
-static CORE_ADDR
-avr_frame_saved_pc (struct frame_info *frame)
-{
-  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
-    return generic_read_register_dummy (frame->pc, frame->frame,
-					AVR_PC_REGNUM);
-  else
-    return frame->extra_info->return_pc;
-}
-
-static CORE_ADDR
-avr_saved_pc_after_call (struct frame_info *frame)
-{
-  unsigned char m1, m2;
-  unsigned int sp = read_register (AVR_SP_REGNUM);
-  m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
-  m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
-  return (m2 | (m1 << 8)) * 2;
-}
-
-/* Figure out where in REGBUF the called function has left its return value.
-   Copy that into VALBUF. */
-
-static void
-avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
-{
-  int wordsize, len;
-
-  wordsize = 2;
-
-  len = TYPE_LENGTH (type);
-
-  switch (len)
-    {
-    case 1:			/* (char) */
-    case 2:			/* (short), (int) */
-      memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2);
-      break;
-    case 4:			/* (long), (float) */
-      memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4);
-      break;
-    case 8:			/* (double) (doesn't seem to happen, which is good,
-				   because this almost certainly isn't right.  */
-      error ("I don't know how a double is returned.");
-      break;
-    }
-}
-
-/* Returns the return address for a dummy. */
-
-static CORE_ADDR
-avr_call_dummy_address (void)
-{
-  return entry_point_address ();
-}
-
-/* Place the appropriate value in the appropriate registers.
-   Primarily used by the RETURN command.  */
-
-static void
-avr_store_return_value (struct type *type, char *valbuf)
-{
-  int wordsize, len, regval;
-
-  wordsize = 2;
-
-  len = TYPE_LENGTH (type);
-  switch (len)
-    {
-    case 1:			/* char */
-    case 2:			/* short, int */
-      regval = extract_address (valbuf, len);
-      write_register (0, regval);
-      break;
-    case 4:			/* long, float */
-      regval = extract_address (valbuf, len);
-      write_register (0, regval >> 16);
-      write_register (1, regval & 0xffff);
-      break;
-    case 8:			/* presumeably double, but doesn't seem to happen */
-      error ("I don't know how to return a double.");
-      break;
-    }
-}
-
-/* Setup the return address for a dummy frame, as called by
-   call_function_by_hand.  Only necessary when you are using an empty
-   CALL_DUMMY. */
-
-static CORE_ADDR
-avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
-  unsigned char buf[2];
-  int wordsize = 2;
-  struct minimal_symbol *msymbol;
-  CORE_ADDR mon_brk;
-
-  fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n");
-
-  buf[0] = 0;
-  buf[1] = 0;
-  sp -= wordsize;
-  write_memory (sp + 1, buf, 2);
-
-#if 0
-  /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
-     left-over from Denis' original patch which used avr-mon for the target
-     instead of the generic remote target. */
-  if ((strcmp (target_shortname, "avr-mon") == 0)
-      && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
-    {
-      mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
-      store_unsigned_integer (buf, wordsize, mon_brk / 2);
-      sp -= wordsize;
-      write_memory (sp + 1, buf + 1, 1);
-      write_memory (sp + 2, buf, 1);
-    }
-#endif
-  return sp;
-}
-
-static CORE_ADDR
-avr_skip_prologue (CORE_ADDR pc)
-{
-  CORE_ADDR func_addr, func_end;
-  struct symtab_and_line sal;
-
-  /* See what the symbol table says */
-
-  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
-    {
-      sal = find_pc_line (func_addr, 0);
-
-      if (sal.line != 0 && sal.end < func_end)
-	return sal.end;
-    }
-
-/* Either we didn't find the start of this function (nothing we can do),
-   or there's no line info, or the line after the prologue is after
-   the end of the function (there probably isn't a prologue). */
-
-  return pc;
-}
-
-static CORE_ADDR
-avr_frame_address (struct frame_info *fi)
-{
-  return avr_make_saddr (fi->frame);
-}
-
-/* Given a GDB frame, determine the address of the calling function's frame.
-   This will be used to create a new GDB frame struct, and then
-   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
-   For us, the frame address is its stack pointer value, so we look up
-   the function prologue to determine the caller's sp value, and return it.  */
-
-static CORE_ADDR
-avr_frame_chain (struct frame_info *frame)
-{
-  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
-    {
-      /* initialize the return_pc now */
-      frame->extra_info->return_pc = generic_read_register_dummy (frame->pc,
-								  frame->
-								  frame,
-								  AVR_PC_REGNUM);
-      return frame->frame;
-    }
-  return (frame->extra_info->is_main ? 0
-	  : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ );
-}
-
-/* Store the address of the place in which to copy the structure the
-   subroutine will return.  This is called from call_function. 
-
-   We store structs through a pointer passed in the first Argument
-   register. */
-
-static void
-avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
-{
-  write_register (0, addr);
-}
-
-/* Extract from an array REGBUF containing the (raw) register state
-   the address in which a function should return its structure value,
-   as a CORE_ADDR (or an expression that can be used as one). */
-
-static CORE_ADDR
-avr_extract_struct_value_address (char *regbuf)
-{
-  return (extract_address ((regbuf) + REGISTER_BYTE (0),
-			   REGISTER_RAW_SIZE (0)) | AVR_SMEM_START);
-}
-
-/* Setup the function arguments for calling a function in the inferior.
-
-   On the AVR architecture, there are 18 registers (R25 to R8) which are
-   dedicated for passing function arguments.  Up to the first 18 arguments
-   (depending on size) may go into these registers.  The rest go on the stack.
-
-   Arguments that are larger than WORDSIZE bytes will be split between two or
-   more registers as available, but will NOT be split between a register and
-   the stack.
-
-   An exceptional case exists for struct arguments (and possibly other
-   aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
-   not a multiple of WORDSIZE bytes.  In this case the argument is never split
-   between the registers and the stack, but instead is copied in its entirety
-   onto the stack, AND also copied into as many registers as there is room
-   for.  In other words, space in registers permitting, two copies of the same
-   argument are passed in.  As far as I can tell, only the one on the stack is
-   used, although that may be a function of the level of compiler
-   optimization.  I suspect this is a compiler bug.  Arguments of these odd
-   sizes are left-justified within the word (as opposed to arguments smaller
-   than WORDSIZE bytes, which are right-justified).
- 
-   If the function is to return an aggregate type such as a struct, the caller
-   must allocate space into which the callee will copy the return value.  In
-   this case, a pointer to the return value location is passed into the callee
-   in register R0, which displaces one of the other arguments passed in via
-   registers R0 to R2. */
-
-static CORE_ADDR
-avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
-		    int struct_return, CORE_ADDR struct_addr)
-{
-  int stack_alloc, stack_offset;
-  int wordsize;
-  int argreg;
-  int argnum;
-  struct type *type;
-  CORE_ADDR regval;
-  char *val;
-  char valbuf[4];
-  int len;
-
-  wordsize = 1;
-#if 0
-  /* Now make sure there's space on the stack */
-  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
-    stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
-  sp -= stack_alloc;		/* make room on stack for args */
-  /* we may over-allocate a little here, but that won't hurt anything */
-#endif
-  argreg = 25;
-  if (struct_return)		/* "struct return" pointer takes up one argreg */
-    {
-      write_register (--argreg, struct_addr);
-    }
-
-  /* Now load as many as possible of the first arguments into registers, and
-     push the rest onto the stack.  There are 3N bytes in three registers
-     available.  Loop thru args from first to last.  */
-
-  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
-    {
-      type = VALUE_TYPE (args[argnum]);
-      len = TYPE_LENGTH (type);
-      val = (char *) VALUE_CONTENTS (args[argnum]);
-
-      /* NOTE WELL!!!!!  This is not an "else if" clause!!!  That's because
-         some *&^%$ things get passed on the stack AND in the registers!  */
-      while (len > 0)
-	{			/* there's room in registers */
-	  len -= wordsize;
-	  regval = extract_address (val + len, wordsize);
-	  write_register (argreg--, regval);
-	}
-    }
-  return sp;
-}
-
-/* Initialize the gdbarch structure for the AVR's. */
-
-static struct gdbarch *
-avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
-  /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
-     be bigger or not. Initial testing seems to show that `call my_func()`
-     works and backtrace from a breakpoint within the call looks correct.
-     Admittedly, I haven't tested with more than a very simple program. */
-  static LONGEST avr_call_dummy_words[] = { 0 };
-
-  struct gdbarch *gdbarch;
-  struct gdbarch_tdep *tdep;
-
-  /* Find a candidate among the list of pre-declared architectures. */
-  arches = gdbarch_list_lookup_by_info (arches, &info);
-  if (arches != NULL)
-    return arches->gdbarch;
-
-  /* None found, create a new architecture from the information provided. */
-  tdep = XMALLOC (struct gdbarch_tdep);
-  gdbarch = gdbarch_alloc (&info, tdep);
-
-  /* If we ever need to differentiate the device types, do it here. */
-  switch (info.bfd_arch_info->mach)
-    {
-    case bfd_mach_avr1:
-    case bfd_mach_avr2:
-    case bfd_mach_avr3:
-    case bfd_mach_avr4:
-    case bfd_mach_avr5:
-      break;
-    }
-
-  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
-  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
-  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
-  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
-  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
-  set_gdbarch_addr_bit (gdbarch, 32);
-  set_gdbarch_bfd_vma_bit (gdbarch, 32);	/* FIXME: TRoth/2002-02-18: Is this needed? */
-
-  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
-  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
-  set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
-
-  set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
-  set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
-  set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
-
-  set_gdbarch_read_pc (gdbarch, avr_read_pc);
-  set_gdbarch_write_pc (gdbarch, avr_write_pc);
-  set_gdbarch_read_fp (gdbarch, avr_read_fp);
-  set_gdbarch_read_sp (gdbarch, avr_read_sp);
-  set_gdbarch_write_sp (gdbarch, avr_write_sp);
-
-  set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
-
-  set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
-  set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
-  set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
-
-  set_gdbarch_register_name (gdbarch, avr_register_name);
-  set_gdbarch_register_size (gdbarch, 1);
-  set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
-  set_gdbarch_register_byte (gdbarch, avr_register_byte);
-  set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
-  set_gdbarch_max_register_raw_size (gdbarch, 4);
-  set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
-  set_gdbarch_max_register_virtual_size (gdbarch, 4);
-  set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
-
-  /* We might need to define our own here or define FRAME_INIT_SAVED_REGS */
-  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
-
-  set_gdbarch_print_insn (gdbarch, print_insn_avr);
-
-  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
-  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
-  set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
-  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
-  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
-  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
-  set_gdbarch_call_dummy_length (gdbarch, 0);
-  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
-  set_gdbarch_call_dummy_p (gdbarch, 1);
-  set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
-  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
-  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
-
-/*    set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
-
-  set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
-  set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
-  set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
-  set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
-  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
-/*    set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */
-  set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
-
-  set_gdbarch_store_return_value (gdbarch, avr_store_return_value);
-
-  set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
-  set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
-  set_gdbarch_extract_struct_value_address (gdbarch,
-					    avr_extract_struct_value_address);
-
-  set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
-  set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
-  set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
-/*    set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
-  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
-
-  set_gdbarch_decr_pc_after_break (gdbarch, 0);
-
-  set_gdbarch_function_start_offset (gdbarch, 0);
-  set_gdbarch_remote_translate_xfer_address (gdbarch,
-					     avr_remote_translate_xfer_address);
-  set_gdbarch_frame_args_skip (gdbarch, 0);
-  set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);	/* ??? */
-  set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
-  set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
-  set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
-  set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
-  set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
-  set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
-  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
-
-  set_gdbarch_convert_from_func_ptr_addr (gdbarch,
-					  avr_convert_from_func_ptr_addr);
-
-  return gdbarch;
-}
-
-/* Send a query request to the avr remote target asking for values of the io
-   registers. If args parameter is not NULL, then the user has requested info
-   on a specific io register [This still needs implemented and is ignored for
-   now]. The query string should be one of these forms:
-
-   "Ravr.io_reg" -> reply is "NN" number of io registers
-
-   "Ravr.io_reg:addr,len" where addr is first register and len is number of
-   registers to be read. The reply should be "<NAME>,VV;" for each io register
-   where, <NAME> is a string, and VV is the hex value of the register.
-
-   All io registers are 8-bit. */
-
-static void
-avr_io_reg_read_command (char *args, int from_tty)
-{
-  int bufsiz = 0;
-  char buf[400];
-  char query[400];
-  char *p;
-  unsigned int nreg = 0;
-  unsigned int val;
-  int i, j, k, step;
-
-/*    fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
-/*             args, from_tty); */
-
-  if (!current_target.to_query)
-    {
-      fprintf_unfiltered (gdb_stderr,
-			  "ERR: info io_registers NOT supported by current target\n");
-      return;
-    }
-
-  /* Just get the maximum buffer size. */
-  target_query ((int) 'R', 0, 0, &bufsiz);
-  if (bufsiz > sizeof (buf))
-    bufsiz = sizeof (buf);
-
-  /* Find out how many io registers the target has. */
-  strcpy (query, "avr.io_reg");
-  target_query ((int) 'R', query, buf, &bufsiz);
-
-  if (strncmp (buf, "", bufsiz) == 0)
-    {
-      fprintf_unfiltered (gdb_stderr,
-			  "info io_registers NOT supported by target\n");
-      return;
-    }
-
-  if (sscanf (buf, "%x", &nreg) != 1)
-    {
-      fprintf_unfiltered (gdb_stderr,
-			  "Error fetching number of io registers\n");
-      return;
-    }
-
-  reinitialize_more_filter ();
-
-  printf_unfiltered ("Target has %u io registers:\n\n", nreg);
-
-  /* only fetch up to 8 registers at a time to keep the buffer small */
-  step = 8;
-
-  for (i = 0; i < nreg; i += step)
-    {
-      j = step - (nreg % step);	/* how many registers this round? */
-
-      snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
-      target_query ((int) 'R', query, buf, &bufsiz);
-
-      p = buf;
-      for (k = i; k < (i + j); k++)
-	{
-	  if (sscanf (p, "%[^,],%x;", query, &val) == 2)
-	    {
-	      printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
-	      while ((*p != ';') && (*p != '\0'))
-		p++;
-	      p++;		/* skip over ';' */
-	      if (*p == '\0')
-		break;
-	    }
-	}
-    }
-}
-
-void
-_initialize_avr_tdep (void)
-{
-  register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
-
-  /* Add a new command to allow the user to query the avr remote target for
-     the values of the io space registers in a saner way than just using
-     `x/NNNb ADDR`. */
-
-  /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
-     io_registers' to signify it is not available on other platforms. */
-
-  add_cmd ("io_registers", class_info, avr_io_reg_read_command,
-	   "query remote avr target for io space register values", &infolist);
-}
diff --git a/gdb/config/avr/avr.mt b/gdb/config/avr/avr.mt
deleted file mode 100644
index 0354a42..0000000
--- a/gdb/config/avr/avr.mt
+++ /dev/null
@@ -1,12 +0,0 @@
-# Target: AVR
-TDEPFILES= avr-tdep.o
-
-#
-# There is no simulator provided with gdb (yet).
-#
-# See <http://savannah.gnu.org/projects/simulavr/> for the simulator
-# used during development of avr support for gdb.
-#
-# Simulator: AVR
-#SIM_OBS = remote-sim.o
-#SIM = ../sim/avr/libsim.a