|  | /* Matsushita 10300 specific support for 32-bit ELF | 
|  | Copyright (C) 1996-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | MA 02110-1301, USA.  */ | 
|  |  | 
|  | #include "sysdep.h" | 
|  | #include "bfd.h" | 
|  | #include "libbfd.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "elf/mn10300.h" | 
|  | #include "libiberty.h" | 
|  |  | 
|  | /* The mn10300 linker needs to keep track of the number of relocs that | 
|  | it decides to copy in check_relocs for each symbol.  This is so | 
|  | that it can discard PC relative relocs if it doesn't need them when | 
|  | linking with -Bsymbolic.  We store the information in a field | 
|  | extending the regular ELF linker hash table.  */ | 
|  |  | 
|  | struct elf32_mn10300_link_hash_entry | 
|  | { | 
|  | /* The basic elf link hash table entry.  */ | 
|  | struct elf_link_hash_entry root; | 
|  |  | 
|  | /* For function symbols, the number of times this function is | 
|  | called directly (ie by name).  */ | 
|  | unsigned int direct_calls; | 
|  |  | 
|  | /* For function symbols, the size of this function's stack | 
|  | (if <= 255 bytes).  We stuff this into "call" instructions | 
|  | to this target when it's valid and profitable to do so. | 
|  |  | 
|  | This does not include stack allocated by movm!  */ | 
|  | unsigned char stack_size; | 
|  |  | 
|  | /* For function symbols, arguments (if any) for movm instruction | 
|  | in the prologue.  We stuff this value into "call" instructions | 
|  | to the target when it's valid and profitable to do so.  */ | 
|  | unsigned char movm_args; | 
|  |  | 
|  | /* For function symbols, the amount of stack space that would be allocated | 
|  | by the movm instruction.  This is redundant with movm_args, but we | 
|  | add it to the hash table to avoid computing it over and over.  */ | 
|  | unsigned char movm_stack_size; | 
|  |  | 
|  | /* When set, convert all "call" instructions to this target into "calls" | 
|  | instructions.  */ | 
|  | #define MN10300_CONVERT_CALL_TO_CALLS 0x1 | 
|  |  | 
|  | /* Used to mark functions which have had redundant parts of their | 
|  | prologue deleted.  */ | 
|  | #define MN10300_DELETED_PROLOGUE_BYTES 0x2 | 
|  | unsigned char flags; | 
|  |  | 
|  | /* Calculated value.  */ | 
|  | bfd_vma value; | 
|  |  | 
|  | #define GOT_UNKNOWN	0 | 
|  | #define GOT_NORMAL	1 | 
|  | #define GOT_TLS_GD	2 | 
|  | #define GOT_TLS_LD	3 | 
|  | #define GOT_TLS_IE	4 | 
|  | /* Used to distinguish GOT entries for TLS types from normal GOT entries.  */ | 
|  | unsigned char tls_type; | 
|  | }; | 
|  |  | 
|  | /* We derive a hash table from the main elf linker hash table so | 
|  | we can store state variables and a secondary hash table without | 
|  | resorting to global variables.  */ | 
|  | struct elf32_mn10300_link_hash_table | 
|  | { | 
|  | /* The main hash table.  */ | 
|  | struct elf_link_hash_table root; | 
|  |  | 
|  | /* A hash table for static functions.  We could derive a new hash table | 
|  | instead of using the full elf32_mn10300_link_hash_table if we wanted | 
|  | to save some memory.  */ | 
|  | struct elf32_mn10300_link_hash_table *static_hash_table; | 
|  |  | 
|  | /* Random linker state flags.  */ | 
|  | #define MN10300_HASH_ENTRIES_INITIALIZED 0x1 | 
|  | char flags; | 
|  | struct | 
|  | { | 
|  | bfd_signed_vma  refcount; | 
|  | bfd_vma	    offset; | 
|  | char	    got_allocated; | 
|  | char	    rel_emitted; | 
|  | } tls_ldm_got; | 
|  | }; | 
|  |  | 
|  | #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent)) | 
|  |  | 
|  | struct elf_mn10300_obj_tdata | 
|  | { | 
|  | struct elf_obj_tdata root; | 
|  |  | 
|  | /* tls_type for each local got entry.  */ | 
|  | char * local_got_tls_type; | 
|  | }; | 
|  |  | 
|  | #define elf_mn10300_tdata(abfd) \ | 
|  | ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any) | 
|  |  | 
|  | #define elf_mn10300_local_got_tls_type(abfd) \ | 
|  | (elf_mn10300_tdata (abfd)->local_got_tls_type) | 
|  |  | 
|  | #ifndef streq | 
|  | #define streq(a, b) (strcmp ((a),(b)) == 0) | 
|  | #endif | 
|  |  | 
|  | /* For MN10300 linker hash table.  */ | 
|  |  | 
|  | /* Get the MN10300 ELF linker hash table from a link_info structure.  */ | 
|  |  | 
|  | #define elf32_mn10300_hash_table(p) \ | 
|  | ((is_elf_hash_table ((p)->hash)					\ | 
|  | && elf_hash_table_id (elf_hash_table (p)) == MN10300_ELF_DATA)	\ | 
|  | ? (struct elf32_mn10300_link_hash_table *) (p)->hash : NULL) | 
|  |  | 
|  | #define elf32_mn10300_link_hash_traverse(table, func, info)		\ | 
|  | (elf_link_hash_traverse						\ | 
|  | (&(table)->root,							\ | 
|  | (bool (*) (struct elf_link_hash_entry *, void *)) (func),		\ | 
|  | (info))) | 
|  |  | 
|  | static reloc_howto_type elf_mn10300_howto_table[] = | 
|  | { | 
|  | /* Dummy relocation.  Does nothing.  */ | 
|  | HOWTO (R_MN10300_NONE, | 
|  | 0, | 
|  | 0, | 
|  | 0, | 
|  | false, | 
|  | 0, | 
|  | complain_overflow_dont, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_NONE", | 
|  | false, | 
|  | 0, | 
|  | 0, | 
|  | false), | 
|  | /* Standard 32 bit reloc.  */ | 
|  | HOWTO (R_MN10300_32, | 
|  | 0, | 
|  | 4, | 
|  | 32, | 
|  | false, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_32", | 
|  | false, | 
|  | 0xffffffff, | 
|  | 0xffffffff, | 
|  | false), | 
|  | /* Standard 16 bit reloc.  */ | 
|  | HOWTO (R_MN10300_16, | 
|  | 0, | 
|  | 2, | 
|  | 16, | 
|  | false, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_16", | 
|  | false, | 
|  | 0xffff, | 
|  | 0xffff, | 
|  | false), | 
|  | /* Standard 8 bit reloc.  */ | 
|  | HOWTO (R_MN10300_8, | 
|  | 0, | 
|  | 1, | 
|  | 8, | 
|  | false, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_8", | 
|  | false, | 
|  | 0xff, | 
|  | 0xff, | 
|  | false), | 
|  | /* Standard 32bit pc-relative reloc.  */ | 
|  | HOWTO (R_MN10300_PCREL32, | 
|  | 0, | 
|  | 4, | 
|  | 32, | 
|  | true, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_PCREL32", | 
|  | false, | 
|  | 0xffffffff, | 
|  | 0xffffffff, | 
|  | true), | 
|  | /* Standard 16bit pc-relative reloc.  */ | 
|  | HOWTO (R_MN10300_PCREL16, | 
|  | 0, | 
|  | 2, | 
|  | 16, | 
|  | true, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_PCREL16", | 
|  | false, | 
|  | 0xffff, | 
|  | 0xffff, | 
|  | true), | 
|  | /* Standard 8 pc-relative reloc.  */ | 
|  | HOWTO (R_MN10300_PCREL8, | 
|  | 0, | 
|  | 1, | 
|  | 8, | 
|  | true, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_PCREL8", | 
|  | false, | 
|  | 0xff, | 
|  | 0xff, | 
|  | true), | 
|  |  | 
|  | /* GNU extension to record C++ vtable hierarchy.  */ | 
|  | HOWTO (R_MN10300_GNU_VTINHERIT, /* type */ | 
|  | 0,			/* rightshift */ | 
|  | 0,			/* size */ | 
|  | 0,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_dont, /* complain_on_overflow */ | 
|  | NULL,			/* special_function */ | 
|  | "R_MN10300_GNU_VTINHERIT", /* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0,			/* src_mask */ | 
|  | 0,			/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | /* GNU extension to record C++ vtable member usage */ | 
|  | HOWTO (R_MN10300_GNU_VTENTRY,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 0,			/* size */ | 
|  | 0,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_dont, /* complain_on_overflow */ | 
|  | NULL,			/* special_function */ | 
|  | "R_MN10300_GNU_VTENTRY", /* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0,			/* src_mask */ | 
|  | 0,			/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | /* Standard 24 bit reloc.  */ | 
|  | HOWTO (R_MN10300_24, | 
|  | 0, | 
|  | 4, | 
|  | 24, | 
|  | false, | 
|  | 0, | 
|  | complain_overflow_bitfield, | 
|  | bfd_elf_generic_reloc, | 
|  | "R_MN10300_24", | 
|  | false, | 
|  | 0xffffff, | 
|  | 0xffffff, | 
|  | false), | 
|  | HOWTO (R_MN10300_GOTPC32,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | true,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOTPC32",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | true),			/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOTPC16,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 2,			/* size */ | 
|  | 16,			/* bitsize */ | 
|  | true,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOTPC16",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffff,		/* src_mask */ | 
|  | 0xffff,		/* dst_mask */ | 
|  | true),			/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOTOFF32,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOTOFF32",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOTOFF24,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 24,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOTOFF24",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffff,		/* src_mask */ | 
|  | 0xffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOTOFF16,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 2,			/* size */ | 
|  | 16,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOTOFF16",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffff,		/* src_mask */ | 
|  | 0xffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_PLT32,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | true,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_PLT32",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | true),			/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_PLT16,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 2,			/* size */ | 
|  | 16,			/* bitsize */ | 
|  | true,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_PLT16",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffff,		/* src_mask */ | 
|  | 0xffff,		/* dst_mask */ | 
|  | true),			/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOT32,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOT32",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOT24,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 24,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOT24",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GOT16,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 2,			/* size */ | 
|  | 16,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GOT16",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_COPY,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_COPY",		/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_GLOB_DAT,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_GLOB_DAT",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_JMP_SLOT,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_JMP_SLOT",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_RELATIVE,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_RELATIVE",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_GD,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_GD",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_LD,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_LD",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_LDO,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_LDO",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_GOTIE,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_GOTIE",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_IE,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_IE",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_LE,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_LE",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_DTPMOD,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_DTPMOD",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_DTPOFF,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_DTPOFF",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_TLS_TPOFF,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_bitfield, /* complain_on_overflow */ | 
|  | bfd_elf_generic_reloc, /* */ | 
|  | "R_MN10300_TLS_TPOFF",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_SYM_DIFF,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 4,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_dont,/* complain_on_overflow */ | 
|  | NULL,			/* special handler.  */ | 
|  | "R_MN10300_SYM_DIFF",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0xffffffff,		/* src_mask */ | 
|  | 0xffffffff,		/* dst_mask */ | 
|  | false),		/* pcrel_offset */ | 
|  |  | 
|  | HOWTO (R_MN10300_ALIGN,	/* type */ | 
|  | 0,			/* rightshift */ | 
|  | 1,			/* size */ | 
|  | 32,			/* bitsize */ | 
|  | false,			/* pc_relative */ | 
|  | 0,			/* bitpos */ | 
|  | complain_overflow_dont,/* complain_on_overflow */ | 
|  | NULL,			/* special handler.  */ | 
|  | "R_MN10300_ALIGN",	/* name */ | 
|  | false,			/* partial_inplace */ | 
|  | 0,			/* src_mask */ | 
|  | 0,			/* dst_mask */ | 
|  | false)			/* pcrel_offset */ | 
|  | }; | 
|  |  | 
|  | struct mn10300_reloc_map | 
|  | { | 
|  | bfd_reloc_code_real_type bfd_reloc_val; | 
|  | unsigned char elf_reloc_val; | 
|  | }; | 
|  |  | 
|  | static const struct mn10300_reloc_map mn10300_reloc_map[] = | 
|  | { | 
|  | { BFD_RELOC_NONE, R_MN10300_NONE, }, | 
|  | { BFD_RELOC_32, R_MN10300_32, }, | 
|  | { BFD_RELOC_16, R_MN10300_16, }, | 
|  | { BFD_RELOC_8, R_MN10300_8, }, | 
|  | { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, }, | 
|  | { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, }, | 
|  | { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, }, | 
|  | { BFD_RELOC_24, R_MN10300_24, }, | 
|  | { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT }, | 
|  | { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY }, | 
|  | { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 }, | 
|  | { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 }, | 
|  | { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 }, | 
|  | { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 }, | 
|  | { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 }, | 
|  | { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 }, | 
|  | { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 }, | 
|  | { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 }, | 
|  | { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 }, | 
|  | { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 }, | 
|  | { BFD_RELOC_MN10300_COPY, R_MN10300_COPY }, | 
|  | { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT }, | 
|  | { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT }, | 
|  | { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE }, | 
|  | { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD }, | 
|  | { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD }, | 
|  | { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO }, | 
|  | { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE }, | 
|  | { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE }, | 
|  | { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE }, | 
|  | { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD }, | 
|  | { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF }, | 
|  | { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF }, | 
|  | { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF }, | 
|  | { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN } | 
|  | }; | 
|  |  | 
|  | /* Create the GOT section.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_create_got_section (bfd * abfd, | 
|  | struct bfd_link_info * info) | 
|  | { | 
|  | flagword   flags; | 
|  | flagword   pltflags; | 
|  | asection * s; | 
|  | struct elf_link_hash_entry * h; | 
|  | const struct elf_backend_data * bed = get_elf_backend_data (abfd); | 
|  | struct elf_link_hash_table *htab; | 
|  | int ptralign; | 
|  |  | 
|  | /* This function may be called more than once.  */ | 
|  | htab = elf_hash_table (info); | 
|  | if (htab->sgot != NULL) | 
|  | return true; | 
|  |  | 
|  | switch (bed->s->arch_size) | 
|  | { | 
|  | case 32: | 
|  | ptralign = 2; | 
|  | break; | 
|  |  | 
|  | case 64: | 
|  | ptralign = 3; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED); | 
|  |  | 
|  | pltflags = flags; | 
|  | pltflags |= SEC_CODE; | 
|  | if (bed->plt_not_loaded) | 
|  | pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); | 
|  | if (bed->plt_readonly) | 
|  | pltflags |= SEC_READONLY; | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); | 
|  | htab->splt = s; | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, bed->plt_alignment)) | 
|  | return false; | 
|  |  | 
|  | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the | 
|  | .plt section.  */ | 
|  | if (bed->want_plt_sym) | 
|  | { | 
|  | h = _bfd_elf_define_linkage_sym (abfd, info, s, | 
|  | "_PROCEDURE_LINKAGE_TABLE_"); | 
|  | htab->hplt = h; | 
|  | if (h == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | 
|  | htab->sgot = s; | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, ptralign)) | 
|  | return false; | 
|  |  | 
|  | if (bed->want_got_plt) | 
|  | { | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); | 
|  | htab->sgotplt = s; | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, ptralign)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | 
|  | (or .got.plt) section.  We don't do this in the linker script | 
|  | because we don't want to define the symbol if we are not creating | 
|  | a global offset table.  */ | 
|  | h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_"); | 
|  | htab->hgot = h; | 
|  | if (h == NULL) | 
|  | return false; | 
|  |  | 
|  | /* The first bit of the global offset table is the header.  */ | 
|  | s->size += bed->got_header_size; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static reloc_howto_type * | 
|  | bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | bfd_reloc_code_real_type code) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = ARRAY_SIZE (mn10300_reloc_map); i--;) | 
|  | if (mn10300_reloc_map[i].bfd_reloc_val == code) | 
|  | return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static reloc_howto_type * | 
|  | bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | const char *r_name) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;) | 
|  | if (elf_mn10300_howto_table[i].name != NULL | 
|  | && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0) | 
|  | return elf_mn10300_howto_table + i; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Set the howto pointer for an MN10300 ELF reloc.  */ | 
|  |  | 
|  | static bool | 
|  | mn10300_info_to_howto (bfd *abfd, | 
|  | arelent *cache_ptr, | 
|  | Elf_Internal_Rela *dst) | 
|  | { | 
|  | unsigned int r_type; | 
|  |  | 
|  | r_type = ELF32_R_TYPE (dst->r_info); | 
|  | if (r_type >= R_MN10300_MAX) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), | 
|  | abfd, r_type); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | cache_ptr->howto = elf_mn10300_howto_table + r_type; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int | 
|  | elf_mn10300_tls_transition (struct bfd_link_info *	  info, | 
|  | int				  r_type, | 
|  | struct elf_link_hash_entry *  h, | 
|  | asection *			  sec, | 
|  | bool			  counting) | 
|  | { | 
|  | bool is_local; | 
|  |  | 
|  | if (r_type == R_MN10300_TLS_GD | 
|  | && h != NULL | 
|  | && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) | 
|  | return R_MN10300_TLS_GOTIE; | 
|  |  | 
|  | if (bfd_link_pic (info)) | 
|  | return r_type; | 
|  |  | 
|  | if (! (sec->flags & SEC_CODE)) | 
|  | return r_type; | 
|  |  | 
|  | if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created) | 
|  | is_local = true; | 
|  | else | 
|  | is_local = SYMBOL_CALLS_LOCAL (info, h); | 
|  |  | 
|  | /* For the main program, these are the transitions we do.  */ | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE; | 
|  | case R_MN10300_TLS_LD: return R_MN10300_NONE; | 
|  | case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE; | 
|  | case R_MN10300_TLS_IE: | 
|  | case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type; | 
|  | } | 
|  |  | 
|  | return r_type; | 
|  | } | 
|  |  | 
|  | /* Return the relocation value for @tpoff relocation | 
|  | if STT_TLS virtual address is ADDRESS.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | dtpoff (struct bfd_link_info * info, bfd_vma address) | 
|  | { | 
|  | struct elf_link_hash_table *htab = elf_hash_table (info); | 
|  |  | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (htab->tls_sec == NULL) | 
|  | return 0; | 
|  | return address - htab->tls_sec->vma; | 
|  | } | 
|  |  | 
|  | /* Return the relocation value for @tpoff relocation | 
|  | if STT_TLS virtual address is ADDRESS.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | tpoff (struct bfd_link_info * info, bfd_vma address) | 
|  | { | 
|  | struct elf_link_hash_table *htab = elf_hash_table (info); | 
|  |  | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (htab->tls_sec == NULL) | 
|  | return 0; | 
|  | return address - (htab->tls_size + htab->tls_sec->vma); | 
|  | } | 
|  |  | 
|  | /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need | 
|  | to skip, after this one.  The actual value is the offset between | 
|  | this reloc and the PLT reloc.  */ | 
|  |  | 
|  | static int | 
|  | mn10300_do_tls_transition (bfd *	 input_bfd, | 
|  | unsigned int	 r_type, | 
|  | unsigned int	 tls_r_type, | 
|  | bfd_byte *	 contents, | 
|  | bfd_vma	 offset) | 
|  | { | 
|  | bfd_byte *op = contents + offset; | 
|  | int gotreg = 0; | 
|  |  | 
|  | #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2)) | 
|  |  | 
|  | /* This is common to all GD/LD transitions, so break it out.  */ | 
|  | if (r_type == R_MN10300_TLS_GD | 
|  | || r_type == R_MN10300_TLS_LD) | 
|  | { | 
|  | op -= 2; | 
|  | /* mov imm,d0.  */ | 
|  | BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC); | 
|  | BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC); | 
|  | /* add aN,d0.  */ | 
|  | BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1); | 
|  | gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2; | 
|  | /* Call.  */ | 
|  | BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD); | 
|  | } | 
|  |  | 
|  | switch (TLS_PAIR (r_type, tls_r_type)) | 
|  | { | 
|  | case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE): | 
|  | { | 
|  | /* Keep track of which register we put GOTptr in.  */ | 
|  | /* mov (_x@indntpoff,a2),a0.  */ | 
|  | memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6); | 
|  | op[1] |= gotreg; | 
|  | /* add e2,a0.  */ | 
|  | memcpy (op+6, "\xF9\x78\x28", 3); | 
|  | /* or  0x00000000, d0 - six byte nop.  */ | 
|  | memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); | 
|  | } | 
|  | return 7; | 
|  |  | 
|  | case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE): | 
|  | { | 
|  | /* Register is *always* a0.  */ | 
|  | /* mov _x@tpoff,a0.  */ | 
|  | memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6); | 
|  | /* add e2,a0.  */ | 
|  | memcpy (op+6, "\xF9\x78\x28", 3); | 
|  | /* or  0x00000000, d0 - six byte nop.  */ | 
|  | memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); | 
|  | } | 
|  | return 7; | 
|  | case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE): | 
|  | { | 
|  | /* Register is *always* a0.  */ | 
|  | /* mov e2,a0.  */ | 
|  | memcpy (op, "\xF5\x88", 2); | 
|  | /* or  0x00000000, d0 - six byte nop.  */ | 
|  | memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6); | 
|  | /* or  0x00000000, e2 - seven byte nop.  */ | 
|  | memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7); | 
|  | } | 
|  | return 7; | 
|  |  | 
|  | case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE): | 
|  | /* No changes needed, just the reloc change.  */ | 
|  | return 0; | 
|  |  | 
|  | /*  These are a little tricky, because we have to detect which | 
|  | opcode is being used (they're different sizes, with the reloc | 
|  | at different offsets within the opcode) and convert each | 
|  | accordingly, copying the operands as needed.  The conversions | 
|  | we do are as follows (IE,GOTIE,LE): | 
|  |  | 
|  | 1111 1100  1010 01Dn  [-- abs32 --]  MOV (x@indntpoff),Dn | 
|  | 1111 1100  0000 DnAm  [-- abs32 --]  MOV (x@gotntpoff,Am),Dn | 
|  | 1111 1100  1100 11Dn  [-- abs32 --]  MOV x@tpoff,Dn | 
|  |  | 
|  | 1111 1100  1010 00An  [-- abs32 --]  MOV (x@indntpoff),An | 
|  | 1111 1100  0010 AnAm  [-- abs32 --]  MOV (x@gotntpoff,Am),An | 
|  | 1111 1100  1101 11An  [-- abs32 --]  MOV x@tpoff,An | 
|  |  | 
|  | 1111 1110  0000 1110  Rnnn Xxxx  [-- abs32 --]  MOV (x@indntpoff),Rn | 
|  | 1111 1110  0000 1010  Rnnn Rmmm  [-- abs32 --]  MOV (x@indntpoff,Rm),Rn | 
|  | 1111 1110  0000 1000  Rnnn Xxxx  [-- abs32 --]  MOV x@tpoff,Rn | 
|  |  | 
|  | Since the GOT pointer is always $a2, we assume the last | 
|  | normally won't happen, but let's be paranoid and plan for the | 
|  | day that GCC optimizes it somewhow.  */ | 
|  |  | 
|  | case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE): | 
|  | if (op[-2] == 0xFC) | 
|  | { | 
|  | op -= 2; | 
|  | if ((op[1] & 0xFC) == 0xA4) /* Dn */ | 
|  | { | 
|  | op[1] &= 0x03; /* Leaves Dn.  */ | 
|  | op[1] |= 0xCC; | 
|  | } | 
|  | else /* An */ | 
|  | { | 
|  | op[1] &= 0x03; /* Leaves An. */ | 
|  | op[1] |= 0xDC; | 
|  | } | 
|  | } | 
|  | else if (op[-3] == 0xFE) | 
|  | op[-2] = 0x08; | 
|  | else | 
|  | abort (); | 
|  | break; | 
|  |  | 
|  | case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE): | 
|  | if (op[-2] == 0xFC) | 
|  | { | 
|  | op -= 2; | 
|  | if ((op[1] & 0xF0) == 0x00) /* Dn */ | 
|  | { | 
|  | op[1] &= 0x0C; /* Leaves Dn.  */ | 
|  | op[1] >>= 2; | 
|  | op[1] |= 0xCC; | 
|  | } | 
|  | else /* An */ | 
|  | { | 
|  | op[1] &= 0x0C; /* Leaves An.  */ | 
|  | op[1] >>= 2; | 
|  | op[1] |= 0xDC; | 
|  | } | 
|  | } | 
|  | else if (op[-3] == 0xFE) | 
|  | op[-2] = 0x08; | 
|  | else | 
|  | abort (); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unsupported transition from %s to %s"), | 
|  | input_bfd, | 
|  | elf_mn10300_howto_table[r_type].name, | 
|  | elf_mn10300_howto_table[tls_r_type].name); | 
|  | break; | 
|  | } | 
|  | #undef TLS_PAIR | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Look through the relocs for a section during the first phase. | 
|  | Since we don't do .gots or .plts, we just need to consider the | 
|  | virtual table relocs for gc.  */ | 
|  |  | 
|  | static bool | 
|  | mn10300_elf_check_relocs (bfd *abfd, | 
|  | struct bfd_link_info *info, | 
|  | asection *sec, | 
|  | const Elf_Internal_Rela *relocs) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); | 
|  | bool sym_diff_reloc_seen; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | Elf_Internal_Sym * isymbuf = NULL; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | const Elf_Internal_Rela *rel; | 
|  | const Elf_Internal_Rela *rel_end; | 
|  | bfd *      dynobj; | 
|  | bfd_vma *  local_got_offsets; | 
|  | asection * sgot; | 
|  | asection * srelgot; | 
|  | asection * sreloc; | 
|  | bool result = false; | 
|  |  | 
|  | sgot    = NULL; | 
|  | srelgot = NULL; | 
|  | sreloc  = NULL; | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | sym_hashes = elf_sym_hashes (abfd); | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | local_got_offsets = elf_local_got_offsets (abfd); | 
|  | rel_end = relocs + sec->reloc_count; | 
|  | sym_diff_reloc_seen = false; | 
|  |  | 
|  | for (rel = relocs; rel < rel_end; rel++) | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  | unsigned long r_symndx; | 
|  | unsigned int r_type; | 
|  | int tls_type = GOT_NORMAL; | 
|  |  | 
|  | r_symndx = ELF32_R_SYM (rel->r_info); | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | h = NULL; | 
|  | else | 
|  | { | 
|  | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  | } | 
|  |  | 
|  | r_type = ELF32_R_TYPE (rel->r_info); | 
|  | r_type = elf_mn10300_tls_transition (info, r_type, h, sec, true); | 
|  |  | 
|  | /* Some relocs require a global offset table.  */ | 
|  | if (dynobj == NULL) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_GOT32: | 
|  | case R_MN10300_GOT24: | 
|  | case R_MN10300_GOT16: | 
|  | case R_MN10300_GOTOFF32: | 
|  | case R_MN10300_GOTOFF24: | 
|  | case R_MN10300_GOTOFF16: | 
|  | case R_MN10300_GOTPC32: | 
|  | case R_MN10300_GOTPC16: | 
|  | case R_MN10300_TLS_GD: | 
|  | case R_MN10300_TLS_LD: | 
|  | case R_MN10300_TLS_GOTIE: | 
|  | case R_MN10300_TLS_IE: | 
|  | elf_hash_table (info)->dynobj = dynobj = abfd; | 
|  | if (! _bfd_mn10300_elf_create_got_section (dynobj, info)) | 
|  | goto fail; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | /* This relocation describes the C++ object vtable hierarchy. | 
|  | Reconstruct it for later use during GC.  */ | 
|  | case R_MN10300_GNU_VTINHERIT: | 
|  | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | 
|  | goto fail; | 
|  | break; | 
|  |  | 
|  | /* This relocation describes which C++ vtable entries are actually | 
|  | used.  Record for later use during GC.  */ | 
|  | case R_MN10300_GNU_VTENTRY: | 
|  | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | 
|  | goto fail; | 
|  | break; | 
|  |  | 
|  | case R_MN10300_TLS_LD: | 
|  | htab->tls_ldm_got.refcount ++; | 
|  | tls_type = GOT_TLS_LD; | 
|  |  | 
|  | if (htab->tls_ldm_got.got_allocated) | 
|  | break; | 
|  | goto create_got; | 
|  |  | 
|  | case R_MN10300_TLS_IE: | 
|  | case R_MN10300_TLS_GOTIE: | 
|  | if (bfd_link_pic (info)) | 
|  | info->flags |= DF_STATIC_TLS; | 
|  | /* Fall through */ | 
|  |  | 
|  | case R_MN10300_TLS_GD: | 
|  | case R_MN10300_GOT32: | 
|  | case R_MN10300_GOT24: | 
|  | case R_MN10300_GOT16: | 
|  | create_got: | 
|  | /* This symbol requires a global offset table entry.  */ | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_TLS_IE: | 
|  | case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break; | 
|  | case R_MN10300_TLS_GD:    tls_type = GOT_TLS_GD; break; | 
|  | default:		      tls_type = GOT_NORMAL; break; | 
|  | } | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | srelgot = htab->root.srelgot; | 
|  | BFD_ASSERT (sgot != NULL && srelgot != NULL); | 
|  |  | 
|  | if (r_type == R_MN10300_TLS_LD) | 
|  | { | 
|  | htab->tls_ldm_got.offset = sgot->size; | 
|  | htab->tls_ldm_got.got_allocated ++; | 
|  | } | 
|  | else if (h != NULL) | 
|  | { | 
|  | if (elf_mn10300_hash_entry (h)->tls_type != tls_type | 
|  | && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN) | 
|  | { | 
|  | if (tls_type == GOT_TLS_IE | 
|  | && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD) | 
|  | /* No change - this is ok.  */; | 
|  | else if (tls_type == GOT_TLS_GD | 
|  | && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) | 
|  | /* Transition GD->IE.  */ | 
|  | tls_type = GOT_TLS_IE; | 
|  | else | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: %s' accessed both as normal and thread local symbol"), | 
|  | abfd, h ? h->root.root.string : "<local>"); | 
|  | } | 
|  |  | 
|  | elf_mn10300_hash_entry (h)->tls_type = tls_type; | 
|  |  | 
|  | if (h->got.offset != (bfd_vma) -1) | 
|  | /* We have already allocated space in the .got.  */ | 
|  | break; | 
|  |  | 
|  | h->got.offset = sgot->size; | 
|  |  | 
|  | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL | 
|  | /* Make sure this symbol is output as a dynamic symbol.  */ | 
|  | && h->dynindx == -1) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | srelgot->size += sizeof (Elf32_External_Rela); | 
|  | if (r_type == R_MN10300_TLS_GD) | 
|  | srelgot->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This is a global offset table entry for a local | 
|  | symbol.  */ | 
|  | if (local_got_offsets == NULL) | 
|  | { | 
|  | size_t       size; | 
|  | unsigned int i; | 
|  |  | 
|  | size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char)); | 
|  | local_got_offsets = bfd_alloc (abfd, size); | 
|  |  | 
|  | if (local_got_offsets == NULL) | 
|  | goto fail; | 
|  |  | 
|  | elf_local_got_offsets (abfd) = local_got_offsets; | 
|  | elf_mn10300_local_got_tls_type (abfd) | 
|  | = (char *) (local_got_offsets + symtab_hdr->sh_info); | 
|  |  | 
|  | for (i = 0; i < symtab_hdr->sh_info; i++) | 
|  | local_got_offsets[i] = (bfd_vma) -1; | 
|  | } | 
|  |  | 
|  | if (local_got_offsets[r_symndx] != (bfd_vma) -1) | 
|  | /* We have already allocated space in the .got.  */ | 
|  | break; | 
|  |  | 
|  | local_got_offsets[r_symndx] = sgot->size; | 
|  |  | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | /* If we are generating a shared object, we need to | 
|  | output a R_MN10300_RELATIVE reloc so that the dynamic | 
|  | linker can adjust this GOT entry.  */ | 
|  | srelgot->size += sizeof (Elf32_External_Rela); | 
|  |  | 
|  | if (r_type == R_MN10300_TLS_GD) | 
|  | /* And a R_MN10300_TLS_DTPOFF reloc as well.  */ | 
|  | srelgot->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  |  | 
|  | elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type; | 
|  | } | 
|  |  | 
|  | sgot->size += 4; | 
|  | if (r_type == R_MN10300_TLS_GD | 
|  | || r_type == R_MN10300_TLS_LD) | 
|  | sgot->size += 4; | 
|  |  | 
|  | goto need_shared_relocs; | 
|  |  | 
|  | case R_MN10300_PLT32: | 
|  | case R_MN10300_PLT16: | 
|  | /* This symbol requires a procedure linkage table entry.  We | 
|  | actually build the entry in adjust_dynamic_symbol, | 
|  | because this might be a case of linking PIC code which is | 
|  | never referenced by a dynamic object, in which case we | 
|  | don't need to generate a procedure linkage table entry | 
|  | after all.  */ | 
|  |  | 
|  | /* If this is a local symbol, we resolve it directly without | 
|  | creating a procedure linkage table entry.  */ | 
|  | if (h == NULL) | 
|  | continue; | 
|  |  | 
|  | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | 
|  | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | 
|  | break; | 
|  |  | 
|  | h->needs_plt = 1; | 
|  | break; | 
|  |  | 
|  | case R_MN10300_24: | 
|  | case R_MN10300_16: | 
|  | case R_MN10300_8: | 
|  | case R_MN10300_PCREL32: | 
|  | case R_MN10300_PCREL16: | 
|  | case R_MN10300_PCREL8: | 
|  | if (h != NULL) | 
|  | h->non_got_ref = 1; | 
|  | break; | 
|  |  | 
|  | case R_MN10300_SYM_DIFF: | 
|  | sym_diff_reloc_seen = true; | 
|  | break; | 
|  |  | 
|  | case R_MN10300_32: | 
|  | if (h != NULL) | 
|  | h->non_got_ref = 1; | 
|  |  | 
|  | need_shared_relocs: | 
|  | /* If we are creating a shared library, then we | 
|  | need to copy the reloc into the shared library.  */ | 
|  | if (bfd_link_pic (info) | 
|  | && (sec->flags & SEC_ALLOC) != 0 | 
|  | /* Do not generate a dynamic reloc for a | 
|  | reloc associated with a SYM_DIFF operation.  */ | 
|  | && ! sym_diff_reloc_seen) | 
|  | { | 
|  | asection * sym_section = NULL; | 
|  |  | 
|  | /* Find the section containing the | 
|  | symbol involved in the relocation.  */ | 
|  | if (h == NULL) | 
|  | { | 
|  | Elf_Internal_Sym * isym; | 
|  |  | 
|  | if (isymbuf == NULL) | 
|  | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (isymbuf) | 
|  | { | 
|  | isym = isymbuf + r_symndx; | 
|  | /* All we care about is whether this local symbol is absolute.  */ | 
|  | if (isym->st_shndx == SHN_ABS) | 
|  | sym_section = bfd_abs_section_ptr; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (h->root.type == bfd_link_hash_defined | 
|  | || h->root.type == bfd_link_hash_defweak) | 
|  | sym_section = h->root.u.def.section; | 
|  | } | 
|  |  | 
|  | /* If the symbol is absolute then the relocation can | 
|  | be resolved during linking and there is no need for | 
|  | a dynamic reloc.  */ | 
|  | if (sym_section != bfd_abs_section_ptr) | 
|  | { | 
|  | /* When creating a shared object, we must copy these | 
|  | reloc types into the output file.  We create a reloc | 
|  | section in dynobj and make room for this reloc.  */ | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | sreloc = _bfd_elf_make_dynamic_reloc_section | 
|  | (sec, dynobj, 2, abfd, /*rela?*/ true); | 
|  | if (sreloc == NULL) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | sreloc->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF) | 
|  | sym_diff_reloc_seen = false; | 
|  | } | 
|  |  | 
|  | result = true; | 
|  | fail: | 
|  | if (symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | free (isymbuf); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Return the section that should be marked against GC for a given | 
|  | relocation.  */ | 
|  |  | 
|  | static asection * | 
|  | mn10300_elf_gc_mark_hook (asection *sec, | 
|  | struct bfd_link_info *info, | 
|  | Elf_Internal_Rela *rel, | 
|  | struct elf_link_hash_entry *h, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | if (h != NULL) | 
|  | switch (ELF32_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_MN10300_GNU_VTINHERIT: | 
|  | case R_MN10300_GNU_VTENTRY: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | 
|  | } | 
|  |  | 
|  | /* Perform a relocation as part of a final link.  */ | 
|  |  | 
|  | static bfd_reloc_status_type | 
|  | mn10300_elf_final_link_relocate (reloc_howto_type *howto, | 
|  | bfd *input_bfd, | 
|  | bfd *output_bfd ATTRIBUTE_UNUSED, | 
|  | asection *input_section, | 
|  | bfd_byte *contents, | 
|  | bfd_vma offset, | 
|  | bfd_vma value, | 
|  | bfd_vma addend, | 
|  | struct elf_link_hash_entry * h, | 
|  | unsigned long symndx, | 
|  | struct bfd_link_info *info, | 
|  | asection *sym_sec ATTRIBUTE_UNUSED, | 
|  | int is_local ATTRIBUTE_UNUSED) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); | 
|  | static asection *  sym_diff_section; | 
|  | static bfd_vma     sym_diff_value; | 
|  | bool is_sym_diff_reloc; | 
|  | unsigned long r_type = howto->type; | 
|  | bfd_byte * hit_data = contents + offset; | 
|  | bfd *      dynobj; | 
|  | asection * sgot; | 
|  | asection * splt; | 
|  | asection * sreloc; | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | sgot   = NULL; | 
|  | splt   = NULL; | 
|  | sreloc = NULL; | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_24: | 
|  | case R_MN10300_16: | 
|  | case R_MN10300_8: | 
|  | case R_MN10300_PCREL8: | 
|  | case R_MN10300_PCREL16: | 
|  | case R_MN10300_PCREL32: | 
|  | case R_MN10300_GOTOFF32: | 
|  | case R_MN10300_GOTOFF24: | 
|  | case R_MN10300_GOTOFF16: | 
|  | if (bfd_link_pic (info) | 
|  | && (input_section->flags & SEC_ALLOC) != 0 | 
|  | && h != NULL | 
|  | && ! SYMBOL_REFERENCES_LOCAL (info, h)) | 
|  | return bfd_reloc_dangerous; | 
|  | /* Fall through.  */ | 
|  | case R_MN10300_GOT32: | 
|  | /* Issue 2052223: | 
|  | Taking the address of a protected function in a shared library | 
|  | is illegal.  Issue an error message here.  */ | 
|  | if (bfd_link_pic (info) | 
|  | && (input_section->flags & SEC_ALLOC) != 0 | 
|  | && h != NULL | 
|  | && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED | 
|  | && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC) | 
|  | && ! SYMBOL_REFERENCES_LOCAL (info, h)) | 
|  | return bfd_reloc_dangerous; | 
|  | } | 
|  |  | 
|  | is_sym_diff_reloc = false; | 
|  | if (sym_diff_section != NULL) | 
|  | { | 
|  | BFD_ASSERT (sym_diff_section == input_section); | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_32: | 
|  | case R_MN10300_24: | 
|  | case R_MN10300_16: | 
|  | case R_MN10300_8: | 
|  | value -= sym_diff_value; | 
|  | /* If we are computing a 32-bit value for the location lists | 
|  | and the result is 0 then we add one to the value.  A zero | 
|  | value can result because of linker relaxation deleteing | 
|  | prologue instructions and using a value of 1 (for the begin | 
|  | and end offsets in the location list entry) results in a | 
|  | nul entry which does not prevent the following entries from | 
|  | being parsed.  */ | 
|  | if (r_type == R_MN10300_32 | 
|  | && value == 0 | 
|  | && strcmp (input_section->name, ".debug_loc") == 0) | 
|  | value = 1; | 
|  | sym_diff_section = NULL; | 
|  | is_sym_diff_reloc = true; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | sym_diff_section = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_SYM_DIFF: | 
|  | BFD_ASSERT (addend == 0); | 
|  | /* Cache the input section and value. | 
|  | The offset is unreliable, since relaxation may | 
|  | have reduced the following reloc's offset.  */ | 
|  | sym_diff_section = input_section; | 
|  | sym_diff_value = value; | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_ALIGN: | 
|  | case R_MN10300_NONE: | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_32: | 
|  | if (bfd_link_pic (info) | 
|  | /* Do not generate relocs when an R_MN10300_32 has been used | 
|  | with an R_MN10300_SYM_DIFF to compute a difference of two | 
|  | symbols.  */ | 
|  | && !is_sym_diff_reloc | 
|  | /* Also, do not generate a reloc when the symbol associated | 
|  | with the R_MN10300_32 reloc is absolute - there is no | 
|  | need for a run time computation in this case.  */ | 
|  | && sym_sec != bfd_abs_section_ptr | 
|  | /* If the section is not going to be allocated at load time | 
|  | then there is no need to generate relocs for it.  */ | 
|  | && (input_section->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | bool skip, relocate; | 
|  |  | 
|  | /* When generating a shared object, these relocations are | 
|  | copied into the output file to be resolved at run | 
|  | time.  */ | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | sreloc = _bfd_elf_get_dynamic_reloc_section | 
|  | (input_bfd, input_section, /*rela?*/ true); | 
|  | if (sreloc == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | skip = false; | 
|  |  | 
|  | outrel.r_offset = _bfd_elf_section_offset (input_bfd, info, | 
|  | input_section, offset); | 
|  | if (outrel.r_offset == (bfd_vma) -1) | 
|  | skip = true; | 
|  |  | 
|  | outrel.r_offset += (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  |  | 
|  | if (skip) | 
|  | { | 
|  | memset (&outrel, 0, sizeof outrel); | 
|  | relocate = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* h->dynindx may be -1 if this symbol was marked to | 
|  | become local.  */ | 
|  | if (h == NULL | 
|  | || SYMBOL_REFERENCES_LOCAL (info, h)) | 
|  | { | 
|  | relocate = true; | 
|  | outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); | 
|  | outrel.r_addend = value + addend; | 
|  | } | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | relocate = false; | 
|  | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32); | 
|  | outrel.r_addend = value + addend; | 
|  | } | 
|  | } | 
|  |  | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, | 
|  | (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents) | 
|  | + sreloc->reloc_count)); | 
|  | ++sreloc->reloc_count; | 
|  |  | 
|  | /* If this reloc is against an external symbol, we do | 
|  | not want to fiddle with the addend.  Otherwise, we | 
|  | need to include the symbol value so that it becomes | 
|  | an addend for the dynamic reloc.  */ | 
|  | if (! relocate) | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  | value += addend; | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_24: | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fffff || (long) value < -0x800000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_8 (input_bfd, value & 0xff, hit_data); | 
|  | bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); | 
|  | bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_16: | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fff || (long) value < -0x8000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_16 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_8: | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7f || (long) value < -0x80) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_8 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_PCREL8: | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7f || (long) value < -0x80) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_8 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_PCREL16: | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fff || (long) value < -0x8000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_16 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_PCREL32: | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_GNU_VTINHERIT: | 
|  | case R_MN10300_GNU_VTENTRY: | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_GOTPC32: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | /* Use global offset table as symbol value.  */ | 
|  | value = htab->root.sgot->output_section->vma; | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_GOTPC16: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | /* Use global offset table as symbol value.  */ | 
|  | value = htab->root.sgot->output_section->vma; | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fff || (long) value < -0x8000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_16 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_GOTOFF32: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | value -= htab->root.sgot->output_section->vma; | 
|  | value += addend; | 
|  |  | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_GOTOFF24: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | value -= htab->root.sgot->output_section->vma; | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fffff || (long) value < -0x800000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_8 (input_bfd, value, hit_data); | 
|  | bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); | 
|  | bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_GOTOFF16: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | value -= htab->root.sgot->output_section->vma; | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fff || (long) value < -0x8000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_16 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_PLT32: | 
|  | if (h != NULL | 
|  | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL | 
|  | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN | 
|  | && h->plt.offset != (bfd_vma) -1) | 
|  | { | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | splt = htab->root.splt; | 
|  | value = (splt->output_section->vma | 
|  | + splt->output_offset | 
|  | + h->plt.offset) - value; | 
|  | } | 
|  |  | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_PLT16: | 
|  | if (h != NULL | 
|  | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL | 
|  | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN | 
|  | && h->plt.offset != (bfd_vma) -1) | 
|  | { | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | splt = htab->root.splt; | 
|  | value = (splt->output_section->vma | 
|  | + splt->output_offset | 
|  | + h->plt.offset) - value; | 
|  | } | 
|  |  | 
|  | value -= (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | value -= offset; | 
|  | value += addend; | 
|  |  | 
|  | if ((long) value > 0x7fff || (long) value < -0x8000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_16 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_TLS_LDO: | 
|  | value = dtpoff (info, value); | 
|  | bfd_put_32 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_TLS_LE: | 
|  | value = tpoff (info, value); | 
|  | bfd_put_32 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_TLS_LD: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | BFD_ASSERT (sgot != NULL); | 
|  | value = htab->tls_ldm_got.offset + sgot->output_offset; | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  |  | 
|  | if (!htab->tls_ldm_got.rel_emitted) | 
|  | { | 
|  | asection *srelgot = htab->root.srelgot; | 
|  | Elf_Internal_Rela rel; | 
|  |  | 
|  | BFD_ASSERT (srelgot != NULL); | 
|  | htab->tls_ldm_got.rel_emitted ++; | 
|  | rel.r_offset = (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + htab->tls_ldm_got.offset); | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset); | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4); | 
|  | rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); | 
|  | rel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, & rel, | 
|  | (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents | 
|  | + srelgot->reloc_count)); | 
|  | ++ srelgot->reloc_count; | 
|  | } | 
|  |  | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_MN10300_TLS_GOTIE: | 
|  | value = tpoff (info, value); | 
|  | /* Fall Through.  */ | 
|  |  | 
|  | case R_MN10300_TLS_GD: | 
|  | case R_MN10300_TLS_IE: | 
|  | case R_MN10300_GOT32: | 
|  | case R_MN10300_GOT24: | 
|  | case R_MN10300_GOT16: | 
|  | if (dynobj == NULL) | 
|  | return bfd_reloc_dangerous; | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | if (r_type == R_MN10300_TLS_GD) | 
|  | value = dtpoff (info, value); | 
|  |  | 
|  | if (h != NULL) | 
|  | { | 
|  | bfd_vma off; | 
|  |  | 
|  | off = h->got.offset; | 
|  | /* Offsets in the GOT are allocated in check_relocs | 
|  | which is not called for shared libraries... */ | 
|  | if (off == (bfd_vma) -1) | 
|  | off = 0; | 
|  |  | 
|  | if (sgot->contents != NULL | 
|  | && (! elf_hash_table (info)->dynamic_sections_created | 
|  | || SYMBOL_REFERENCES_LOCAL (info, h))) | 
|  | /* This is actually a static link, or it is a | 
|  | -Bsymbolic link and the symbol is defined | 
|  | locally, or the symbol was forced to be local | 
|  | because of a version file.  We must initialize | 
|  | this entry in the global offset table. | 
|  |  | 
|  | When doing a dynamic link, we create a .rela.got | 
|  | relocation entry to initialize the value.  This | 
|  | is done in the finish_dynamic_symbol routine.  */ | 
|  | bfd_put_32 (output_bfd, value, | 
|  | sgot->contents + off); | 
|  |  | 
|  | value = sgot->output_offset + off; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_vma off; | 
|  |  | 
|  | off = elf_local_got_offsets (input_bfd)[symndx]; | 
|  |  | 
|  | if (off & 1) | 
|  | bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1)); | 
|  | else | 
|  | { | 
|  | bfd_put_32 (output_bfd, value, sgot->contents + off); | 
|  |  | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | asection *srelgot = htab->root.srelgot;; | 
|  | Elf_Internal_Rela outrel; | 
|  |  | 
|  | BFD_ASSERT (srelgot != NULL); | 
|  |  | 
|  | outrel.r_offset = (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + off); | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MN10300_TLS_GD: | 
|  | outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF); | 
|  | outrel.r_offset = (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + off + 4); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, & outrel, | 
|  | (bfd_byte *) (((Elf32_External_Rela *) | 
|  | srelgot->contents) | 
|  | + srelgot->reloc_count)); | 
|  | ++ srelgot->reloc_count; | 
|  | outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); | 
|  | break; | 
|  | case R_MN10300_TLS_GOTIE: | 
|  | case R_MN10300_TLS_IE: | 
|  | outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); | 
|  | break; | 
|  | default: | 
|  | outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | outrel.r_addend = value; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, | 
|  | (bfd_byte *) (((Elf32_External_Rela *) | 
|  | srelgot->contents) | 
|  | + srelgot->reloc_count)); | 
|  | ++ srelgot->reloc_count; | 
|  | elf_local_got_offsets (input_bfd)[symndx] |= 1; | 
|  | } | 
|  |  | 
|  | value = sgot->output_offset + (off & ~(bfd_vma) 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | value += addend; | 
|  |  | 
|  | if (r_type == R_MN10300_TLS_IE) | 
|  | { | 
|  | value += sgot->output_section->vma; | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  | else if (r_type == R_MN10300_TLS_GOTIE | 
|  | || r_type == R_MN10300_TLS_GD | 
|  | || r_type == R_MN10300_TLS_LD) | 
|  | { | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  | else if (r_type == R_MN10300_GOT32) | 
|  | { | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  | else if (r_type == R_MN10300_GOT24) | 
|  | { | 
|  | if ((long) value > 0x7fffff || (long) value < -0x800000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_8 (input_bfd, value & 0xff, hit_data); | 
|  | bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); | 
|  | bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  | else if (r_type == R_MN10300_GOT16) | 
|  | { | 
|  | if ((long) value > 0x7fff || (long) value < -0x8000) | 
|  | return bfd_reloc_overflow; | 
|  |  | 
|  | bfd_put_16 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | default: | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Relocate an MN10300 ELF section.  */ | 
|  |  | 
|  | static int | 
|  | mn10300_elf_relocate_section (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | bfd *input_bfd, | 
|  | asection *input_section, | 
|  | bfd_byte *contents, | 
|  | Elf_Internal_Rela *relocs, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | Elf_Internal_Rela *rel, *relend; | 
|  | Elf_Internal_Rela * trel; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | sym_hashes = elf_sym_hashes (input_bfd); | 
|  |  | 
|  | rel = relocs; | 
|  | relend = relocs + input_section->reloc_count; | 
|  | for (; rel < relend; rel++) | 
|  | { | 
|  | int r_type; | 
|  | reloc_howto_type *howto; | 
|  | unsigned long r_symndx; | 
|  | Elf_Internal_Sym *sym; | 
|  | asection *sec; | 
|  | struct elf32_mn10300_link_hash_entry *h; | 
|  | bfd_vma relocation; | 
|  | bfd_reloc_status_type r; | 
|  | int tls_r_type; | 
|  | bool unresolved_reloc = false; | 
|  | bool warned, ignored; | 
|  | struct elf_link_hash_entry * hh; | 
|  |  | 
|  | relocation = 0; | 
|  | r_symndx = ELF32_R_SYM (rel->r_info); | 
|  | r_type = ELF32_R_TYPE (rel->r_info); | 
|  | howto = elf_mn10300_howto_table + r_type; | 
|  |  | 
|  | /* Just skip the vtable gc relocs.  */ | 
|  | if (r_type == R_MN10300_GNU_VTINHERIT | 
|  | || r_type == R_MN10300_GNU_VTENTRY) | 
|  | continue; | 
|  |  | 
|  | h = NULL; | 
|  | sym = NULL; | 
|  | sec = NULL; | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | hh = NULL; | 
|  | else | 
|  | { | 
|  | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | 
|  | r_symndx, symtab_hdr, sym_hashes, | 
|  | hh, sec, relocation, | 
|  | unresolved_reloc, warned, ignored); | 
|  | } | 
|  | h = elf_mn10300_hash_entry (hh); | 
|  |  | 
|  | tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0); | 
|  | if (tls_r_type != r_type) | 
|  | { | 
|  | bool had_plt; | 
|  |  | 
|  | had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type, | 
|  | contents, rel->r_offset); | 
|  | r_type = tls_r_type; | 
|  | howto = elf_mn10300_howto_table + r_type; | 
|  |  | 
|  | if (had_plt) | 
|  | for (trel = rel+1; trel < relend; trel++) | 
|  | if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32 | 
|  | || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32) | 
|  | && rel->r_offset + had_plt == trel->r_offset) | 
|  | trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE); | 
|  | } | 
|  |  | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | sym = local_syms + r_symndx; | 
|  | sec = local_sections[r_symndx]; | 
|  | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | 
|  | } | 
|  | else | 
|  | { | 
|  | if ((h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak) | 
|  | && (   r_type == R_MN10300_GOTPC32 | 
|  | || r_type == R_MN10300_GOTPC16 | 
|  | || ((   r_type == R_MN10300_PLT32 | 
|  | || r_type == R_MN10300_PLT16) | 
|  | && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL | 
|  | && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN | 
|  | && h->root.plt.offset != (bfd_vma) -1) | 
|  | || ((   r_type == R_MN10300_GOT32 | 
|  | || r_type == R_MN10300_GOT24 | 
|  | || r_type == R_MN10300_TLS_GD | 
|  | || r_type == R_MN10300_TLS_LD | 
|  | || r_type == R_MN10300_TLS_GOTIE | 
|  | || r_type == R_MN10300_TLS_IE | 
|  | || r_type == R_MN10300_GOT16) | 
|  | && elf_hash_table (info)->dynamic_sections_created | 
|  | && !SYMBOL_REFERENCES_LOCAL (info, hh)) | 
|  | || (r_type == R_MN10300_32 | 
|  | && !SYMBOL_REFERENCES_LOCAL (info, hh) | 
|  | /* _32 relocs in executables force _COPY relocs, | 
|  | such that the address of the symbol ends up | 
|  | being local.  */ | 
|  | && (((input_section->flags & SEC_ALLOC) != 0 | 
|  | && !bfd_link_executable (info)) | 
|  | /* DWARF will emit R_MN10300_32 relocations | 
|  | in its sections against symbols defined | 
|  | externally in shared libraries.  We can't | 
|  | do anything with them here.  */ | 
|  | || ((input_section->flags & SEC_DEBUGGING) != 0 | 
|  | && h->root.def_dynamic))))) | 
|  | /* In these cases, we don't need the relocation | 
|  | value.  We check specially because in some | 
|  | obscure cases sec->output_section will be NULL.  */ | 
|  | relocation = 0; | 
|  |  | 
|  | else if (!bfd_link_relocatable (info) && unresolved_reloc | 
|  | && _bfd_elf_section_offset (output_bfd, info, input_section, | 
|  | rel->r_offset) != (bfd_vma) -1) | 
|  |  | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): " | 
|  | "unresolvable %s relocation against symbol `%s'"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) rel->r_offset, | 
|  | howto->name, | 
|  | h->root.root.root.string); | 
|  | } | 
|  |  | 
|  | if (sec != NULL && discarded_section (sec)) | 
|  | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | 
|  | rel, 1, relend, howto, 0, contents); | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | continue; | 
|  |  | 
|  | r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd, | 
|  | input_section, | 
|  | contents, rel->r_offset, | 
|  | relocation, rel->r_addend, | 
|  | (struct elf_link_hash_entry *) h, | 
|  | r_symndx, | 
|  | info, sec, h == NULL); | 
|  |  | 
|  | if (r != bfd_reloc_ok) | 
|  | { | 
|  | const char *name; | 
|  | const char *msg = NULL; | 
|  |  | 
|  | if (h != NULL) | 
|  | name = h->root.root.root.string; | 
|  | else | 
|  | { | 
|  | name = (bfd_elf_string_from_elf_section | 
|  | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | 
|  | if (name == NULL || *name == '\0') | 
|  | name = bfd_section_name (sec); | 
|  | } | 
|  |  | 
|  | switch (r) | 
|  | { | 
|  | case bfd_reloc_overflow: | 
|  | (*info->callbacks->reloc_overflow) | 
|  | (info, (h ? &h->root.root : NULL), name, howto->name, | 
|  | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_undefined: | 
|  | (*info->callbacks->undefined_symbol) | 
|  | (info, name, input_bfd, input_section, rel->r_offset, true); | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_outofrange: | 
|  | msg = _("internal error: out of range error"); | 
|  | goto common_error; | 
|  |  | 
|  | case bfd_reloc_notsupported: | 
|  | msg = _("internal error: unsupported relocation error"); | 
|  | goto common_error; | 
|  |  | 
|  | case bfd_reloc_dangerous: | 
|  | if (r_type == R_MN10300_PCREL32) | 
|  | msg = _("error: inappropriate relocation type for shared" | 
|  | " library (did you forget -fpic?)"); | 
|  | else if (r_type == R_MN10300_GOT32) | 
|  | /* xgettext:c-format */ | 
|  | msg = _("%pB: taking the address of protected function" | 
|  | " '%s' cannot be done when making a shared library"); | 
|  | else | 
|  | msg = _("internal error: suspicious relocation type used" | 
|  | " in shared library"); | 
|  | goto common_error; | 
|  |  | 
|  | default: | 
|  | msg = _("internal error: unknown error"); | 
|  | /* Fall through.  */ | 
|  |  | 
|  | common_error: | 
|  | _bfd_error_handler (msg, input_bfd, name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Finish initializing one hash table entry.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry, | 
|  | void * in_args) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *entry; | 
|  | struct bfd_link_info *link_info = (struct bfd_link_info *) in_args; | 
|  | unsigned int byte_count = 0; | 
|  |  | 
|  | entry = (struct elf32_mn10300_link_hash_entry *) gen_entry; | 
|  |  | 
|  | /* If we already know we want to convert "call" to "calls" for calls | 
|  | to this symbol, then return now.  */ | 
|  | if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS) | 
|  | return true; | 
|  |  | 
|  | /* If there are no named calls to this symbol, or there's nothing we | 
|  | can move from the function itself into the "call" instruction, | 
|  | then note that all "call" instructions should be converted into | 
|  | "calls" instructions and return.  If a symbol is available for | 
|  | dynamic symbol resolution (overridable or overriding), avoid | 
|  | custom calling conventions.  */ | 
|  | if (entry->direct_calls == 0 | 
|  | || (entry->stack_size == 0 && entry->movm_args == 0) | 
|  | || (elf_hash_table (link_info)->dynamic_sections_created | 
|  | && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL | 
|  | && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN)) | 
|  | { | 
|  | /* Make a note that we should convert "call" instructions to "calls" | 
|  | instructions for calls to this symbol.  */ | 
|  | entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* We may be able to move some instructions from the function itself into | 
|  | the "call" instruction.  Count how many bytes we might be able to | 
|  | eliminate in the function itself.  */ | 
|  |  | 
|  | /* A movm instruction is two bytes.  */ | 
|  | if (entry->movm_args) | 
|  | byte_count += 2; | 
|  |  | 
|  | /* Count the insn to allocate stack space too.  */ | 
|  | if (entry->stack_size > 0) | 
|  | { | 
|  | if (entry->stack_size <= 128) | 
|  | byte_count += 3; | 
|  | else | 
|  | byte_count += 4; | 
|  | } | 
|  |  | 
|  | /* If using "call" will result in larger code, then turn all | 
|  | the associated "call" instructions into "calls" instructions.  */ | 
|  | if (byte_count < entry->direct_calls) | 
|  | entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; | 
|  |  | 
|  | /* This routine never fails.  */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Used to count hash table entries.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED, | 
|  | void * in_args) | 
|  | { | 
|  | int *count = (int *) in_args; | 
|  |  | 
|  | (*count) ++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Used to enumerate hash table entries into a linear array.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry, | 
|  | void * in_args) | 
|  | { | 
|  | struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args; | 
|  |  | 
|  | **ptr = gen_entry; | 
|  | (*ptr) ++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Used to sort the array created by the above.  */ | 
|  |  | 
|  | static int | 
|  | sort_by_value (const void *va, const void *vb) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *a | 
|  | = *(struct elf32_mn10300_link_hash_entry **) va; | 
|  | struct elf32_mn10300_link_hash_entry *b | 
|  | = *(struct elf32_mn10300_link_hash_entry **) vb; | 
|  |  | 
|  | return a->value - b->value; | 
|  | } | 
|  |  | 
|  | /* Compute the stack size and movm arguments for the function | 
|  | referred to by HASH at address ADDR in section with | 
|  | contents CONTENTS, store the information in the hash table.  */ | 
|  |  | 
|  | static void | 
|  | compute_function_info (bfd *abfd, | 
|  | struct elf32_mn10300_link_hash_entry *hash, | 
|  | bfd_vma addr, | 
|  | unsigned char *contents) | 
|  | { | 
|  | unsigned char byte1, byte2; | 
|  | /* We only care about a very small subset of the possible prologue | 
|  | sequences here.  Basically we look for: | 
|  |  | 
|  | movm [d2,d3,a2,a3],sp (optional) | 
|  | add <size>,sp (optional, and only for sizes which fit in an unsigned | 
|  | 8 bit number) | 
|  |  | 
|  | If we find anything else, we quit.  */ | 
|  |  | 
|  | /* Look for movm [regs],sp.  */ | 
|  | byte1 = bfd_get_8 (abfd, contents + addr); | 
|  | byte2 = bfd_get_8 (abfd, contents + addr + 1); | 
|  |  | 
|  | if (byte1 == 0xcf) | 
|  | { | 
|  | hash->movm_args = byte2; | 
|  | addr += 2; | 
|  | byte1 = bfd_get_8 (abfd, contents + addr); | 
|  | byte2 = bfd_get_8 (abfd, contents + addr + 1); | 
|  | } | 
|  |  | 
|  | /* Now figure out how much stack space will be allocated by the movm | 
|  | instruction.  We need this kept separate from the function's normal | 
|  | stack space.  */ | 
|  | if (hash->movm_args) | 
|  | { | 
|  | /* Space for d2.  */ | 
|  | if (hash->movm_args & 0x80) | 
|  | hash->movm_stack_size += 4; | 
|  |  | 
|  | /* Space for d3.  */ | 
|  | if (hash->movm_args & 0x40) | 
|  | hash->movm_stack_size += 4; | 
|  |  | 
|  | /* Space for a2.  */ | 
|  | if (hash->movm_args & 0x20) | 
|  | hash->movm_stack_size += 4; | 
|  |  | 
|  | /* Space for a3.  */ | 
|  | if (hash->movm_args & 0x10) | 
|  | hash->movm_stack_size += 4; | 
|  |  | 
|  | /* "other" space.  d0, d1, a0, a1, mdr, lir, lar, 4 byte pad.  */ | 
|  | if (hash->movm_args & 0x08) | 
|  | hash->movm_stack_size += 8 * 4; | 
|  |  | 
|  | if (bfd_get_mach (abfd) == bfd_mach_am33 | 
|  | || bfd_get_mach (abfd) == bfd_mach_am33_2) | 
|  | { | 
|  | /* "exother" space.  e0, e1, mdrq, mcrh, mcrl, mcvf */ | 
|  | if (hash->movm_args & 0x1) | 
|  | hash->movm_stack_size += 6 * 4; | 
|  |  | 
|  | /* exreg1 space.  e4, e5, e6, e7 */ | 
|  | if (hash->movm_args & 0x2) | 
|  | hash->movm_stack_size += 4 * 4; | 
|  |  | 
|  | /* exreg0 space.  e2, e3  */ | 
|  | if (hash->movm_args & 0x4) | 
|  | hash->movm_stack_size += 2 * 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now look for the two stack adjustment variants.  */ | 
|  | if (byte1 == 0xf8 && byte2 == 0xfe) | 
|  | { | 
|  | int temp = bfd_get_8 (abfd, contents + addr + 2); | 
|  | temp = ((temp & 0xff) ^ (~0x7f)) + 0x80; | 
|  |  | 
|  | hash->stack_size = -temp; | 
|  | } | 
|  | else if (byte1 == 0xfa && byte2 == 0xfe) | 
|  | { | 
|  | int temp = bfd_get_16 (abfd, contents + addr + 2); | 
|  | temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000; | 
|  | temp = -temp; | 
|  |  | 
|  | if (temp < 255) | 
|  | hash->stack_size = temp; | 
|  | } | 
|  |  | 
|  | /* If the total stack to be allocated by the call instruction is more | 
|  | than 255 bytes, then we can't remove the stack adjustment by using | 
|  | "call" (we might still be able to remove the "movm" instruction.  */ | 
|  | if (hash->stack_size + hash->movm_stack_size > 255) | 
|  | hash->stack_size = 0; | 
|  | } | 
|  |  | 
|  | /* Delete some bytes from a section while relaxing.  */ | 
|  |  | 
|  | static bool | 
|  | mn10300_elf_relax_delete_bytes (bfd *abfd, | 
|  | asection *sec, | 
|  | bfd_vma addr, | 
|  | int count) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | unsigned int sec_shndx; | 
|  | bfd_byte *contents; | 
|  | Elf_Internal_Rela *irel, *irelend; | 
|  | Elf_Internal_Rela *irelalign; | 
|  | bfd_vma toaddr; | 
|  | Elf_Internal_Sym *isym, *isymend; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | struct elf_link_hash_entry **end_hashes; | 
|  | unsigned int symcount; | 
|  |  | 
|  | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  |  | 
|  | contents = elf_section_data (sec)->this_hdr.contents; | 
|  |  | 
|  | irelalign = NULL; | 
|  | toaddr = sec->size; | 
|  |  | 
|  | irel = elf_section_data (sec)->relocs; | 
|  | irelend = irel + sec->reloc_count; | 
|  |  | 
|  | if (sec->reloc_count > 0) | 
|  | { | 
|  | /* If there is an align reloc at the end of the section ignore it. | 
|  | GAS creates these relocs for reasons of its own, and they just | 
|  | serve to keep the section artifically inflated.  */ | 
|  | if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN) | 
|  | --irelend; | 
|  |  | 
|  | /* The deletion must stop at the next ALIGN reloc for an alignment | 
|  | power larger than, or not a multiple of, the number of bytes we | 
|  | are deleting.  */ | 
|  | for (; irel < irelend; irel++) | 
|  | { | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN | 
|  | && irel->r_offset > addr | 
|  | && irel->r_offset < toaddr) | 
|  | { | 
|  | int alignment = 1 << irel->r_addend; | 
|  |  | 
|  | if (count < alignment | 
|  | || alignment % count != 0) | 
|  | { | 
|  | irelalign = irel; | 
|  | toaddr = irel->r_offset; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Actually delete the bytes.  */ | 
|  | memmove (contents + addr, contents + addr + count, | 
|  | (size_t) (toaddr - addr - count)); | 
|  |  | 
|  | /* Adjust the section's size if we are shrinking it, or else | 
|  | pad the bytes between the end of the shrunken region and | 
|  | the start of the next region with NOP codes.  */ | 
|  | if (irelalign == NULL) | 
|  | { | 
|  | sec->size -= count; | 
|  | /* Include symbols at the end of the section, but | 
|  | not at the end of a sub-region of the section.  */ | 
|  | toaddr ++; | 
|  | } | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #define NOP_OPCODE 0xcb | 
|  |  | 
|  | for (i = 0; i < count; i ++) | 
|  | bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); | 
|  | } | 
|  |  | 
|  | /* Adjust all the relocs.  */ | 
|  | for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) | 
|  | { | 
|  | /* Get the new reloc address.  */ | 
|  | if ((irel->r_offset > addr | 
|  | && irel->r_offset < toaddr) | 
|  | || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN | 
|  | && irel->r_offset == toaddr)) | 
|  | irel->r_offset -= count; | 
|  | } | 
|  |  | 
|  | /* Adjust the local symbols in the section, reducing their value | 
|  | by the number of bytes deleted.  Note - symbols within the deleted | 
|  | region are moved to the address of the start of the region, which | 
|  | actually means that they will address the byte beyond the end of | 
|  | the region once the deletion has been completed.  */ | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | isym = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) | 
|  | { | 
|  | if (isym->st_shndx == sec_shndx | 
|  | && isym->st_value > addr | 
|  | && isym->st_value < toaddr) | 
|  | { | 
|  | if (isym->st_value < addr + count) | 
|  | isym->st_value = addr; | 
|  | else | 
|  | isym->st_value -= count; | 
|  | } | 
|  | /* Adjust the function symbol's size as well.  */ | 
|  | else if (isym->st_shndx == sec_shndx | 
|  | && ELF_ST_TYPE (isym->st_info) == STT_FUNC | 
|  | && isym->st_value + isym->st_size > addr | 
|  | && isym->st_value + isym->st_size < toaddr) | 
|  | isym->st_size -= count; | 
|  | } | 
|  |  | 
|  | /* Now adjust the global symbols defined in this section.  */ | 
|  | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | 
|  | - symtab_hdr->sh_info); | 
|  | sym_hashes = elf_sym_hashes (abfd); | 
|  | end_hashes = sym_hashes + symcount; | 
|  | for (; sym_hashes < end_hashes; sym_hashes++) | 
|  | { | 
|  | struct elf_link_hash_entry *sym_hash = *sym_hashes; | 
|  |  | 
|  | if ((sym_hash->root.type == bfd_link_hash_defined | 
|  | || sym_hash->root.type == bfd_link_hash_defweak) | 
|  | && sym_hash->root.u.def.section == sec | 
|  | && sym_hash->root.u.def.value > addr | 
|  | && sym_hash->root.u.def.value < toaddr) | 
|  | { | 
|  | if (sym_hash->root.u.def.value < addr + count) | 
|  | sym_hash->root.u.def.value = addr; | 
|  | else | 
|  | sym_hash->root.u.def.value -= count; | 
|  | } | 
|  | /* Adjust the function symbol's size as well.  */ | 
|  | else if (sym_hash->root.type == bfd_link_hash_defined | 
|  | && sym_hash->root.u.def.section == sec | 
|  | && sym_hash->type == STT_FUNC | 
|  | && sym_hash->root.u.def.value + sym_hash->size > addr | 
|  | && sym_hash->root.u.def.value + sym_hash->size < toaddr) | 
|  | sym_hash->size -= count; | 
|  | } | 
|  |  | 
|  | /* See if we can move the ALIGN reloc forward. | 
|  | We have adjusted r_offset for it already.  */ | 
|  | if (irelalign != NULL) | 
|  | { | 
|  | bfd_vma alignto, alignaddr; | 
|  |  | 
|  | if ((int) irelalign->r_addend > 0) | 
|  | { | 
|  | /* This is the old address.  */ | 
|  | alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); | 
|  | /* This is where the align points to now.  */ | 
|  | alignaddr = BFD_ALIGN (irelalign->r_offset, | 
|  | 1 << irelalign->r_addend); | 
|  | if (alignaddr < alignto) | 
|  | /* Tail recursion.  */ | 
|  | return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr, | 
|  | (int) (alignto - alignaddr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return TRUE if a symbol exists at the given address, else return | 
|  | FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | mn10300_elf_symbol_address_p (bfd *abfd, | 
|  | asection *sec, | 
|  | Elf_Internal_Sym *isym, | 
|  | bfd_vma addr) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | unsigned int sec_shndx; | 
|  | Elf_Internal_Sym *isymend; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | struct elf_link_hash_entry **end_hashes; | 
|  | unsigned int symcount; | 
|  |  | 
|  | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  |  | 
|  | /* Examine all the symbols.  */ | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) | 
|  | if (isym->st_shndx == sec_shndx | 
|  | && isym->st_value == addr) | 
|  | return true; | 
|  |  | 
|  | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | 
|  | - symtab_hdr->sh_info); | 
|  | sym_hashes = elf_sym_hashes (abfd); | 
|  | end_hashes = sym_hashes + symcount; | 
|  | for (; sym_hashes < end_hashes; sym_hashes++) | 
|  | { | 
|  | struct elf_link_hash_entry *sym_hash = *sym_hashes; | 
|  |  | 
|  | if ((sym_hash->root.type == bfd_link_hash_defined | 
|  | || sym_hash->root.type == bfd_link_hash_defweak) | 
|  | && sym_hash->root.u.def.section == sec | 
|  | && sym_hash->root.u.def.value == addr) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* This function handles relaxing for the mn10300. | 
|  |  | 
|  | There are quite a few relaxing opportunities available on the mn10300: | 
|  |  | 
|  | * calls:32 -> calls:16					   2 bytes | 
|  | * call:32  -> call:16					   2 bytes | 
|  |  | 
|  | * call:32 -> calls:32					   1 byte | 
|  | * call:16 -> calls:16					   1 byte | 
|  | * These are done anytime using "calls" would result | 
|  | in smaller code, or when necessary to preserve the | 
|  | meaning of the program. | 
|  |  | 
|  | * call:32						   varies | 
|  | * call:16 | 
|  | * In some circumstances we can move instructions | 
|  | from a function prologue into a "call" instruction. | 
|  | This is only done if the resulting code is no larger | 
|  | than the original code. | 
|  |  | 
|  | * jmp:32 -> jmp:16					   2 bytes | 
|  | * jmp:16 -> bra:8					   1 byte | 
|  |  | 
|  | * If the previous instruction is a conditional branch | 
|  | around the jump/bra, we may be able to reverse its condition | 
|  | and change its target to the jump's target.  The jump/bra | 
|  | can then be deleted.				   2 bytes | 
|  |  | 
|  | * mov abs32 -> mov abs16				   1 or 2 bytes | 
|  |  | 
|  | * Most instructions which accept imm32 can relax to imm16  1 or 2 bytes | 
|  | - Most instructions which accept imm16 can relax to imm8   1 or 2 bytes | 
|  |  | 
|  | * Most instructions which accept d32 can relax to d16	   1 or 2 bytes | 
|  | - Most instructions which accept d16 can relax to d8	   1 or 2 bytes | 
|  |  | 
|  | We don't handle imm16->imm8 or d16->d8 as they're very rare | 
|  | and somewhat more difficult to support.  */ | 
|  |  | 
|  | static bool | 
|  | mn10300_elf_relax_section (bfd *abfd, | 
|  | asection *sec, | 
|  | struct bfd_link_info *link_info, | 
|  | bool *again) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | Elf_Internal_Rela *internal_relocs = NULL; | 
|  | Elf_Internal_Rela *irel, *irelend; | 
|  | bfd_byte *contents = NULL; | 
|  | Elf_Internal_Sym *isymbuf = NULL; | 
|  | struct elf32_mn10300_link_hash_table *hash_table; | 
|  | asection *section = sec; | 
|  | bfd_vma align_gap_adjustment; | 
|  |  | 
|  | if (bfd_link_relocatable (link_info)) | 
|  | (*link_info->callbacks->einfo) | 
|  | (_("%P%F: --relax and -r may not be used together\n")); | 
|  |  | 
|  | /* Assume nothing changes.  */ | 
|  | *again = false; | 
|  |  | 
|  | /* We need a pointer to the mn10300 specific hash table.  */ | 
|  | hash_table = elf32_mn10300_hash_table (link_info); | 
|  | if (hash_table == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Initialize fields in each hash table entry the first time through.  */ | 
|  | if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0) | 
|  | { | 
|  | bfd *input_bfd; | 
|  |  | 
|  | /* Iterate over all the input bfds.  */ | 
|  | for (input_bfd = link_info->input_bfds; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link.next) | 
|  | { | 
|  | /* We're going to need all the symbols for each bfd.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (symtab_hdr->sh_info != 0) | 
|  | { | 
|  | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (isymbuf == NULL) | 
|  | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (isymbuf == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Iterate over each section in this bfd.  */ | 
|  | for (section = input_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *hash; | 
|  | asection *sym_sec = NULL; | 
|  | const char *sym_name; | 
|  | char *new_name; | 
|  |  | 
|  | /* If there's nothing to do in this section, skip it.  */ | 
|  | if (! ((section->flags & SEC_RELOC) != 0 | 
|  | && section->reloc_count != 0)) | 
|  | continue; | 
|  | if ((section->flags & SEC_ALLOC) == 0) | 
|  | continue; | 
|  |  | 
|  | /* Get cached copy of section contents if it exists.  */ | 
|  | if (elf_section_data (section)->this_hdr.contents != NULL) | 
|  | contents = elf_section_data (section)->this_hdr.contents; | 
|  | else if (section->size != 0) | 
|  | { | 
|  | /* Go get them off disk.  */ | 
|  | if (!bfd_malloc_and_get_section (input_bfd, section, | 
|  | &contents)) | 
|  | goto error_return; | 
|  | } | 
|  | else | 
|  | contents = NULL; | 
|  |  | 
|  | /* If there aren't any relocs, then there's nothing to do.  */ | 
|  | if ((section->flags & SEC_RELOC) != 0 | 
|  | && section->reloc_count != 0) | 
|  | { | 
|  | /* Get a copy of the native relocations.  */ | 
|  | internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, | 
|  | NULL, NULL, | 
|  | link_info->keep_memory); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | /* Now examine each relocation.  */ | 
|  | irel = internal_relocs; | 
|  | irelend = irel + section->reloc_count; | 
|  | for (; irel < irelend; irel++) | 
|  | { | 
|  | long r_type; | 
|  | unsigned long r_index; | 
|  | unsigned char code; | 
|  |  | 
|  | r_type = ELF32_R_TYPE (irel->r_info); | 
|  | r_index = ELF32_R_SYM (irel->r_info); | 
|  |  | 
|  | if (r_type < 0 || r_type >= (int) R_MN10300_MAX) | 
|  | goto error_return; | 
|  |  | 
|  | /* We need the name and hash table entry of the target | 
|  | symbol!  */ | 
|  | hash = NULL; | 
|  | sym_sec = NULL; | 
|  |  | 
|  | if (r_index < symtab_hdr->sh_info) | 
|  | { | 
|  | /* A local symbol.  */ | 
|  | Elf_Internal_Sym *isym; | 
|  | struct elf_link_hash_table *elftab; | 
|  | size_t amt; | 
|  |  | 
|  | isym = isymbuf + r_index; | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | sym_sec = bfd_und_section_ptr; | 
|  | else if (isym->st_shndx == SHN_ABS) | 
|  | sym_sec = bfd_abs_section_ptr; | 
|  | else if (isym->st_shndx == SHN_COMMON) | 
|  | sym_sec = bfd_com_section_ptr; | 
|  | else | 
|  | sym_sec | 
|  | = bfd_section_from_elf_index (input_bfd, | 
|  | isym->st_shndx); | 
|  |  | 
|  | sym_name | 
|  | = bfd_elf_string_from_elf_section (input_bfd, | 
|  | (symtab_hdr | 
|  | ->sh_link), | 
|  | isym->st_name); | 
|  |  | 
|  | /* If it isn't a function, then we don't care | 
|  | about it.  */ | 
|  | if (ELF_ST_TYPE (isym->st_info) != STT_FUNC) | 
|  | continue; | 
|  |  | 
|  | /* Tack on an ID so we can uniquely identify this | 
|  | local symbol in the global hash table.  */ | 
|  | amt = strlen (sym_name) + 10; | 
|  | new_name = bfd_malloc (amt); | 
|  | if (new_name == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); | 
|  | sym_name = new_name; | 
|  |  | 
|  | elftab = &hash_table->static_hash_table->root; | 
|  | hash = ((struct elf32_mn10300_link_hash_entry *) | 
|  | elf_link_hash_lookup (elftab, sym_name, | 
|  | true, true, false)); | 
|  | free (new_name); | 
|  | } | 
|  | else | 
|  | { | 
|  | r_index -= symtab_hdr->sh_info; | 
|  | hash = (struct elf32_mn10300_link_hash_entry *) | 
|  | elf_sym_hashes (input_bfd)[r_index]; | 
|  | } | 
|  |  | 
|  | sym_name = hash->root.root.root.string; | 
|  | if ((section->flags & SEC_CODE) != 0) | 
|  | { | 
|  | /* If this is not a "call" instruction, then we | 
|  | should convert "call" instructions to "calls" | 
|  | instructions.  */ | 
|  | code = bfd_get_8 (input_bfd, | 
|  | contents + irel->r_offset - 1); | 
|  | if (code != 0xdd && code != 0xcd) | 
|  | hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; | 
|  | } | 
|  |  | 
|  | /* If this is a jump/call, then bump the | 
|  | direct_calls counter.  Else force "call" to | 
|  | "calls" conversions.  */ | 
|  | if (r_type == R_MN10300_PCREL32 | 
|  | || r_type == R_MN10300_PLT32 | 
|  | || r_type == R_MN10300_PLT16 | 
|  | || r_type == R_MN10300_PCREL16) | 
|  | hash->direct_calls++; | 
|  | else | 
|  | hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now look at the actual contents to get the stack size, | 
|  | and a list of what registers were saved in the prologue | 
|  | (ie movm_args).  */ | 
|  | if ((section->flags & SEC_CODE) != 0) | 
|  | { | 
|  | Elf_Internal_Sym *isym, *isymend; | 
|  | unsigned int sec_shndx; | 
|  | struct elf_link_hash_entry **hashes; | 
|  | struct elf_link_hash_entry **end_hashes; | 
|  | unsigned int symcount; | 
|  |  | 
|  | sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, | 
|  | section); | 
|  |  | 
|  | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | 
|  | - symtab_hdr->sh_info); | 
|  | hashes = elf_sym_hashes (input_bfd); | 
|  | end_hashes = hashes + symcount; | 
|  |  | 
|  | /* Look at each function defined in this section and | 
|  | update info for that function.  */ | 
|  | isymend = isymbuf + symtab_hdr->sh_info; | 
|  | for (isym = isymbuf; isym < isymend; isym++) | 
|  | { | 
|  | if (isym->st_shndx == sec_shndx | 
|  | && ELF_ST_TYPE (isym->st_info) == STT_FUNC) | 
|  | { | 
|  | struct elf_link_hash_table *elftab; | 
|  | size_t amt; | 
|  | struct elf_link_hash_entry **lhashes = hashes; | 
|  |  | 
|  | /* Skip a local symbol if it aliases a | 
|  | global one.  */ | 
|  | for (; lhashes < end_hashes; lhashes++) | 
|  | { | 
|  | hash = (struct elf32_mn10300_link_hash_entry *) *lhashes; | 
|  | if ((hash->root.root.type == bfd_link_hash_defined | 
|  | || hash->root.root.type == bfd_link_hash_defweak) | 
|  | && hash->root.root.u.def.section == section | 
|  | && hash->root.type == STT_FUNC | 
|  | && hash->root.root.u.def.value == isym->st_value) | 
|  | break; | 
|  | } | 
|  | if (lhashes != end_hashes) | 
|  | continue; | 
|  |  | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | sym_sec = bfd_und_section_ptr; | 
|  | else if (isym->st_shndx == SHN_ABS) | 
|  | sym_sec = bfd_abs_section_ptr; | 
|  | else if (isym->st_shndx == SHN_COMMON) | 
|  | sym_sec = bfd_com_section_ptr; | 
|  | else | 
|  | sym_sec | 
|  | = bfd_section_from_elf_index (input_bfd, | 
|  | isym->st_shndx); | 
|  |  | 
|  | sym_name = (bfd_elf_string_from_elf_section | 
|  | (input_bfd, symtab_hdr->sh_link, | 
|  | isym->st_name)); | 
|  |  | 
|  | /* Tack on an ID so we can uniquely identify this | 
|  | local symbol in the global hash table.  */ | 
|  | amt = strlen (sym_name) + 10; | 
|  | new_name = bfd_malloc (amt); | 
|  | if (new_name == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); | 
|  | sym_name = new_name; | 
|  |  | 
|  | elftab = &hash_table->static_hash_table->root; | 
|  | hash = ((struct elf32_mn10300_link_hash_entry *) | 
|  | elf_link_hash_lookup (elftab, sym_name, | 
|  | true, true, false)); | 
|  | free (new_name); | 
|  | compute_function_info (input_bfd, hash, | 
|  | isym->st_value, contents); | 
|  | hash->value = isym->st_value; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (; hashes < end_hashes; hashes++) | 
|  | { | 
|  | hash = (struct elf32_mn10300_link_hash_entry *) *hashes; | 
|  | if ((hash->root.root.type == bfd_link_hash_defined | 
|  | || hash->root.root.type == bfd_link_hash_defweak) | 
|  | && hash->root.root.u.def.section == section | 
|  | && hash->root.type == STT_FUNC) | 
|  | compute_function_info (input_bfd, hash, | 
|  | (hash)->root.root.u.def.value, | 
|  | contents); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cache or free any memory we allocated for the relocs.  */ | 
|  | if (elf_section_data (section)->relocs != internal_relocs) | 
|  | free (internal_relocs); | 
|  | internal_relocs = NULL; | 
|  |  | 
|  | /* Cache or free any memory we allocated for the contents.  */ | 
|  | if (contents != NULL | 
|  | && elf_section_data (section)->this_hdr.contents != contents) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (contents); | 
|  | else | 
|  | { | 
|  | /* Cache the section contents for elf_link_input_bfd.  */ | 
|  | elf_section_data (section)->this_hdr.contents = contents; | 
|  | } | 
|  | } | 
|  | contents = NULL; | 
|  | } | 
|  |  | 
|  | /* Cache or free any memory we allocated for the symbols.  */ | 
|  | if (isymbuf != NULL | 
|  | && symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (isymbuf); | 
|  | else | 
|  | { | 
|  | /* Cache the symbols for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  | } | 
|  | } | 
|  | isymbuf = NULL; | 
|  | } | 
|  |  | 
|  | /* Now iterate on each symbol in the hash table and perform | 
|  | the final initialization steps on each.  */ | 
|  | elf32_mn10300_link_hash_traverse (hash_table, | 
|  | elf32_mn10300_finish_hash_table_entry, | 
|  | link_info); | 
|  | elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, | 
|  | elf32_mn10300_finish_hash_table_entry, | 
|  | link_info); | 
|  |  | 
|  | { | 
|  | /* This section of code collects all our local symbols, sorts | 
|  | them by value, and looks for multiple symbols referring to | 
|  | the same address.  For those symbols, the flags are merged. | 
|  | At this point, the only flag that can be set is | 
|  | MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags | 
|  | together.  */ | 
|  | int static_count = 0, i; | 
|  | struct elf32_mn10300_link_hash_entry **entries; | 
|  | struct elf32_mn10300_link_hash_entry **ptr; | 
|  |  | 
|  | elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, | 
|  | elf32_mn10300_count_hash_table_entries, | 
|  | &static_count); | 
|  |  | 
|  | entries = bfd_malloc (static_count * sizeof (* ptr)); | 
|  |  | 
|  | ptr = entries; | 
|  | elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, | 
|  | elf32_mn10300_list_hash_table_entries, | 
|  | & ptr); | 
|  |  | 
|  | qsort (entries, static_count, sizeof (entries[0]), sort_by_value); | 
|  |  | 
|  | for (i = 0; i < static_count - 1; i++) | 
|  | if (entries[i]->value && entries[i]->value == entries[i+1]->value) | 
|  | { | 
|  | int v = entries[i]->flags; | 
|  | int j; | 
|  |  | 
|  | for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++) | 
|  | v |= entries[j]->flags; | 
|  |  | 
|  | for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++) | 
|  | entries[j]->flags = v; | 
|  |  | 
|  | i = j - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* All entries in the hash table are fully initialized.  */ | 
|  | hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED; | 
|  |  | 
|  | /* Now that everything has been initialized, go through each | 
|  | code section and delete any prologue insns which will be | 
|  | redundant because their operations will be performed by | 
|  | a "call" instruction.  */ | 
|  | for (input_bfd = link_info->input_bfds; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link.next) | 
|  | { | 
|  | /* We're going to need all the local symbols for each bfd.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (symtab_hdr->sh_info != 0) | 
|  | { | 
|  | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (isymbuf == NULL) | 
|  | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (isymbuf == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Walk over each section in this bfd.  */ | 
|  | for (section = input_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | unsigned int sec_shndx; | 
|  | Elf_Internal_Sym *isym, *isymend; | 
|  | struct elf_link_hash_entry **hashes; | 
|  | struct elf_link_hash_entry **end_hashes; | 
|  | unsigned int symcount; | 
|  |  | 
|  | /* Skip non-code sections and empty sections.  */ | 
|  | if ((section->flags & SEC_CODE) == 0 || section->size == 0) | 
|  | continue; | 
|  |  | 
|  | if (section->reloc_count != 0) | 
|  | { | 
|  | /* Get a copy of the native relocations.  */ | 
|  | internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, | 
|  | NULL, NULL, | 
|  | link_info->keep_memory); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Get cached copy of section contents if it exists.  */ | 
|  | if (elf_section_data (section)->this_hdr.contents != NULL) | 
|  | contents = elf_section_data (section)->this_hdr.contents; | 
|  | else | 
|  | { | 
|  | /* Go get them off disk.  */ | 
|  | if (!bfd_malloc_and_get_section (input_bfd, section, | 
|  | &contents)) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, | 
|  | section); | 
|  |  | 
|  | /* Now look for any function in this section which needs | 
|  | insns deleted from its prologue.  */ | 
|  | isymend = isymbuf + symtab_hdr->sh_info; | 
|  | for (isym = isymbuf; isym < isymend; isym++) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *sym_hash; | 
|  | asection *sym_sec = NULL; | 
|  | const char *sym_name; | 
|  | char *new_name; | 
|  | struct elf_link_hash_table *elftab; | 
|  | size_t amt; | 
|  |  | 
|  | if (isym->st_shndx != sec_shndx) | 
|  | continue; | 
|  |  | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | sym_sec = bfd_und_section_ptr; | 
|  | else if (isym->st_shndx == SHN_ABS) | 
|  | sym_sec = bfd_abs_section_ptr; | 
|  | else if (isym->st_shndx == SHN_COMMON) | 
|  | sym_sec = bfd_com_section_ptr; | 
|  | else | 
|  | sym_sec | 
|  | = bfd_section_from_elf_index (input_bfd, isym->st_shndx); | 
|  |  | 
|  | sym_name | 
|  | = bfd_elf_string_from_elf_section (input_bfd, | 
|  | symtab_hdr->sh_link, | 
|  | isym->st_name); | 
|  |  | 
|  | /* Tack on an ID so we can uniquely identify this | 
|  | local symbol in the global hash table.  */ | 
|  | amt = strlen (sym_name) + 10; | 
|  | new_name = bfd_malloc (amt); | 
|  | if (new_name == NULL) | 
|  | goto error_return; | 
|  | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); | 
|  | sym_name = new_name; | 
|  |  | 
|  | elftab = & hash_table->static_hash_table->root; | 
|  | sym_hash = (struct elf32_mn10300_link_hash_entry *) | 
|  | elf_link_hash_lookup (elftab, sym_name, | 
|  | false, false, false); | 
|  |  | 
|  | free (new_name); | 
|  | if (sym_hash == NULL) | 
|  | continue; | 
|  |  | 
|  | if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) | 
|  | && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) | 
|  | { | 
|  | int bytes = 0; | 
|  |  | 
|  | /* Note that we've changed things.  */ | 
|  | elf_section_data (section)->relocs = internal_relocs; | 
|  | elf_section_data (section)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Count how many bytes we're going to delete.  */ | 
|  | if (sym_hash->movm_args) | 
|  | bytes += 2; | 
|  |  | 
|  | if (sym_hash->stack_size > 0) | 
|  | { | 
|  | if (sym_hash->stack_size <= 128) | 
|  | bytes += 3; | 
|  | else | 
|  | bytes += 4; | 
|  | } | 
|  |  | 
|  | /* Note that we've deleted prologue bytes for this | 
|  | function.  */ | 
|  | sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; | 
|  |  | 
|  | /* Actually delete the bytes.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (input_bfd, | 
|  | section, | 
|  | isym->st_value, | 
|  | bytes)) | 
|  | goto error_return; | 
|  |  | 
|  | /* Something changed.  Not strictly necessary, but | 
|  | may lead to more relaxing opportunities.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Look for any global functions in this section which | 
|  | need insns deleted from their prologues.  */ | 
|  | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | 
|  | - symtab_hdr->sh_info); | 
|  | hashes = elf_sym_hashes (input_bfd); | 
|  | end_hashes = hashes + symcount; | 
|  | for (; hashes < end_hashes; hashes++) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *sym_hash; | 
|  |  | 
|  | sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes; | 
|  | if ((sym_hash->root.root.type == bfd_link_hash_defined | 
|  | || sym_hash->root.root.type == bfd_link_hash_defweak) | 
|  | && sym_hash->root.root.u.def.section == section | 
|  | && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) | 
|  | && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) | 
|  | { | 
|  | int bytes = 0; | 
|  | bfd_vma symval; | 
|  | struct elf_link_hash_entry **hh; | 
|  |  | 
|  | /* Note that we've changed things.  */ | 
|  | elf_section_data (section)->relocs = internal_relocs; | 
|  | elf_section_data (section)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Count how many bytes we're going to delete.  */ | 
|  | if (sym_hash->movm_args) | 
|  | bytes += 2; | 
|  |  | 
|  | if (sym_hash->stack_size > 0) | 
|  | { | 
|  | if (sym_hash->stack_size <= 128) | 
|  | bytes += 3; | 
|  | else | 
|  | bytes += 4; | 
|  | } | 
|  |  | 
|  | /* Note that we've deleted prologue bytes for this | 
|  | function.  */ | 
|  | sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; | 
|  |  | 
|  | /* Actually delete the bytes.  */ | 
|  | symval = sym_hash->root.root.u.def.value; | 
|  | if (!mn10300_elf_relax_delete_bytes (input_bfd, | 
|  | section, | 
|  | symval, | 
|  | bytes)) | 
|  | goto error_return; | 
|  |  | 
|  | /* There may be other C++ functions symbols with the same | 
|  | address.  If so then mark these as having had their | 
|  | prologue bytes deleted as well.  */ | 
|  | for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *h; | 
|  |  | 
|  | h = (struct elf32_mn10300_link_hash_entry *) * hh; | 
|  |  | 
|  | if (h != sym_hash | 
|  | && (h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak) | 
|  | && h->root.root.u.def.section == section | 
|  | && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS) | 
|  | && h->root.root.u.def.value == symval | 
|  | && h->root.type == STT_FUNC) | 
|  | h->flags |= MN10300_DELETED_PROLOGUE_BYTES; | 
|  | } | 
|  |  | 
|  | /* Something changed.  Not strictly necessary, but | 
|  | may lead to more relaxing opportunities.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cache or free any memory we allocated for the relocs.  */ | 
|  | if (elf_section_data (section)->relocs != internal_relocs) | 
|  | free (internal_relocs); | 
|  | internal_relocs = NULL; | 
|  |  | 
|  | /* Cache or free any memory we allocated for the contents.  */ | 
|  | if (contents != NULL | 
|  | && elf_section_data (section)->this_hdr.contents != contents) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (contents); | 
|  | else | 
|  | /* Cache the section contents for elf_link_input_bfd.  */ | 
|  | elf_section_data (section)->this_hdr.contents = contents; | 
|  | } | 
|  | contents = NULL; | 
|  | } | 
|  |  | 
|  | /* Cache or free any memory we allocated for the symbols.  */ | 
|  | if (isymbuf != NULL | 
|  | && symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (isymbuf); | 
|  | else | 
|  | /* Cache the symbols for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  | } | 
|  | isymbuf = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* (Re)initialize for the basic instruction shortening/relaxing pass.  */ | 
|  | contents = NULL; | 
|  | internal_relocs = NULL; | 
|  | isymbuf = NULL; | 
|  | /* For error_return.  */ | 
|  | section = sec; | 
|  |  | 
|  | /* We don't have to do anything for a relocatable link, if | 
|  | this section does not have relocs, or if this is not a | 
|  | code section.  */ | 
|  | if (bfd_link_relocatable (link_info) | 
|  | || (sec->flags & SEC_RELOC) == 0 | 
|  | || sec->reloc_count == 0 | 
|  | || (sec->flags & SEC_CODE) == 0) | 
|  | return true; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  |  | 
|  | /* Get a copy of the native relocations.  */ | 
|  | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, | 
|  | link_info->keep_memory); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | /* Scan for worst case alignment gap changes.  Note that this logic | 
|  | is not ideal; what we should do is run this scan for every | 
|  | opcode/address range and adjust accordingly, but that's | 
|  | expensive.  Worst case is that for an alignment of N bytes, we | 
|  | move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc | 
|  | all before it.  Plus, this still doesn't cover cross-section | 
|  | jumps with section alignment.  */ | 
|  | irelend = internal_relocs + sec->reloc_count; | 
|  | align_gap_adjustment = 0; | 
|  | for (irel = internal_relocs; irel < irelend; irel++) | 
|  | { | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN) | 
|  | { | 
|  | bfd_vma adj = 1 << irel->r_addend; | 
|  | bfd_vma aend = irel->r_offset; | 
|  |  | 
|  | aend = BFD_ALIGN (aend, 1 << irel->r_addend); | 
|  | adj = 2 * adj - adj - 1; | 
|  |  | 
|  | /* Record the biggest adjustmnet.  Skip any alignment at the | 
|  | end of our section.  */ | 
|  | if (align_gap_adjustment < adj | 
|  | && aend < sec->output_section->vma + sec->output_offset + sec->size) | 
|  | align_gap_adjustment = adj; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Walk through them looking for relaxing opportunities.  */ | 
|  | irelend = internal_relocs + sec->reloc_count; | 
|  | for (irel = internal_relocs; irel < irelend; irel++) | 
|  | { | 
|  | bfd_vma symval; | 
|  | bfd_signed_vma jump_offset; | 
|  | asection *sym_sec = NULL; | 
|  | struct elf32_mn10300_link_hash_entry *h = NULL; | 
|  |  | 
|  | /* If this isn't something that can be relaxed, then ignore | 
|  | this reloc.  */ | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE | 
|  | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8 | 
|  | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX) | 
|  | continue; | 
|  |  | 
|  | /* Get the section contents if we haven't done so already.  */ | 
|  | if (contents == NULL) | 
|  | { | 
|  | /* Get cached copy if it exists.  */ | 
|  | if (elf_section_data (sec)->this_hdr.contents != NULL) | 
|  | contents = elf_section_data (sec)->this_hdr.contents; | 
|  | else | 
|  | { | 
|  | /* Go get them off disk.  */ | 
|  | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | 
|  | goto error_return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read this BFD's symbols if we haven't done so already.  */ | 
|  | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | 
|  | { | 
|  | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (isymbuf == NULL) | 
|  | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (isymbuf == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Get the value of the symbol referred to by the reloc.  */ | 
|  | if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) | 
|  | { | 
|  | Elf_Internal_Sym *isym; | 
|  | const char *sym_name; | 
|  | char *new_name; | 
|  |  | 
|  | /* A local symbol.  */ | 
|  | isym = isymbuf + ELF32_R_SYM (irel->r_info); | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | sym_sec = bfd_und_section_ptr; | 
|  | else if (isym->st_shndx == SHN_ABS) | 
|  | sym_sec = bfd_abs_section_ptr; | 
|  | else if (isym->st_shndx == SHN_COMMON) | 
|  | sym_sec = bfd_com_section_ptr; | 
|  | else | 
|  | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | 
|  |  | 
|  | sym_name = bfd_elf_string_from_elf_section (abfd, | 
|  | symtab_hdr->sh_link, | 
|  | isym->st_name); | 
|  |  | 
|  | if ((sym_sec->flags & SEC_MERGE) | 
|  | && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE) | 
|  | { | 
|  | symval = isym->st_value; | 
|  |  | 
|  | /* GAS may reduce relocations against symbols in SEC_MERGE | 
|  | sections to a relocation against the section symbol when | 
|  | the original addend was zero.  When the reloc is against | 
|  | a section symbol we should include the addend in the | 
|  | offset passed to _bfd_merged_section_offset, since the | 
|  | location of interest is the original symbol.  On the | 
|  | other hand, an access to "sym+addend" where "sym" is not | 
|  | a section symbol should not include the addend;  Such an | 
|  | access is presumed to be an offset from "sym";  The | 
|  | location of interest is just "sym".  */ | 
|  | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | 
|  | symval += irel->r_addend; | 
|  |  | 
|  | symval = _bfd_merged_section_offset (abfd, & sym_sec, | 
|  | elf_section_data (sym_sec)->sec_info, | 
|  | symval); | 
|  |  | 
|  | if (ELF_ST_TYPE (isym->st_info) != STT_SECTION) | 
|  | symval += irel->r_addend; | 
|  |  | 
|  | symval += sym_sec->output_section->vma | 
|  | + sym_sec->output_offset - irel->r_addend; | 
|  | } | 
|  | else | 
|  | symval = (isym->st_value | 
|  | + sym_sec->output_section->vma | 
|  | + sym_sec->output_offset); | 
|  |  | 
|  | /* Tack on an ID so we can uniquely identify this | 
|  | local symbol in the global hash table.  */ | 
|  | new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10); | 
|  | if (new_name == NULL) | 
|  | goto error_return; | 
|  | sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); | 
|  | sym_name = new_name; | 
|  |  | 
|  | h = (struct elf32_mn10300_link_hash_entry *) | 
|  | elf_link_hash_lookup (&hash_table->static_hash_table->root, | 
|  | sym_name, false, false, false); | 
|  | free (new_name); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned long indx; | 
|  |  | 
|  | /* An external symbol.  */ | 
|  | indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; | 
|  | h = (struct elf32_mn10300_link_hash_entry *) | 
|  | (elf_sym_hashes (abfd)[indx]); | 
|  | BFD_ASSERT (h != NULL); | 
|  | if (h->root.root.type != bfd_link_hash_defined | 
|  | && h->root.root.type != bfd_link_hash_defweak) | 
|  | /* This appears to be a reference to an undefined | 
|  | symbol.  Just ignore it--it will be caught by the | 
|  | regular reloc processing.  */ | 
|  | continue; | 
|  |  | 
|  | /* Check for a reference to a discarded symbol and ignore it.  */ | 
|  | if (h->root.root.u.def.section->output_section == NULL) | 
|  | continue; | 
|  |  | 
|  | sym_sec = h->root.root.u.def.section->output_section; | 
|  |  | 
|  | symval = (h->root.root.u.def.value | 
|  | + h->root.root.u.def.section->output_section->vma | 
|  | + h->root.root.u.def.section->output_offset); | 
|  | } | 
|  |  | 
|  | /* For simplicity of coding, we are going to modify the section | 
|  | contents, the section relocs, and the BFD symbol table.  We | 
|  | must tell the rest of the code not to free up this | 
|  | information.  It would be possible to instead create a table | 
|  | of changes which have to be made, as is done in coff-mips.c; | 
|  | that would be more work, but would require less memory when | 
|  | the linker is run.  */ | 
|  |  | 
|  | /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative | 
|  | branch/call, also deal with "call" -> "calls" conversions and | 
|  | insertion of prologue data into "call" instructions.  */ | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32 | 
|  | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32) | 
|  | { | 
|  | bfd_vma value = symval; | 
|  |  | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32 | 
|  | && h != NULL | 
|  | && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL | 
|  | && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN | 
|  | && h->root.plt.offset != (bfd_vma) -1) | 
|  | { | 
|  | asection * splt; | 
|  |  | 
|  | splt = hash_table->root.splt; | 
|  | value = ((splt->output_section->vma | 
|  | + splt->output_offset | 
|  | + h->root.plt.offset) | 
|  | - (sec->output_section->vma | 
|  | + sec->output_offset | 
|  | + irel->r_offset)); | 
|  | } | 
|  |  | 
|  | /* If we've got a "call" instruction that needs to be turned | 
|  | into a "calls" instruction, do so now.  It saves a byte.  */ | 
|  | if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* Get the opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Make sure we're working with a "call" instruction!  */ | 
|  | if (code == 0xdd) | 
|  | { | 
|  | /* Note that we've changed the relocs, section contents, | 
|  | etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1); | 
|  | bfd_put_8 (abfd, 0xff, contents + irel->r_offset); | 
|  |  | 
|  | /* Fix irel->r_offset and irel->r_addend.  */ | 
|  | irel->r_offset += 1; | 
|  | irel->r_addend += 1; | 
|  |  | 
|  | /* Delete one byte of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 3, 1)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  | else if (h) | 
|  | { | 
|  | /* We've got a "call" instruction which needs some data | 
|  | from target function filled in.  */ | 
|  | unsigned char code; | 
|  |  | 
|  | /* Get the opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Insert data from the target function into the "call" | 
|  | instruction if needed.  */ | 
|  | if (code == 0xdd) | 
|  | { | 
|  | bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4); | 
|  | bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, | 
|  | contents + irel->r_offset + 5); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Deal with pc-relative gunk.  */ | 
|  | value -= (sec->output_section->vma + sec->output_offset); | 
|  | value -= irel->r_offset; | 
|  | value += irel->r_addend; | 
|  |  | 
|  | /* See if the value will fit in 16 bits, note the high value is | 
|  | 0x7fff + 2 as the target will be two bytes closer if we are | 
|  | able to relax, if it's in the same section.  */ | 
|  | if (sec->output_section == sym_sec->output_section) | 
|  | jump_offset = 0x8001; | 
|  | else | 
|  | jump_offset = 0x7fff; | 
|  |  | 
|  | /* Account for jumps across alignment boundaries using | 
|  | align_gap_adjustment.  */ | 
|  | if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment | 
|  | && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment)) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* Get the opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | if (code != 0xdc && code != 0xdd && code != 0xff) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocs, section contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | if (code == 0xdc) | 
|  | bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1); | 
|  | else if (code == 0xdd) | 
|  | bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1); | 
|  | else if (code == 0xff) | 
|  | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_PLT32) | 
|  | ? R_MN10300_PLT16 : | 
|  | R_MN10300_PCREL16); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative | 
|  | branch.  */ | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16) | 
|  | { | 
|  | bfd_vma value = symval; | 
|  |  | 
|  | /* If we've got a "call" instruction that needs to be turned | 
|  | into a "calls" instruction, do so now.  It saves a byte.  */ | 
|  | if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* Get the opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Make sure we're working with a "call" instruction!  */ | 
|  | if (code == 0xcd) | 
|  | { | 
|  | /* Note that we've changed the relocs, section contents, | 
|  | etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1); | 
|  | bfd_put_8 (abfd, 0xff, contents + irel->r_offset); | 
|  |  | 
|  | /* Fix irel->r_offset and irel->r_addend.  */ | 
|  | irel->r_offset += 1; | 
|  | irel->r_addend += 1; | 
|  |  | 
|  | /* Delete one byte of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 1)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  | else if (h) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* Get the opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Insert data from the target function into the "call" | 
|  | instruction if needed.  */ | 
|  | if (code == 0xcd) | 
|  | { | 
|  | bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2); | 
|  | bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, | 
|  | contents + irel->r_offset + 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Deal with pc-relative gunk.  */ | 
|  | value -= (sec->output_section->vma + sec->output_offset); | 
|  | value -= irel->r_offset; | 
|  | value += irel->r_addend; | 
|  |  | 
|  | /* See if the value will fit in 8 bits, note the high value is | 
|  | 0x7f + 1 as the target will be one bytes closer if we are | 
|  | able to relax.  */ | 
|  | if ((long) value < 0x80 && (long) value > -0x80) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* Get the opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | if (code != 0xcc) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocs, section contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | R_MN10300_PCREL8); | 
|  |  | 
|  | /* Delete one byte of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 1)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to eliminate an unconditional 8 bit pc-relative branch | 
|  | which immediately follows a conditional 8 bit pc-relative | 
|  | branch around the unconditional branch. | 
|  |  | 
|  | original:		new: | 
|  | bCC lab1		bCC' lab2 | 
|  | bra lab2 | 
|  | lab1:	       lab1: | 
|  |  | 
|  | This happens when the bCC can't reach lab2 at assembly time, | 
|  | but due to other relaxations it can reach at link time.  */ | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8) | 
|  | { | 
|  | Elf_Internal_Rela *nrel; | 
|  | unsigned char code; | 
|  |  | 
|  | /* Do nothing if this reloc is the last byte in the section.  */ | 
|  | if (irel->r_offset == sec->size) | 
|  | continue; | 
|  |  | 
|  | /* See if the next instruction is an unconditional pc-relative | 
|  | branch, more often than not this test will fail, so we | 
|  | test it first to speed things up.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset + 1); | 
|  | if (code != 0xca) | 
|  | continue; | 
|  |  | 
|  | /* Also make sure the next relocation applies to the next | 
|  | instruction and that it's a pc-relative 8 bit branch.  */ | 
|  | nrel = irel + 1; | 
|  | if (nrel == irelend | 
|  | || irel->r_offset + 2 != nrel->r_offset | 
|  | || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8) | 
|  | continue; | 
|  |  | 
|  | /* Make sure our destination immediately follows the | 
|  | unconditional branch.  */ | 
|  | if (symval != (sec->output_section->vma + sec->output_offset | 
|  | + irel->r_offset + 3)) | 
|  | continue; | 
|  |  | 
|  | /* Now make sure we are a conditional branch.  This may not | 
|  | be necessary, but why take the chance. | 
|  |  | 
|  | Note these checks assume that R_MN10300_PCREL8 relocs | 
|  | only occur on bCC and bCCx insns.  If they occured | 
|  | elsewhere, we'd need to know the start of this insn | 
|  | for this check to be accurate.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  | if (code != 0xc0 && code != 0xc1 && code != 0xc2 | 
|  | && code != 0xc3 && code != 0xc4 && code != 0xc5 | 
|  | && code != 0xc6 && code != 0xc7 && code != 0xc8 | 
|  | && code != 0xc9 && code != 0xe8 && code != 0xe9 | 
|  | && code != 0xea && code != 0xeb) | 
|  | continue; | 
|  |  | 
|  | /* We also have to be sure there is no symbol/label | 
|  | at the unconditional branch.  */ | 
|  | if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf, | 
|  | irel->r_offset + 1)) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocs, section contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Reverse the condition of the first branch.  */ | 
|  | switch (code) | 
|  | { | 
|  | case 0xc8: | 
|  | code = 0xc9; | 
|  | break; | 
|  | case 0xc9: | 
|  | code = 0xc8; | 
|  | break; | 
|  | case 0xc0: | 
|  | code = 0xc2; | 
|  | break; | 
|  | case 0xc2: | 
|  | code = 0xc0; | 
|  | break; | 
|  | case 0xc3: | 
|  | code = 0xc1; | 
|  | break; | 
|  | case 0xc1: | 
|  | code = 0xc3; | 
|  | break; | 
|  | case 0xc4: | 
|  | code = 0xc6; | 
|  | break; | 
|  | case 0xc6: | 
|  | code = 0xc4; | 
|  | break; | 
|  | case 0xc7: | 
|  | code = 0xc5; | 
|  | break; | 
|  | case 0xc5: | 
|  | code = 0xc7; | 
|  | break; | 
|  | case 0xe8: | 
|  | code = 0xe9; | 
|  | break; | 
|  | case 0x9d: | 
|  | code = 0xe8; | 
|  | break; | 
|  | case 0xea: | 
|  | code = 0xeb; | 
|  | break; | 
|  | case 0xeb: | 
|  | code = 0xea; | 
|  | break; | 
|  | } | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Set the reloc type and symbol for the first branch | 
|  | from the second branch.  */ | 
|  | irel->r_info = nrel->r_info; | 
|  |  | 
|  | /* Make the reloc for the second branch a null reloc.  */ | 
|  | nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info), | 
|  | R_MN10300_NONE); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | } | 
|  |  | 
|  | /* Try to turn a 24 immediate, displacement or absolute address | 
|  | into a 8 immediate, displacement or absolute address.  */ | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24) | 
|  | { | 
|  | bfd_vma value = symval; | 
|  | value += irel->r_addend; | 
|  |  | 
|  | /* See if the value will fit in 8 bits.  */ | 
|  | if ((long) value < 0x7f && (long) value > -0x80) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* AM33 insns which have 24 operands are 6 bytes long and | 
|  | will have 0xfd as the first byte.  */ | 
|  |  | 
|  | /* Get the first opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 3); | 
|  |  | 
|  | if (code == 0xfd) | 
|  | { | 
|  | /* Get the second opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit | 
|  | equivalent instructions exists.  */ | 
|  | if (code != 0x6b && code != 0x7b | 
|  | && code != 0x8b && code != 0x9b | 
|  | && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 | 
|  | || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b | 
|  | || (code & 0x0f) == 0x0e)) | 
|  | { | 
|  | /* Not safe if the high bit is on as relaxing may | 
|  | move the value out of high mem and thus not fit | 
|  | in a signed 8bit value.  This is currently over | 
|  | conservative.  */ | 
|  | if ((value & 0x80) == 0) | 
|  | { | 
|  | /* Note that we've changed the relocation contents, | 
|  | etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3); | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = | 
|  | ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | R_MN10300_8); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax | 
|  | again.  Note that this is not required, and it | 
|  | may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to turn a 32bit immediate, displacement or absolute address | 
|  | into a 16bit immediate, displacement or absolute address.  */ | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32 | 
|  | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32 | 
|  | || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) | 
|  | { | 
|  | bfd_vma value = symval; | 
|  |  | 
|  | if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32) | 
|  | { | 
|  | asection * sgot; | 
|  |  | 
|  | sgot = hash_table->root.sgot; | 
|  | if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32) | 
|  | { | 
|  | value = sgot->output_offset; | 
|  |  | 
|  | if (h) | 
|  | value += h->root.got.offset; | 
|  | else | 
|  | value += (elf_local_got_offsets | 
|  | (abfd)[ELF32_R_SYM (irel->r_info)]); | 
|  | } | 
|  | else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) | 
|  | value -= sgot->output_section->vma; | 
|  | else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32) | 
|  | value = (sgot->output_section->vma | 
|  | - (sec->output_section->vma | 
|  | + sec->output_offset | 
|  | + irel->r_offset)); | 
|  | else | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | value += irel->r_addend; | 
|  |  | 
|  | /* See if the value will fit in 24 bits. | 
|  | We allow any 16bit match here.  We prune those we can't | 
|  | handle below.  */ | 
|  | if (value + 0x800000 < 0x1000000 && irel->r_offset >= 3) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* AM33 insns which have 32bit operands are 7 bytes long and | 
|  | will have 0xfe as the first byte.  */ | 
|  |  | 
|  | /* Get the first opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 3); | 
|  |  | 
|  | if (code == 0xfe) | 
|  | { | 
|  | /* Get the second opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* All the am33 32 -> 24 relaxing possibilities.  */ | 
|  | /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit | 
|  | equivalent instructions exists.  */ | 
|  | if (code != 0x6b && code != 0x7b | 
|  | && code != 0x8b && code != 0x9b | 
|  | && (ELF32_R_TYPE (irel->r_info) | 
|  | != (int) R_MN10300_GOTPC32) | 
|  | && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 | 
|  | || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b | 
|  | || (code & 0x0f) == 0x0e)) | 
|  | { | 
|  | /* Not safe if the high bit is on as relaxing may | 
|  | move the value out of high mem and thus not fit | 
|  | in a signed 16bit value.  This is currently over | 
|  | conservative.  */ | 
|  | if ((value & 0x8000) == 0) | 
|  | { | 
|  | /* Note that we've changed the relocation contents, | 
|  | etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3); | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = | 
|  | ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF24 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT24 : | 
|  | R_MN10300_24); | 
|  |  | 
|  | /* Delete one byte of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 3, 1)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax | 
|  | again.  Note that this is not required, and it | 
|  | may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See if the value will fit in 16 bits. | 
|  | We allow any 16bit match here.  We prune those we can't | 
|  | handle below.  */ | 
|  | if (value + 0x8000 < 0x10000 && irel->r_offset >= 2) | 
|  | { | 
|  | unsigned char code; | 
|  |  | 
|  | /* Most insns which have 32bit operands are 6 bytes long; | 
|  | exceptions are pcrel insns and bit insns. | 
|  |  | 
|  | We handle pcrel insns above.  We don't bother trying | 
|  | to handle the bit insns here. | 
|  |  | 
|  | The first byte of the remaining insns will be 0xfc.  */ | 
|  |  | 
|  | /* Get the first opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 2); | 
|  |  | 
|  | if (code != 0xfc) | 
|  | continue; | 
|  |  | 
|  | /* Get the second opcode.  */ | 
|  | code = bfd_get_8 (abfd, contents + irel->r_offset - 1); | 
|  |  | 
|  | if ((code & 0xf0) < 0x80) | 
|  | switch (code & 0xf0) | 
|  | { | 
|  | /* mov (d32,am),dn   -> mov (d32,am),dn | 
|  | mov dm,(d32,am)   -> mov dn,(d32,am) | 
|  | mov (d32,am),an   -> mov (d32,am),an | 
|  | mov dm,(d32,am)   -> mov dn,(d32,am) | 
|  | movbu (d32,am),dn -> movbu (d32,am),dn | 
|  | movbu dm,(d32,am) -> movbu dn,(d32,am) | 
|  | movhu (d32,am),dn -> movhu (d32,am),dn | 
|  | movhu dm,(d32,am) -> movhu dn,(d32,am) */ | 
|  | case 0x00: | 
|  | case 0x10: | 
|  | case 0x20: | 
|  | case 0x30: | 
|  | case 0x40: | 
|  | case 0x50: | 
|  | case 0x60: | 
|  | case 0x70: | 
|  | /* Not safe if the high bit is on as relaxing may | 
|  | move the value out of high mem and thus not fit | 
|  | in a signed 16bit value.  */ | 
|  | if (code == 0xcc | 
|  | && (value & 0x8000)) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocation contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTPC32) | 
|  | ? R_MN10300_GOTPC16 : | 
|  | R_MN10300_16); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 2, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  | } | 
|  | else if ((code & 0xf0) == 0x80 | 
|  | || (code & 0xf0) == 0x90) | 
|  | switch (code & 0xf3) | 
|  | { | 
|  | /* mov dn,(abs32)   -> mov dn,(abs16) | 
|  | movbu dn,(abs32) -> movbu dn,(abs16) | 
|  | movhu dn,(abs32) -> movhu dn,(abs16)  */ | 
|  | case 0x81: | 
|  | case 0x82: | 
|  | case 0x83: | 
|  | /* Note that we've changed the relocation contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | if ((code & 0xf3) == 0x81) | 
|  | code = 0x01 + (code & 0x0c); | 
|  | else if ((code & 0xf3) == 0x82) | 
|  | code = 0x02 + (code & 0x0c); | 
|  | else if ((code & 0xf3) == 0x83) | 
|  | code = 0x03 + (code & 0x0c); | 
|  | else | 
|  | abort (); | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTPC32) | 
|  | ? R_MN10300_GOTPC16 : | 
|  | R_MN10300_16); | 
|  |  | 
|  | /* The opcode got shorter too, so we have to fix the | 
|  | addend and offset too!  */ | 
|  | irel->r_offset -= 1; | 
|  |  | 
|  | /* Delete three bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 3)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  |  | 
|  | /* mov am,(abs32)    -> mov am,(abs16) | 
|  | mov am,(d32,sp)   -> mov am,(d16,sp) | 
|  | mov dm,(d32,sp)   -> mov dm,(d32,sp) | 
|  | movbu dm,(d32,sp) -> movbu dm,(d32,sp) | 
|  | movhu dm,(d32,sp) -> movhu dm,(d32,sp) */ | 
|  | case 0x80: | 
|  | case 0x90: | 
|  | case 0x91: | 
|  | case 0x92: | 
|  | case 0x93: | 
|  | /* sp-based offsets are zero-extended.  */ | 
|  | if (code >= 0x90 && code <= 0x93 | 
|  | && (long) value < 0) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocation contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTPC32) | 
|  | ? R_MN10300_GOTPC16 : | 
|  | R_MN10300_16); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 2, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  | } | 
|  | else if ((code & 0xf0) < 0xf0) | 
|  | switch (code & 0xfc) | 
|  | { | 
|  | /* mov imm32,dn     -> mov imm16,dn | 
|  | mov imm32,an     -> mov imm16,an | 
|  | mov (abs32),dn   -> mov (abs16),dn | 
|  | movbu (abs32),dn -> movbu (abs16),dn | 
|  | movhu (abs32),dn -> movhu (abs16),dn  */ | 
|  | case 0xcc: | 
|  | case 0xdc: | 
|  | case 0xa4: | 
|  | case 0xa8: | 
|  | case 0xac: | 
|  | /* Not safe if the high bit is on as relaxing may | 
|  | move the value out of high mem and thus not fit | 
|  | in a signed 16bit value.  */ | 
|  | if (code == 0xcc | 
|  | && (value & 0x8000)) | 
|  | continue; | 
|  |  | 
|  | /* "mov imm16, an" zero-extends the immediate.  */ | 
|  | if ((code & 0xfc) == 0xdc | 
|  | && (long) value < 0) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocation contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | if ((code & 0xfc) == 0xcc) | 
|  | code = 0x2c + (code & 0x03); | 
|  | else if ((code & 0xfc) == 0xdc) | 
|  | code = 0x24 + (code & 0x03); | 
|  | else if ((code & 0xfc) == 0xa4) | 
|  | code = 0x30 + (code & 0x03); | 
|  | else if ((code & 0xfc) == 0xa8) | 
|  | code = 0x34 + (code & 0x03); | 
|  | else if ((code & 0xfc) == 0xac) | 
|  | code = 0x38 + (code & 0x03); | 
|  | else | 
|  | abort (); | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 2); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTPC32) | 
|  | ? R_MN10300_GOTPC16 : | 
|  | R_MN10300_16); | 
|  |  | 
|  | /* The opcode got shorter too, so we have to fix the | 
|  | addend and offset too!  */ | 
|  | irel->r_offset -= 1; | 
|  |  | 
|  | /* Delete three bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 1, 3)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  |  | 
|  | /* mov (abs32),an    -> mov (abs16),an | 
|  | mov (d32,sp),an   -> mov (d16,sp),an | 
|  | mov (d32,sp),dn   -> mov (d16,sp),dn | 
|  | movbu (d32,sp),dn -> movbu (d16,sp),dn | 
|  | movhu (d32,sp),dn -> movhu (d16,sp),dn | 
|  | add imm32,dn      -> add imm16,dn | 
|  | cmp imm32,dn      -> cmp imm16,dn | 
|  | add imm32,an      -> add imm16,an | 
|  | cmp imm32,an      -> cmp imm16,an | 
|  | and imm32,dn      -> and imm16,dn | 
|  | or imm32,dn       -> or imm16,dn | 
|  | xor imm32,dn      -> xor imm16,dn | 
|  | btst imm32,dn     -> btst imm16,dn */ | 
|  |  | 
|  | case 0xa0: | 
|  | case 0xb0: | 
|  | case 0xb1: | 
|  | case 0xb2: | 
|  | case 0xb3: | 
|  | case 0xc0: | 
|  | case 0xc8: | 
|  |  | 
|  | case 0xd0: | 
|  | case 0xd8: | 
|  | case 0xe0: | 
|  | case 0xe1: | 
|  | case 0xe2: | 
|  | case 0xe3: | 
|  | /* cmp imm16, an zero-extends the immediate.  */ | 
|  | if (code == 0xdc | 
|  | && (long) value < 0) | 
|  | continue; | 
|  |  | 
|  | /* So do sp-based offsets.  */ | 
|  | if (code >= 0xb0 && code <= 0xb3 | 
|  | && (long) value < 0) | 
|  | continue; | 
|  |  | 
|  | /* Note that we've changed the relocation contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); | 
|  | bfd_put_8 (abfd, code, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTPC32) | 
|  | ? R_MN10300_GOTPC16 : | 
|  | R_MN10300_16); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 2, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  | } | 
|  | else if (code == 0xfe) | 
|  | { | 
|  | /* add imm32,sp -> add imm16,sp  */ | 
|  |  | 
|  | /* Note that we've changed the relocation contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Fix the opcode.  */ | 
|  | bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); | 
|  | bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | 
|  | (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOT32) | 
|  | ? R_MN10300_GOT16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTOFF32) | 
|  | ? R_MN10300_GOTOFF16 | 
|  | : (ELF32_R_TYPE (irel->r_info) | 
|  | == (int) R_MN10300_GOTPC32) | 
|  | ? R_MN10300_GOTPC16 : | 
|  | R_MN10300_16); | 
|  |  | 
|  | /* Delete two bytes of data.  */ | 
|  | if (!mn10300_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + 2, 2)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so, we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isymbuf != NULL | 
|  | && symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (isymbuf); | 
|  | else | 
|  | { | 
|  | /* Cache the symbols for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (contents != NULL | 
|  | && elf_section_data (sec)->this_hdr.contents != contents) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (contents); | 
|  | else | 
|  | { | 
|  | /* Cache the section contents for elf_link_input_bfd.  */ | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (elf_section_data (sec)->relocs != internal_relocs) | 
|  | free (internal_relocs); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | if (symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | free (isymbuf); | 
|  | if (elf_section_data (section)->this_hdr.contents != contents) | 
|  | free (contents); | 
|  | if (elf_section_data (section)->relocs != internal_relocs) | 
|  | free (internal_relocs); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* This is a version of bfd_generic_get_relocated_section_contents | 
|  | which uses mn10300_elf_relocate_section.  */ | 
|  |  | 
|  | static bfd_byte * | 
|  | mn10300_elf_get_relocated_section_contents (bfd *output_bfd, | 
|  | struct bfd_link_info *link_info, | 
|  | struct bfd_link_order *link_order, | 
|  | bfd_byte *data, | 
|  | bool relocatable, | 
|  | asymbol **symbols) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | asection *input_section = link_order->u.indirect.section; | 
|  | bfd *input_bfd = input_section->owner; | 
|  | asection **sections = NULL; | 
|  | Elf_Internal_Rela *internal_relocs = NULL; | 
|  | Elf_Internal_Sym *isymbuf = NULL; | 
|  |  | 
|  | /* We only need to handle the case of relaxing, or of having a | 
|  | particular set of section contents, specially.  */ | 
|  | if (relocatable | 
|  | || elf_section_data (input_section)->this_hdr.contents == NULL) | 
|  | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, | 
|  | link_order, data, | 
|  | relocatable, | 
|  | symbols); | 
|  |  | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  |  | 
|  | bfd_byte *orig_data = data; | 
|  | if (data == NULL) | 
|  | { | 
|  | data = bfd_malloc (input_section->size); | 
|  | if (data == NULL) | 
|  | return NULL; | 
|  | } | 
|  | memcpy (data, elf_section_data (input_section)->this_hdr.contents, | 
|  | (size_t) input_section->size); | 
|  |  | 
|  | if ((input_section->flags & SEC_RELOC) != 0 | 
|  | && input_section->reloc_count > 0) | 
|  | { | 
|  | asection **secpp; | 
|  | Elf_Internal_Sym *isym, *isymend; | 
|  | bfd_size_type amt; | 
|  |  | 
|  | internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section, | 
|  | NULL, NULL, false); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | if (symtab_hdr->sh_info != 0) | 
|  | { | 
|  | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (isymbuf == NULL) | 
|  | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (isymbuf == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | amt = symtab_hdr->sh_info; | 
|  | amt *= sizeof (asection *); | 
|  | sections = bfd_malloc (amt); | 
|  | if (sections == NULL && amt != 0) | 
|  | goto error_return; | 
|  |  | 
|  | isymend = isymbuf + symtab_hdr->sh_info; | 
|  | for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp) | 
|  | { | 
|  | asection *isec; | 
|  |  | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | isec = bfd_und_section_ptr; | 
|  | else if (isym->st_shndx == SHN_ABS) | 
|  | isec = bfd_abs_section_ptr; | 
|  | else if (isym->st_shndx == SHN_COMMON) | 
|  | isec = bfd_com_section_ptr; | 
|  | else | 
|  | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); | 
|  |  | 
|  | *secpp = isec; | 
|  | } | 
|  |  | 
|  | if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd, | 
|  | input_section, data, internal_relocs, | 
|  | isymbuf, sections)) | 
|  | goto error_return; | 
|  |  | 
|  | free (sections); | 
|  | if (symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | free (isymbuf); | 
|  | if (internal_relocs != elf_section_data (input_section)->relocs) | 
|  | free (internal_relocs); | 
|  | } | 
|  |  | 
|  | return data; | 
|  |  | 
|  | error_return: | 
|  | free (sections); | 
|  | if (symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | free (isymbuf); | 
|  | if (internal_relocs != elf_section_data (input_section)->relocs) | 
|  | free (internal_relocs); | 
|  | if (orig_data == NULL) | 
|  | free (data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Assorted hash table functions.  */ | 
|  |  | 
|  | /* Initialize an entry in the link hash table.  */ | 
|  |  | 
|  | /* Create an entry in an MN10300 ELF linker hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry, | 
|  | struct bfd_hash_table *table, | 
|  | const char *string) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry *ret = | 
|  | (struct elf32_mn10300_link_hash_entry *) entry; | 
|  |  | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (ret == NULL) | 
|  | ret = (struct elf32_mn10300_link_hash_entry *) | 
|  | bfd_hash_allocate (table, sizeof (* ret)); | 
|  | if (ret == NULL) | 
|  | return (struct bfd_hash_entry *) ret; | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | ret = (struct elf32_mn10300_link_hash_entry *) | 
|  | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | 
|  | table, string); | 
|  | if (ret != NULL) | 
|  | { | 
|  | ret->direct_calls = 0; | 
|  | ret->stack_size = 0; | 
|  | ret->movm_args = 0; | 
|  | ret->movm_stack_size = 0; | 
|  | ret->flags = 0; | 
|  | ret->value = 0; | 
|  | ret->tls_type = GOT_UNKNOWN; | 
|  | } | 
|  |  | 
|  | return (struct bfd_hash_entry *) ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info *	 info, | 
|  | struct elf_link_hash_entry *	 dir, | 
|  | struct elf_link_hash_entry *	 ind) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_entry * edir; | 
|  | struct elf32_mn10300_link_hash_entry * eind; | 
|  |  | 
|  | edir = elf_mn10300_hash_entry (dir); | 
|  | eind = elf_mn10300_hash_entry (ind); | 
|  |  | 
|  | if (ind->root.type == bfd_link_hash_indirect | 
|  | && dir->got.refcount <= 0) | 
|  | { | 
|  | edir->tls_type = eind->tls_type; | 
|  | eind->tls_type = GOT_UNKNOWN; | 
|  | } | 
|  | edir->direct_calls = eind->direct_calls; | 
|  | edir->stack_size = eind->stack_size; | 
|  | edir->movm_args = eind->movm_args; | 
|  | edir->movm_stack_size = eind->movm_stack_size; | 
|  | edir->flags = eind->flags; | 
|  |  | 
|  | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | 
|  | } | 
|  |  | 
|  | /* Destroy an mn10300 ELF linker hash table.  */ | 
|  |  | 
|  | static void | 
|  | elf32_mn10300_link_hash_table_free (bfd *obfd) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table *ret | 
|  | = (struct elf32_mn10300_link_hash_table *) obfd->link.hash; | 
|  |  | 
|  | obfd->link.hash = &ret->static_hash_table->root.root; | 
|  | _bfd_elf_link_hash_table_free (obfd); | 
|  | obfd->is_linker_output = true; | 
|  | obfd->link.hash = &ret->root.root; | 
|  | _bfd_elf_link_hash_table_free (obfd); | 
|  | } | 
|  |  | 
|  | /* Create an mn10300 ELF linker hash table.  */ | 
|  |  | 
|  | static struct bfd_link_hash_table * | 
|  | elf32_mn10300_link_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table *ret; | 
|  | size_t amt = sizeof (* ret); | 
|  |  | 
|  | ret = bfd_zmalloc (amt); | 
|  | if (ret == NULL) | 
|  | return NULL; | 
|  |  | 
|  | amt = sizeof (struct elf_link_hash_table); | 
|  | ret->static_hash_table = bfd_zmalloc (amt); | 
|  | if (ret->static_hash_table == NULL) | 
|  | { | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd, | 
|  | elf32_mn10300_link_hash_newfunc, | 
|  | sizeof (struct elf32_mn10300_link_hash_entry), | 
|  | MN10300_ELF_DATA)) | 
|  | { | 
|  | free (ret->static_hash_table); | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | abfd->is_linker_output = false; | 
|  | abfd->link.hash = NULL; | 
|  | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | 
|  | elf32_mn10300_link_hash_newfunc, | 
|  | sizeof (struct elf32_mn10300_link_hash_entry), | 
|  | MN10300_ELF_DATA)) | 
|  | { | 
|  | abfd->is_linker_output = true; | 
|  | abfd->link.hash = &ret->static_hash_table->root.root; | 
|  | _bfd_elf_link_hash_table_free (abfd); | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  | ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free; | 
|  |  | 
|  | ret->tls_ldm_got.offset = -1; | 
|  |  | 
|  | return & ret->root.root; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | elf_mn10300_mach (flagword flags) | 
|  | { | 
|  | switch (flags & EF_MN10300_MACH) | 
|  | { | 
|  | case E_MN10300_MACH_MN10300: | 
|  | default: | 
|  | return bfd_mach_mn10300; | 
|  |  | 
|  | case E_MN10300_MACH_AM33: | 
|  | return bfd_mach_am33; | 
|  |  | 
|  | case E_MN10300_MACH_AM33_2: | 
|  | return bfd_mach_am33_2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The final processing done just before writing out a MN10300 ELF object | 
|  | file.  This gets the MN10300 architecture right based on the machine | 
|  | number.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_final_write_processing (bfd *abfd) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | switch (bfd_get_mach (abfd)) | 
|  | { | 
|  | default: | 
|  | case bfd_mach_mn10300: | 
|  | val = E_MN10300_MACH_MN10300; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_am33: | 
|  | val = E_MN10300_MACH_AM33; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_am33_2: | 
|  | val = E_MN10300_MACH_AM33_2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH); | 
|  | elf_elfheader (abfd)->e_flags |= val; | 
|  | return _bfd_elf_final_write_processing (abfd); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_object_p (bfd *abfd) | 
|  | { | 
|  | bfd_default_set_arch_mach (abfd, bfd_arch_mn10300, | 
|  | elf_mn10300_mach (elf_elfheader (abfd)->e_flags)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Merge backend specific data from an object file to the output | 
|  | object file when linking.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *obfd = info->output_bfd; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | 
|  | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | 
|  | && bfd_get_mach (obfd) < bfd_get_mach (ibfd)) | 
|  | { | 
|  | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | 
|  | bfd_get_mach (ibfd))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define PLT0_ENTRY_SIZE     15 | 
|  | #define PLT_ENTRY_SIZE      20 | 
|  | #define PIC_PLT_ENTRY_SIZE  24 | 
|  |  | 
|  | static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] = | 
|  | { | 
|  | 0xfc, 0xa0, 0, 0, 0, 0,	/* mov	(.got+8),a0 */ | 
|  | 0xfe, 0xe, 0x10, 0, 0, 0, 0,	/* mov	(.got+4),r1 */ | 
|  | 0xf0, 0xf4,			/* jmp	(a0) */ | 
|  | }; | 
|  |  | 
|  | static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] = | 
|  | { | 
|  | 0xfc, 0xa0, 0, 0, 0, 0,	/* mov	(nameN@GOT + .got),a0 */ | 
|  | 0xf0, 0xf4,			/* jmp	(a0) */ | 
|  | 0xfe, 8, 0, 0, 0, 0, 0,	/* mov	reloc-table-address,r0 */ | 
|  | 0xdc, 0, 0, 0, 0,		/* jmp	.plt0 */ | 
|  | }; | 
|  |  | 
|  | static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] = | 
|  | { | 
|  | 0xfc, 0x22, 0, 0, 0, 0,	/* mov	(nameN@GOT,a2),a0 */ | 
|  | 0xf0, 0xf4,			/* jmp	(a0) */ | 
|  | 0xfe, 8, 0, 0, 0, 0, 0,	/* mov	reloc-table-address,r0 */ | 
|  | 0xf8, 0x22, 8,		/* mov	(8,a2),a0 */ | 
|  | 0xfb, 0xa, 0x1a, 4,		/* mov	(4,a2),r1 */ | 
|  | 0xf0, 0xf4,			/* jmp	(a0) */ | 
|  | }; | 
|  |  | 
|  | /* Return size of the first PLT entry.  */ | 
|  | #define elf_mn10300_sizeof_plt0(info) \ | 
|  | (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE) | 
|  |  | 
|  | /* Return size of a PLT entry.  */ | 
|  | #define elf_mn10300_sizeof_plt(info) \ | 
|  | (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE) | 
|  |  | 
|  | /* Return offset of the PLT0 address in an absolute PLT entry.  */ | 
|  | #define elf_mn10300_plt_plt0_offset(info) 16 | 
|  |  | 
|  | /* Return offset of the linker in PLT0 entry.  */ | 
|  | #define elf_mn10300_plt0_linker_offset(info) 2 | 
|  |  | 
|  | /* Return offset of the GOT id in PLT0 entry.  */ | 
|  | #define elf_mn10300_plt0_gotid_offset(info) 9 | 
|  |  | 
|  | /* Return offset of the temporary in PLT entry.  */ | 
|  | #define elf_mn10300_plt_temp_offset(info) 8 | 
|  |  | 
|  | /* Return offset of the symbol in PLT entry.  */ | 
|  | #define elf_mn10300_plt_symbol_offset(info) 2 | 
|  |  | 
|  | /* Return offset of the relocation in PLT entry.  */ | 
|  | #define elf_mn10300_plt_reloc_offset(info) 11 | 
|  |  | 
|  | /* The name of the dynamic interpreter.  This is put in the .interp | 
|  | section.  */ | 
|  |  | 
|  | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" | 
|  |  | 
|  | /* Create dynamic sections when linking against a dynamic object.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | flagword   flags; | 
|  | asection * s; | 
|  | const struct elf_backend_data * bed = get_elf_backend_data (abfd); | 
|  | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); | 
|  | int ptralign = 0; | 
|  |  | 
|  | switch (bed->s->arch_size) | 
|  | { | 
|  | case 32: | 
|  | ptralign = 2; | 
|  | break; | 
|  |  | 
|  | case 64: | 
|  | ptralign = 3; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and | 
|  | .rel[a].bss sections.  */ | 
|  | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED); | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, | 
|  | (bed->default_use_rela_p | 
|  | ? ".rela.plt" : ".rel.plt"), | 
|  | flags | SEC_READONLY); | 
|  | htab->root.srelplt = s; | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, ptralign)) | 
|  | return false; | 
|  |  | 
|  | if (! _bfd_mn10300_elf_create_got_section (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | if (bed->want_dynbss) | 
|  | { | 
|  | /* The .dynbss section is a place to put symbols which are defined | 
|  | by dynamic objects, are referenced by regular objects, and are | 
|  | not functions.  We must allocate space for them in the process | 
|  | image and use a R_*_COPY reloc to tell the dynamic linker to | 
|  | initialize them at run time.  The linker script puts the .dynbss | 
|  | section into the .bss section of the final image.  */ | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", | 
|  | SEC_ALLOC | SEC_LINKER_CREATED); | 
|  | if (s == NULL) | 
|  | return false; | 
|  |  | 
|  | /* The .rel[a].bss section holds copy relocs.  This section is not | 
|  | normally needed.  We need to create it here, though, so that the | 
|  | linker will map it to an output section.  We can't just create it | 
|  | only if we need it, because we will not know whether we need it | 
|  | until we have seen all the input files, and the first time the | 
|  | main linker code calls BFD after examining all the input files | 
|  | (size_dynamic_sections) the input sections have already been | 
|  | mapped to the output sections.  If the section turns out not to | 
|  | be needed, we can discard it later.  We will never need this | 
|  | section when generating a shared object, since they do not use | 
|  | copy relocs.  */ | 
|  | if (! bfd_link_pic (info)) | 
|  | { | 
|  | s = bfd_make_section_anyway_with_flags (abfd, | 
|  | (bed->default_use_rela_p | 
|  | ? ".rela.bss" : ".rel.bss"), | 
|  | flags | SEC_READONLY); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, ptralign)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Adjust a symbol defined by a dynamic object and referenced by a | 
|  | regular object.  The current definition is in some section of the | 
|  | dynamic object, but we're not including those sections.  We have to | 
|  | change the definition to something the rest of the link can | 
|  | understand.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info, | 
|  | struct elf_link_hash_entry * h) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); | 
|  | bfd * dynobj; | 
|  | asection * s; | 
|  |  | 
|  | dynobj = htab->root.dynobj; | 
|  |  | 
|  | /* Make sure we know what is going on here.  */ | 
|  | BFD_ASSERT (dynobj != NULL | 
|  | && (h->needs_plt | 
|  | || h->is_weakalias | 
|  | || (h->def_dynamic | 
|  | && h->ref_regular | 
|  | && !h->def_regular))); | 
|  |  | 
|  | /* If this is a function, put it in the procedure linkage table.  We | 
|  | will fill in the contents of the procedure linkage table later, | 
|  | when we know the address of the .got section.  */ | 
|  | if (h->type == STT_FUNC | 
|  | || h->needs_plt) | 
|  | { | 
|  | if (! bfd_link_pic (info) | 
|  | && !h->def_dynamic | 
|  | && !h->ref_dynamic) | 
|  | { | 
|  | /* This case can occur if we saw a PLT reloc in an input | 
|  | file, but the symbol was never referred to by a dynamic | 
|  | object.  In such a case, we don't actually need to build | 
|  | a procedure linkage table, and we can just do a REL32 | 
|  | reloc instead.  */ | 
|  | BFD_ASSERT (h->needs_plt); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Make sure this symbol is output as a dynamic symbol.  */ | 
|  | if (h->dynindx == -1) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | s = htab->root.splt; | 
|  | BFD_ASSERT (s != NULL); | 
|  |  | 
|  | /* If this is the first .plt entry, make room for the special | 
|  | first entry.  */ | 
|  | if (s->size == 0) | 
|  | s->size += elf_mn10300_sizeof_plt0 (info); | 
|  |  | 
|  | /* If this symbol is not defined in a regular file, and we are | 
|  | not generating a shared library, then set the symbol to this | 
|  | location in the .plt.  This is required to make function | 
|  | pointers compare as equal between the normal executable and | 
|  | the shared library.  */ | 
|  | if (! bfd_link_pic (info) | 
|  | && !h->def_regular) | 
|  | { | 
|  | h->root.u.def.section = s; | 
|  | h->root.u.def.value = s->size; | 
|  | } | 
|  |  | 
|  | h->plt.offset = s->size; | 
|  |  | 
|  | /* Make room for this entry.  */ | 
|  | s->size += elf_mn10300_sizeof_plt (info); | 
|  |  | 
|  | /* We also need to make an entry in the .got.plt section, which | 
|  | will be placed in the .got section by the linker script.  */ | 
|  | s = htab->root.sgotplt; | 
|  | BFD_ASSERT (s != NULL); | 
|  | s->size += 4; | 
|  |  | 
|  | /* We also need to make an entry in the .rela.plt section.  */ | 
|  | s = htab->root.srelplt; | 
|  | BFD_ASSERT (s != NULL); | 
|  | s->size += sizeof (Elf32_External_Rela); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If this is a weak symbol, and there is a real definition, the | 
|  | processor independent code will have arranged for us to see the | 
|  | real definition first, and we can just use the same value.  */ | 
|  | if (h->is_weakalias) | 
|  | { | 
|  | struct elf_link_hash_entry *def = weakdef (h); | 
|  | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | 
|  | h->root.u.def.section = def->root.u.def.section; | 
|  | h->root.u.def.value = def->root.u.def.value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This is a reference to a symbol defined by a dynamic object which | 
|  | is not a function.  */ | 
|  |  | 
|  | /* If we are creating a shared library, we must presume that the | 
|  | only references to the symbol are via the global offset table. | 
|  | For such cases we need not do anything here; the relocations will | 
|  | be handled correctly by relocate_section.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | return true; | 
|  |  | 
|  | /* If there are no references to this symbol that do not use the | 
|  | GOT, we don't need to generate a copy reloc.  */ | 
|  | if (!h->non_got_ref) | 
|  | return true; | 
|  |  | 
|  | /* We must allocate the symbol in our .dynbss section, which will | 
|  | become part of the .bss section of the executable.  There will be | 
|  | an entry for this symbol in the .dynsym section.  The dynamic | 
|  | object will contain position independent code, so all references | 
|  | from the dynamic object to this symbol will go through the global | 
|  | offset table.  The dynamic linker will use the .dynsym entry to | 
|  | determine the address it must put in the global offset table, so | 
|  | both the dynamic object and the regular object will refer to the | 
|  | same memory location for the variable.  */ | 
|  |  | 
|  | s = bfd_get_linker_section (dynobj, ".dynbss"); | 
|  | BFD_ASSERT (s != NULL); | 
|  |  | 
|  | /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to | 
|  | copy the initial value out of the dynamic object and into the | 
|  | runtime process image.  We need to remember the offset into the | 
|  | .rela.bss section we are going to use.  */ | 
|  | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) | 
|  | { | 
|  | asection * srel; | 
|  |  | 
|  | srel = bfd_get_linker_section (dynobj, ".rela.bss"); | 
|  | BFD_ASSERT (srel != NULL); | 
|  | srel->size += sizeof (Elf32_External_Rela); | 
|  | h->needs_copy = 1; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_adjust_dynamic_copy (info, h, s); | 
|  | } | 
|  |  | 
|  | /* Set the sizes of the dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd, | 
|  | struct bfd_link_info * info) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); | 
|  | bfd * dynobj; | 
|  | asection * s; | 
|  | bool relocs; | 
|  |  | 
|  | dynobj = htab->root.dynobj; | 
|  | BFD_ASSERT (dynobj != NULL); | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | /* Set the contents of the .interp section to the interpreter.  */ | 
|  | if (bfd_link_executable (info) && !info->nointerp) | 
|  | { | 
|  | s = bfd_get_linker_section (dynobj, ".interp"); | 
|  | BFD_ASSERT (s != NULL); | 
|  | s->size = sizeof ELF_DYNAMIC_INTERPRETER; | 
|  | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We may have created entries in the .rela.got section. | 
|  | However, if we are not creating the dynamic sections, we will | 
|  | not actually use these entries.  Reset the size of .rela.got, | 
|  | which will cause it to get stripped from the output file | 
|  | below.  */ | 
|  | s = htab->root.sgot; | 
|  | if (s != NULL) | 
|  | s->size = 0; | 
|  | } | 
|  |  | 
|  | if (htab->tls_ldm_got.refcount > 0) | 
|  | { | 
|  | s = htab->root.srelgot; | 
|  | BFD_ASSERT (s != NULL); | 
|  | s->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  |  | 
|  | /* The check_relocs and adjust_dynamic_symbol entry points have | 
|  | determined the sizes of the various dynamic sections.  Allocate | 
|  | memory for them.  */ | 
|  | relocs = false; | 
|  | for (s = dynobj->sections; s != NULL; s = s->next) | 
|  | { | 
|  | const char * name; | 
|  |  | 
|  | if ((s->flags & SEC_LINKER_CREATED) == 0) | 
|  | continue; | 
|  |  | 
|  | /* It's OK to base decisions on the section name, because none | 
|  | of the dynobj section names depend upon the input files.  */ | 
|  | name = bfd_section_name (s); | 
|  |  | 
|  | if (streq (name, ".plt")) | 
|  | { | 
|  | /* Remember whether there is a PLT.  */ | 
|  | ; | 
|  | } | 
|  | else if (startswith (name, ".rela")) | 
|  | { | 
|  | if (s->size != 0) | 
|  | { | 
|  | /* Remember whether there are any reloc sections other | 
|  | than .rela.plt.  */ | 
|  | if (! streq (name, ".rela.plt")) | 
|  | relocs = true; | 
|  |  | 
|  | /* We use the reloc_count field as a counter if we need | 
|  | to copy relocs into the output file.  */ | 
|  | s->reloc_count = 0; | 
|  | } | 
|  | } | 
|  | else if (! startswith (name, ".got") | 
|  | && ! streq (name, ".dynbss")) | 
|  | /* It's not one of our sections, so don't allocate space.  */ | 
|  | continue; | 
|  |  | 
|  | if (s->size == 0) | 
|  | { | 
|  | /* If we don't need this section, strip it from the | 
|  | output file.  This is mostly to handle .rela.bss and | 
|  | .rela.plt.  We must create both sections in | 
|  | create_dynamic_sections, because they must be created | 
|  | before the linker maps input sections to output | 
|  | sections.  The linker does that before | 
|  | adjust_dynamic_symbol is called, and it is that | 
|  | function which decides whether anything needs to go | 
|  | into these sections.  */ | 
|  | s->flags |= SEC_EXCLUDE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((s->flags & SEC_HAS_CONTENTS) == 0) | 
|  | continue; | 
|  |  | 
|  | /* Allocate memory for the section contents.  We use bfd_zalloc | 
|  | here in case unused entries are not reclaimed before the | 
|  | section's contents are written out.  This should not happen, | 
|  | but this way if it does, we get a R_MN10300_NONE reloc | 
|  | instead of garbage.  */ | 
|  | s->contents = bfd_zalloc (dynobj, s->size); | 
|  | if (s->contents == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); | 
|  | } | 
|  |  | 
|  | /* Finish up dynamic symbol handling.  We set the contents of various | 
|  | dynamic sections here.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd, | 
|  | struct bfd_link_info * info, | 
|  | struct elf_link_hash_entry * h, | 
|  | Elf_Internal_Sym * sym) | 
|  | { | 
|  | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); | 
|  | bfd * dynobj; | 
|  |  | 
|  | dynobj = htab->root.dynobj; | 
|  |  | 
|  | if (h->plt.offset != (bfd_vma) -1) | 
|  | { | 
|  | asection *	splt; | 
|  | asection *	sgot; | 
|  | asection *	srel; | 
|  | bfd_vma		plt_index; | 
|  | bfd_vma		got_offset; | 
|  | Elf_Internal_Rela rel; | 
|  |  | 
|  | /* This symbol has an entry in the procedure linkage table.  Set | 
|  | it up.  */ | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  |  | 
|  | splt = htab->root.splt; | 
|  | sgot = htab->root.sgotplt; | 
|  | srel = htab->root.srelplt; | 
|  | BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); | 
|  |  | 
|  | /* Get the index in the procedure linkage table which | 
|  | corresponds to this symbol.  This is the index of this symbol | 
|  | in all the symbols for which we are making plt entries.  The | 
|  | first entry in the procedure linkage table is reserved.  */ | 
|  | plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info)) | 
|  | / elf_mn10300_sizeof_plt (info)); | 
|  |  | 
|  | /* Get the offset into the .got table of the entry that | 
|  | corresponds to this function.  Each .got entry is 4 bytes. | 
|  | The first three are reserved.  */ | 
|  | got_offset = (plt_index + 3) * 4; | 
|  |  | 
|  | /* Fill in the entry in the procedure linkage table.  */ | 
|  | if (! bfd_link_pic (info)) | 
|  | { | 
|  | memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry, | 
|  | elf_mn10300_sizeof_plt (info)); | 
|  | bfd_put_32 (output_bfd, | 
|  | (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + got_offset), | 
|  | (splt->contents + h->plt.offset | 
|  | + elf_mn10300_plt_symbol_offset (info))); | 
|  |  | 
|  | bfd_put_32 (output_bfd, | 
|  | (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)), | 
|  | (splt->contents + h->plt.offset | 
|  | + elf_mn10300_plt_plt0_offset (info))); | 
|  | } | 
|  | else | 
|  | { | 
|  | memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry, | 
|  | elf_mn10300_sizeof_plt (info)); | 
|  |  | 
|  | bfd_put_32 (output_bfd, got_offset, | 
|  | (splt->contents + h->plt.offset | 
|  | + elf_mn10300_plt_symbol_offset (info))); | 
|  | } | 
|  |  | 
|  | bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), | 
|  | (splt->contents + h->plt.offset | 
|  | + elf_mn10300_plt_reloc_offset (info))); | 
|  |  | 
|  | /* Fill in the entry in the global offset table.  */ | 
|  | bfd_put_32 (output_bfd, | 
|  | (splt->output_section->vma | 
|  | + splt->output_offset | 
|  | + h->plt.offset | 
|  | + elf_mn10300_plt_temp_offset (info)), | 
|  | sgot->contents + got_offset); | 
|  |  | 
|  | /* Fill in the entry in the .rela.plt section.  */ | 
|  | rel.r_offset = (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + got_offset); | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT); | 
|  | rel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, | 
|  | (bfd_byte *) ((Elf32_External_Rela *) srel->contents | 
|  | + plt_index)); | 
|  |  | 
|  | if (!h->def_regular) | 
|  | /* Mark the symbol as undefined, rather than as defined in | 
|  | the .plt section.  Leave the value alone.  */ | 
|  | sym->st_shndx = SHN_UNDEF; | 
|  | } | 
|  |  | 
|  | if (h->got.offset != (bfd_vma) -1) | 
|  | { | 
|  | asection *	sgot; | 
|  | asection *	srel; | 
|  | Elf_Internal_Rela rel; | 
|  |  | 
|  | /* This symbol has an entry in the global offset table.  Set it up.  */ | 
|  | sgot = htab->root.sgot; | 
|  | srel = htab->root.srelgot; | 
|  | BFD_ASSERT (sgot != NULL && srel != NULL); | 
|  |  | 
|  | rel.r_offset = (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + (h->got.offset & ~1)); | 
|  |  | 
|  | switch (elf_mn10300_hash_entry (h)->tls_type) | 
|  | { | 
|  | case GOT_TLS_GD: | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4); | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD); | 
|  | rel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, & rel, | 
|  | (bfd_byte *) ((Elf32_External_Rela *) srel->contents | 
|  | + srel->reloc_count)); | 
|  | ++ srel->reloc_count; | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF); | 
|  | rel.r_offset += 4; | 
|  | rel.r_addend = 0; | 
|  | break; | 
|  |  | 
|  | case GOT_TLS_IE: | 
|  | /* We originally stored the addend in the GOT, but at this | 
|  | point, we want to move it to the reloc instead as that's | 
|  | where the dynamic linker wants it.  */ | 
|  | rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset); | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); | 
|  | if (h->dynindx == -1) | 
|  | rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); | 
|  | else | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* If this is a -Bsymbolic link, and the symbol is defined | 
|  | locally, we just want to emit a RELATIVE reloc.  Likewise if | 
|  | the symbol was forced to be local because of a version file. | 
|  | The entry in the global offset table will already have been | 
|  | initialized in the relocate_section function.  */ | 
|  | if (bfd_link_pic (info) | 
|  | && (info->symbolic || h->dynindx == -1) | 
|  | && h->def_regular) | 
|  | { | 
|  | rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); | 
|  | rel.r_addend = (h->root.u.def.value | 
|  | + h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT); | 
|  | rel.r_addend = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE) | 
|  | { | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, | 
|  | (bfd_byte *) ((Elf32_External_Rela *) srel->contents | 
|  | + srel->reloc_count)); | 
|  | ++ srel->reloc_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h->needs_copy) | 
|  | { | 
|  | asection *	s; | 
|  | Elf_Internal_Rela rel; | 
|  |  | 
|  | /* This symbol needs a copy reloc.  Set it up.  */ | 
|  | BFD_ASSERT (h->dynindx != -1 | 
|  | && (h->root.type == bfd_link_hash_defined | 
|  | || h->root.type == bfd_link_hash_defweak)); | 
|  |  | 
|  | s = bfd_get_linker_section (dynobj, ".rela.bss"); | 
|  | BFD_ASSERT (s != NULL); | 
|  |  | 
|  | rel.r_offset = (h->root.u.def.value | 
|  | + h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset); | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY); | 
|  | rel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, & rel, | 
|  | (bfd_byte *) ((Elf32_External_Rela *) s->contents | 
|  | + s->reloc_count)); | 
|  | ++ s->reloc_count; | 
|  | } | 
|  |  | 
|  | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */ | 
|  | if (h == elf_hash_table (info)->hdynamic | 
|  | || h == elf_hash_table (info)->hgot) | 
|  | sym->st_shndx = SHN_ABS; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Finish up the dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd, | 
|  | struct bfd_link_info * info) | 
|  | { | 
|  | bfd *      dynobj; | 
|  | asection * sgot; | 
|  | asection * sdyn; | 
|  | struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); | 
|  |  | 
|  | dynobj = htab->root.dynobj; | 
|  | sgot = htab->root.sgotplt; | 
|  | BFD_ASSERT (sgot != NULL); | 
|  | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | asection *	   splt; | 
|  | Elf32_External_Dyn * dyncon; | 
|  | Elf32_External_Dyn * dynconend; | 
|  |  | 
|  | BFD_ASSERT (sdyn != NULL); | 
|  |  | 
|  | dyncon = (Elf32_External_Dyn *) sdyn->contents; | 
|  | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); | 
|  |  | 
|  | for (; dyncon < dynconend; dyncon++) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | asection * s; | 
|  |  | 
|  | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case DT_PLTGOT: | 
|  | s = htab->root.sgot; | 
|  | goto get_vma; | 
|  |  | 
|  | case DT_JMPREL: | 
|  | s = htab->root.srelplt; | 
|  | get_vma: | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | case DT_PLTRELSZ: | 
|  | s = htab->root.srelplt; | 
|  | dyn.d_un.d_val = s->size; | 
|  | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill in the first entry in the procedure linkage table.  */ | 
|  | splt = htab->root.splt; | 
|  | if (splt && splt->size > 0) | 
|  | { | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | memcpy (splt->contents, elf_mn10300_pic_plt_entry, | 
|  | elf_mn10300_sizeof_plt (info)); | 
|  | } | 
|  | else | 
|  | { | 
|  | memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE); | 
|  | bfd_put_32 (output_bfd, | 
|  | sgot->output_section->vma + sgot->output_offset + 4, | 
|  | splt->contents + elf_mn10300_plt0_gotid_offset (info)); | 
|  | bfd_put_32 (output_bfd, | 
|  | sgot->output_section->vma + sgot->output_offset + 8, | 
|  | splt->contents + elf_mn10300_plt0_linker_offset (info)); | 
|  | } | 
|  |  | 
|  | /* UnixWare sets the entsize of .plt to 4, although that doesn't | 
|  | really seem like the right value.  */ | 
|  | elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; | 
|  |  | 
|  | /* UnixWare sets the entsize of .plt to 4, but this is incorrect | 
|  | as it means that the size of the PLT0 section (15 bytes) is not | 
|  | a multiple of the sh_entsize.  Some ELF tools flag this as an | 
|  | error.  We could pad PLT0 to 16 bytes, but that would introduce | 
|  | compatibilty issues with previous toolchains, so instead we | 
|  | just set the entry size to 1.  */ | 
|  | elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill in the first three entries in the global offset table.  */ | 
|  | if (sgot->size > 0) | 
|  | { | 
|  | if (sdyn == NULL) | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); | 
|  | else | 
|  | bfd_put_32 (output_bfd, | 
|  | sdyn->output_section->vma + sdyn->output_offset, | 
|  | sgot->contents); | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); | 
|  | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); | 
|  | } | 
|  |  | 
|  | elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Classify relocation types, such that combreloc can sort them | 
|  | properly.  */ | 
|  |  | 
|  | static enum elf_reloc_type_class | 
|  | _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const asection *rel_sec ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Rela *rela) | 
|  | { | 
|  | switch ((int) ELF32_R_TYPE (rela->r_info)) | 
|  | { | 
|  | case R_MN10300_RELATIVE:	return reloc_class_relative; | 
|  | case R_MN10300_JMP_SLOT:	return reloc_class_plt; | 
|  | case R_MN10300_COPY:	return reloc_class_copy; | 
|  | default:			return reloc_class_normal; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate space for an MN10300 extension to the bfd elf data structure.  */ | 
|  |  | 
|  | static bool | 
|  | mn10300_elf_mkobject (bfd *abfd) | 
|  | { | 
|  | return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata), | 
|  | MN10300_ELF_DATA); | 
|  | } | 
|  |  | 
|  | #define bfd_elf32_mkobject	mn10300_elf_mkobject | 
|  |  | 
|  | #ifndef ELF_ARCH | 
|  | #define TARGET_LITTLE_SYM	mn10300_elf32_vec | 
|  | #define TARGET_LITTLE_NAME	"elf32-mn10300" | 
|  | #define ELF_ARCH		bfd_arch_mn10300 | 
|  | #define ELF_TARGET_ID		MN10300_ELF_DATA | 
|  | #define ELF_MACHINE_CODE	EM_MN10300 | 
|  | #define ELF_MACHINE_ALT1	EM_CYGNUS_MN10300 | 
|  | #define ELF_MAXPAGESIZE		0x1000 | 
|  | #endif | 
|  |  | 
|  | #define elf_info_to_howto		mn10300_info_to_howto | 
|  | #define elf_info_to_howto_rel		NULL | 
|  | #define elf_backend_can_gc_sections	1 | 
|  | #define elf_backend_rela_normal		1 | 
|  | #define elf_backend_check_relocs	mn10300_elf_check_relocs | 
|  | #define elf_backend_gc_mark_hook	mn10300_elf_gc_mark_hook | 
|  | #define elf_backend_relocate_section	mn10300_elf_relocate_section | 
|  | #define bfd_elf32_bfd_relax_section	mn10300_elf_relax_section | 
|  | #define bfd_elf32_bfd_get_relocated_section_contents \ | 
|  | mn10300_elf_get_relocated_section_contents | 
|  | #define bfd_elf32_bfd_link_hash_table_create \ | 
|  | elf32_mn10300_link_hash_table_create | 
|  |  | 
|  | #ifndef elf_symbol_leading_char | 
|  | #define elf_symbol_leading_char '_' | 
|  | #endif | 
|  |  | 
|  | /* So we can set bits in e_flags.  */ | 
|  | #define elf_backend_final_write_processing \ | 
|  | _bfd_mn10300_elf_final_write_processing | 
|  | #define elf_backend_object_p		_bfd_mn10300_elf_object_p | 
|  |  | 
|  | #define bfd_elf32_bfd_merge_private_bfd_data \ | 
|  | _bfd_mn10300_elf_merge_private_bfd_data | 
|  |  | 
|  | #define elf_backend_can_gc_sections	1 | 
|  | #define elf_backend_create_dynamic_sections \ | 
|  | _bfd_mn10300_elf_create_dynamic_sections | 
|  | #define elf_backend_adjust_dynamic_symbol \ | 
|  | _bfd_mn10300_elf_adjust_dynamic_symbol | 
|  | #define elf_backend_size_dynamic_sections \ | 
|  | _bfd_mn10300_elf_size_dynamic_sections | 
|  | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all | 
|  | #define elf_backend_finish_dynamic_symbol \ | 
|  | _bfd_mn10300_elf_finish_dynamic_symbol | 
|  | #define elf_backend_finish_dynamic_sections \ | 
|  | _bfd_mn10300_elf_finish_dynamic_sections | 
|  | #define elf_backend_copy_indirect_symbol \ | 
|  | _bfd_mn10300_copy_indirect_symbol | 
|  | #define elf_backend_reloc_type_class \ | 
|  | _bfd_mn10300_elf_reloc_type_class | 
|  |  | 
|  | #define elf_backend_want_got_plt	1 | 
|  | #define elf_backend_plt_readonly	1 | 
|  | #define elf_backend_want_plt_sym	0 | 
|  | #define elf_backend_got_header_size	12 | 
|  | #define elf_backend_dtrel_excludes_plt	1 | 
|  |  | 
|  | #include "elf32-target.h" |