|  | /* MIPS-specific support for ELF | 
|  | Copyright (C) 1993-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | Most of the information added by Ian Lance Taylor, Cygnus Support, | 
|  | <ian@cygnus.com>. | 
|  | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | 
|  | <mark@codesourcery.com> | 
|  | Traditional MIPS targets support added by Koundinya.K, Dansk Data | 
|  | Elektronik & Operations Research Group. <kk@ddeorg.soft.net> | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | MA 02110-1301, USA.  */ | 
|  |  | 
|  |  | 
|  | /* This file handles functionality common to the different MIPS ABI's.  */ | 
|  |  | 
|  | #include "sysdep.h" | 
|  | #include "bfd.h" | 
|  | #include "libbfd.h" | 
|  | #include "libiberty.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "ecoff-bfd.h" | 
|  | #include "elfxx-mips.h" | 
|  | #include "elf/mips.h" | 
|  | #include "elf-vxworks.h" | 
|  | #include "dwarf2.h" | 
|  |  | 
|  | /* Get the ECOFF swapping routines.  */ | 
|  | #include "coff/sym.h" | 
|  | #include "coff/symconst.h" | 
|  | #include "coff/ecoff.h" | 
|  | #include "coff/mips.h" | 
|  |  | 
|  | #include "hashtab.h" | 
|  |  | 
|  | /* Types of TLS GOT entry.  */ | 
|  | enum mips_got_tls_type { | 
|  | GOT_TLS_NONE, | 
|  | GOT_TLS_GD, | 
|  | GOT_TLS_LDM, | 
|  | GOT_TLS_IE | 
|  | }; | 
|  |  | 
|  | /* This structure is used to hold information about one GOT entry. | 
|  | There are four types of entry: | 
|  |  | 
|  | (1) an absolute address | 
|  | requires: abfd == NULL | 
|  | fields: d.address | 
|  |  | 
|  | (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd | 
|  | requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM | 
|  | fields: abfd, symndx, d.addend, tls_type | 
|  |  | 
|  | (3) a SYMBOL address, where SYMBOL is not local to an input bfd | 
|  | requires: abfd != NULL, symndx == -1 | 
|  | fields: d.h, tls_type | 
|  |  | 
|  | (4) a TLS LDM slot | 
|  | requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM | 
|  | fields: none; there's only one of these per GOT.  */ | 
|  | struct mips_got_entry | 
|  | { | 
|  | /* One input bfd that needs the GOT entry.  */ | 
|  | bfd *abfd; | 
|  | /* The index of the symbol, as stored in the relocation r_info, if | 
|  | we have a local symbol; -1 otherwise.  */ | 
|  | long symndx; | 
|  | union | 
|  | { | 
|  | /* If abfd == NULL, an address that must be stored in the got.  */ | 
|  | bfd_vma address; | 
|  | /* If abfd != NULL && symndx != -1, the addend of the relocation | 
|  | that should be added to the symbol value.  */ | 
|  | bfd_vma addend; | 
|  | /* If abfd != NULL && symndx == -1, the hash table entry | 
|  | corresponding to a symbol in the GOT.  The symbol's entry | 
|  | is in the local area if h->global_got_area is GGA_NONE, | 
|  | otherwise it is in the global area.  */ | 
|  | struct mips_elf_link_hash_entry *h; | 
|  | } d; | 
|  |  | 
|  | /* The TLS type of this GOT entry.  An LDM GOT entry will be a local | 
|  | symbol entry with r_symndx == 0.  */ | 
|  | unsigned char tls_type; | 
|  |  | 
|  | /* True if we have filled in the GOT contents for a TLS entry, | 
|  | and created the associated relocations.  */ | 
|  | unsigned char tls_initialized; | 
|  |  | 
|  | /* The offset from the beginning of the .got section to the entry | 
|  | corresponding to this symbol+addend.  If it's a global symbol | 
|  | whose offset is yet to be decided, it's going to be -1.  */ | 
|  | long gotidx; | 
|  | }; | 
|  |  | 
|  | /* This structure represents a GOT page reference from an input bfd. | 
|  | Each instance represents a symbol + ADDEND, where the representation | 
|  | of the symbol depends on whether it is local to the input bfd. | 
|  | If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. | 
|  | Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. | 
|  |  | 
|  | Page references with SYMNDX >= 0 always become page references | 
|  | in the output.  Page references with SYMNDX < 0 only become page | 
|  | references if the symbol binds locally; in other cases, the page | 
|  | reference decays to a global GOT reference.  */ | 
|  | struct mips_got_page_ref | 
|  | { | 
|  | long symndx; | 
|  | union | 
|  | { | 
|  | struct mips_elf_link_hash_entry *h; | 
|  | bfd *abfd; | 
|  | } u; | 
|  | bfd_vma addend; | 
|  | }; | 
|  |  | 
|  | /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. | 
|  | The structures form a non-overlapping list that is sorted by increasing | 
|  | MIN_ADDEND.  */ | 
|  | struct mips_got_page_range | 
|  | { | 
|  | struct mips_got_page_range *next; | 
|  | bfd_signed_vma min_addend; | 
|  | bfd_signed_vma max_addend; | 
|  | }; | 
|  |  | 
|  | /* This structure describes the range of addends that are applied to page | 
|  | relocations against a given section.  */ | 
|  | struct mips_got_page_entry | 
|  | { | 
|  | /* The section that these entries are based on.  */ | 
|  | asection *sec; | 
|  | /* The ranges for this page entry.  */ | 
|  | struct mips_got_page_range *ranges; | 
|  | /* The maximum number of page entries needed for RANGES.  */ | 
|  | bfd_vma num_pages; | 
|  | }; | 
|  |  | 
|  | /* This structure is used to hold .got information when linking.  */ | 
|  |  | 
|  | struct mips_got_info | 
|  | { | 
|  | /* The number of global .got entries.  */ | 
|  | unsigned int global_gotno; | 
|  | /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */ | 
|  | unsigned int reloc_only_gotno; | 
|  | /* The number of .got slots used for TLS.  */ | 
|  | unsigned int tls_gotno; | 
|  | /* The first unused TLS .got entry.  Used only during | 
|  | mips_elf_initialize_tls_index.  */ | 
|  | unsigned int tls_assigned_gotno; | 
|  | /* The number of local .got entries, eventually including page entries.  */ | 
|  | unsigned int local_gotno; | 
|  | /* The maximum number of page entries needed.  */ | 
|  | unsigned int page_gotno; | 
|  | /* The number of relocations needed for the GOT entries.  */ | 
|  | unsigned int relocs; | 
|  | /* The first unused local .got entry.  */ | 
|  | unsigned int assigned_low_gotno; | 
|  | /* The last unused local .got entry.  */ | 
|  | unsigned int assigned_high_gotno; | 
|  | /* A hash table holding members of the got.  */ | 
|  | struct htab *got_entries; | 
|  | /* A hash table holding mips_got_page_ref structures.  */ | 
|  | struct htab *got_page_refs; | 
|  | /* A hash table of mips_got_page_entry structures.  */ | 
|  | struct htab *got_page_entries; | 
|  | /* In multi-got links, a pointer to the next got (err, rather, most | 
|  | of the time, it points to the previous got).  */ | 
|  | struct mips_got_info *next; | 
|  | }; | 
|  |  | 
|  | /* Structure passed when merging bfds' gots.  */ | 
|  |  | 
|  | struct mips_elf_got_per_bfd_arg | 
|  | { | 
|  | /* The output bfd.  */ | 
|  | bfd *obfd; | 
|  | /* The link information.  */ | 
|  | struct bfd_link_info *info; | 
|  | /* A pointer to the primary got, i.e., the one that's going to get | 
|  | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | 
|  | DT_MIPS_GOTSYM.  */ | 
|  | struct mips_got_info *primary; | 
|  | /* A non-primary got we're trying to merge with other input bfd's | 
|  | gots.  */ | 
|  | struct mips_got_info *current; | 
|  | /* The maximum number of got entries that can be addressed with a | 
|  | 16-bit offset.  */ | 
|  | unsigned int max_count; | 
|  | /* The maximum number of page entries needed by each got.  */ | 
|  | unsigned int max_pages; | 
|  | /* The total number of global entries which will live in the | 
|  | primary got and be automatically relocated.  This includes | 
|  | those not referenced by the primary GOT but included in | 
|  | the "master" GOT.  */ | 
|  | unsigned int global_count; | 
|  | }; | 
|  |  | 
|  | /* A structure used to pass information to htab_traverse callbacks | 
|  | when laying out the GOT.  */ | 
|  |  | 
|  | struct mips_elf_traverse_got_arg | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct mips_got_info *g; | 
|  | int value; | 
|  | }; | 
|  |  | 
|  | struct _mips_elf_section_data | 
|  | { | 
|  | struct bfd_elf_section_data elf; | 
|  | union | 
|  | { | 
|  | bfd_byte *tdata; | 
|  | } u; | 
|  | }; | 
|  |  | 
|  | #define mips_elf_section_data(sec) \ | 
|  | ((struct _mips_elf_section_data *) elf_section_data (sec)) | 
|  |  | 
|  | #define is_mips_elf(bfd)				\ | 
|  | (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\ | 
|  | && elf_tdata (bfd) != NULL				\ | 
|  | && elf_object_id (bfd) == MIPS_ELF_DATA) | 
|  |  | 
|  | /* The ABI says that every symbol used by dynamic relocations must have | 
|  | a global GOT entry.  Among other things, this provides the dynamic | 
|  | linker with a free, directly-indexed cache.  The GOT can therefore | 
|  | contain symbols that are not referenced by GOT relocations themselves | 
|  | (in other words, it may have symbols that are not referenced by things | 
|  | like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). | 
|  |  | 
|  | GOT relocations are less likely to overflow if we put the associated | 
|  | GOT entries towards the beginning.  We therefore divide the global | 
|  | GOT entries into two areas: "normal" and "reloc-only".  Entries in | 
|  | the first area can be used for both dynamic relocations and GP-relative | 
|  | accesses, while those in the "reloc-only" area are for dynamic | 
|  | relocations only. | 
|  |  | 
|  | These GGA_* ("Global GOT Area") values are organised so that lower | 
|  | values are more general than higher values.  Also, non-GGA_NONE | 
|  | values are ordered by the position of the area in the GOT.  */ | 
|  | #define GGA_NORMAL 0 | 
|  | #define GGA_RELOC_ONLY 1 | 
|  | #define GGA_NONE 2 | 
|  |  | 
|  | /* Information about a non-PIC interface to a PIC function.  There are | 
|  | two ways of creating these interfaces.  The first is to add: | 
|  |  | 
|  | lui	$25,%hi(func) | 
|  | addiu	$25,$25,%lo(func) | 
|  |  | 
|  | immediately before a PIC function "func".  The second is to add: | 
|  |  | 
|  | lui	$25,%hi(func) | 
|  | j	func | 
|  | addiu	$25,$25,%lo(func) | 
|  |  | 
|  | to a separate trampoline section. | 
|  |  | 
|  | Stubs of the first kind go in a new section immediately before the | 
|  | target function.  Stubs of the second kind go in a single section | 
|  | pointed to by the hash table's "strampoline" field.  */ | 
|  | struct mips_elf_la25_stub { | 
|  | /* The generated section that contains this stub.  */ | 
|  | asection *stub_section; | 
|  |  | 
|  | /* The offset of the stub from the start of STUB_SECTION.  */ | 
|  | bfd_vma offset; | 
|  |  | 
|  | /* One symbol for the original function.  Its location is available | 
|  | in H->root.root.u.def.  */ | 
|  | struct mips_elf_link_hash_entry *h; | 
|  | }; | 
|  |  | 
|  | /* Macros for populating a mips_elf_la25_stub.  */ | 
|  |  | 
|  | #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */ | 
|  | #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ | 
|  | #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */ | 
|  | #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */ | 
|  | #define LA25_LUI_MICROMIPS(VAL)						\ | 
|  | (0x41b90000 | (VAL))				/* lui t9,VAL */ | 
|  | #define LA25_J_MICROMIPS(VAL)						\ | 
|  | (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */ | 
|  | #define LA25_ADDIU_MICROMIPS(VAL)					\ | 
|  | (0x33390000 | (VAL))				/* addiu t9,t9,VAL */ | 
|  |  | 
|  | /* This structure is passed to mips_elf_sort_hash_table_f when sorting | 
|  | the dynamic symbols.  */ | 
|  |  | 
|  | struct mips_elf_hash_sort_data | 
|  | { | 
|  | /* The symbol in the global GOT with the lowest dynamic symbol table | 
|  | index.  */ | 
|  | struct elf_link_hash_entry *low; | 
|  | /* The least dynamic symbol table index corresponding to a non-TLS | 
|  | symbol with a GOT entry.  */ | 
|  | bfd_size_type min_got_dynindx; | 
|  | /* The greatest dynamic symbol table index corresponding to a symbol | 
|  | with a GOT entry that is not referenced (e.g., a dynamic symbol | 
|  | with dynamic relocations pointing to it from non-primary GOTs).  */ | 
|  | bfd_size_type max_unref_got_dynindx; | 
|  | /* The greatest dynamic symbol table index corresponding to a local | 
|  | symbol.  */ | 
|  | bfd_size_type max_local_dynindx; | 
|  | /* The greatest dynamic symbol table index corresponding to an external | 
|  | symbol without a GOT entry.  */ | 
|  | bfd_size_type max_non_got_dynindx; | 
|  | /* If non-NULL, output BFD for .MIPS.xhash finalization.  */ | 
|  | bfd *output_bfd; | 
|  | /* If non-NULL, pointer to contents of .MIPS.xhash for filling in | 
|  | real final dynindx.  */ | 
|  | bfd_byte *mipsxhash; | 
|  | }; | 
|  |  | 
|  | /* We make up to two PLT entries if needed, one for standard MIPS code | 
|  | and one for compressed code, either a MIPS16 or microMIPS one.  We | 
|  | keep a separate record of traditional lazy-binding stubs, for easier | 
|  | processing.  */ | 
|  |  | 
|  | struct plt_entry | 
|  | { | 
|  | /* Traditional SVR4 stub offset, or -1 if none.  */ | 
|  | bfd_vma stub_offset; | 
|  |  | 
|  | /* Standard PLT entry offset, or -1 if none.  */ | 
|  | bfd_vma mips_offset; | 
|  |  | 
|  | /* Compressed PLT entry offset, or -1 if none.  */ | 
|  | bfd_vma comp_offset; | 
|  |  | 
|  | /* The corresponding .got.plt index, or -1 if none.  */ | 
|  | bfd_vma gotplt_index; | 
|  |  | 
|  | /* Whether we need a standard PLT entry.  */ | 
|  | unsigned int need_mips : 1; | 
|  |  | 
|  | /* Whether we need a compressed PLT entry.  */ | 
|  | unsigned int need_comp : 1; | 
|  | }; | 
|  |  | 
|  | /* The MIPS ELF linker needs additional information for each symbol in | 
|  | the global hash table.  */ | 
|  |  | 
|  | struct mips_elf_link_hash_entry | 
|  | { | 
|  | struct elf_link_hash_entry root; | 
|  |  | 
|  | /* External symbol information.  */ | 
|  | EXTR esym; | 
|  |  | 
|  | /* The la25 stub we have created for ths symbol, if any.  */ | 
|  | struct mips_elf_la25_stub *la25_stub; | 
|  |  | 
|  | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | 
|  | this symbol.  */ | 
|  | unsigned int possibly_dynamic_relocs; | 
|  |  | 
|  | /* If there is a stub that 32 bit functions should use to call this | 
|  | 16 bit function, this points to the section containing the stub.  */ | 
|  | asection *fn_stub; | 
|  |  | 
|  | /* If there is a stub that 16 bit functions should use to call this | 
|  | 32 bit function, this points to the section containing the stub.  */ | 
|  | asection *call_stub; | 
|  |  | 
|  | /* This is like the call_stub field, but it is used if the function | 
|  | being called returns a floating point value.  */ | 
|  | asection *call_fp_stub; | 
|  |  | 
|  | /* If non-zero, location in .MIPS.xhash to write real final dynindx.  */ | 
|  | bfd_vma mipsxhash_loc; | 
|  |  | 
|  | /* The highest GGA_* value that satisfies all references to this symbol.  */ | 
|  | unsigned int global_got_area : 2; | 
|  |  | 
|  | /* True if all GOT relocations against this symbol are for calls.  This is | 
|  | a looser condition than no_fn_stub below, because there may be other | 
|  | non-call non-GOT relocations against the symbol.  */ | 
|  | unsigned int got_only_for_calls : 1; | 
|  |  | 
|  | /* True if one of the relocations described by possibly_dynamic_relocs | 
|  | is against a readonly section.  */ | 
|  | unsigned int readonly_reloc : 1; | 
|  |  | 
|  | /* True if there is a relocation against this symbol that must be | 
|  | resolved by the static linker (in other words, if the relocation | 
|  | cannot possibly be made dynamic).  */ | 
|  | unsigned int has_static_relocs : 1; | 
|  |  | 
|  | /* True if we must not create a .MIPS.stubs entry for this symbol. | 
|  | This is set, for example, if there are relocations related to | 
|  | taking the function's address, i.e. any but R_MIPS_CALL*16 ones. | 
|  | See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */ | 
|  | unsigned int no_fn_stub : 1; | 
|  |  | 
|  | /* Whether we need the fn_stub; this is true if this symbol appears | 
|  | in any relocs other than a 16 bit call.  */ | 
|  | unsigned int need_fn_stub : 1; | 
|  |  | 
|  | /* True if this symbol is referenced by branch relocations from | 
|  | any non-PIC input file.  This is used to determine whether an | 
|  | la25 stub is required.  */ | 
|  | unsigned int has_nonpic_branches : 1; | 
|  |  | 
|  | /* Does this symbol need a traditional MIPS lazy-binding stub | 
|  | (as opposed to a PLT entry)?  */ | 
|  | unsigned int needs_lazy_stub : 1; | 
|  |  | 
|  | /* Does this symbol resolve to a PLT entry?  */ | 
|  | unsigned int use_plt_entry : 1; | 
|  | }; | 
|  |  | 
|  | /* MIPS ELF linker hash table.  */ | 
|  |  | 
|  | struct mips_elf_link_hash_table | 
|  | { | 
|  | struct elf_link_hash_table root; | 
|  |  | 
|  | /* The number of .rtproc entries.  */ | 
|  | bfd_size_type procedure_count; | 
|  |  | 
|  | /* The size of the .compact_rel section (if SGI_COMPAT).  */ | 
|  | bfd_size_type compact_rel_size; | 
|  |  | 
|  | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry | 
|  | is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */ | 
|  | bool use_rld_obj_head; | 
|  |  | 
|  | /* The  __rld_map or __rld_obj_head symbol. */ | 
|  | struct elf_link_hash_entry *rld_symbol; | 
|  |  | 
|  | /* This is set if we see any mips16 stub sections.  */ | 
|  | bool mips16_stubs_seen; | 
|  |  | 
|  | /* True if we can generate copy relocs and PLTs.  */ | 
|  | bool use_plts_and_copy_relocs; | 
|  |  | 
|  | /* True if we can only use 32-bit microMIPS instructions.  */ | 
|  | bool insn32; | 
|  |  | 
|  | /* True if we suppress checks for invalid branches between ISA modes.  */ | 
|  | bool ignore_branch_isa; | 
|  |  | 
|  | /* True if we are targetting R6 compact branches.  */ | 
|  | bool compact_branches; | 
|  |  | 
|  | /* True if we already reported the small-data section overflow.  */ | 
|  | bool small_data_overflow_reported; | 
|  |  | 
|  | /* True if we use the special `__gnu_absolute_zero' symbol.  */ | 
|  | bool use_absolute_zero; | 
|  |  | 
|  | /* True if we have been configured for a GNU target.  */ | 
|  | bool gnu_target; | 
|  |  | 
|  | /* Shortcuts to some dynamic sections, or NULL if they are not | 
|  | being used.  */ | 
|  | asection *srelplt2; | 
|  | asection *sstubs; | 
|  |  | 
|  | /* The master GOT information.  */ | 
|  | struct mips_got_info *got_info; | 
|  |  | 
|  | /* The global symbol in the GOT with the lowest index in the dynamic | 
|  | symbol table.  */ | 
|  | struct elf_link_hash_entry *global_gotsym; | 
|  |  | 
|  | /* The size of the PLT header in bytes.  */ | 
|  | bfd_vma plt_header_size; | 
|  |  | 
|  | /* The size of a standard PLT entry in bytes.  */ | 
|  | bfd_vma plt_mips_entry_size; | 
|  |  | 
|  | /* The size of a compressed PLT entry in bytes.  */ | 
|  | bfd_vma plt_comp_entry_size; | 
|  |  | 
|  | /* The offset of the next standard PLT entry to create.  */ | 
|  | bfd_vma plt_mips_offset; | 
|  |  | 
|  | /* The offset of the next compressed PLT entry to create.  */ | 
|  | bfd_vma plt_comp_offset; | 
|  |  | 
|  | /* The index of the next .got.plt entry to create.  */ | 
|  | bfd_vma plt_got_index; | 
|  |  | 
|  | /* The number of functions that need a lazy-binding stub.  */ | 
|  | bfd_vma lazy_stub_count; | 
|  |  | 
|  | /* The size of a function stub entry in bytes.  */ | 
|  | bfd_vma function_stub_size; | 
|  |  | 
|  | /* The number of reserved entries at the beginning of the GOT.  */ | 
|  | unsigned int reserved_gotno; | 
|  |  | 
|  | /* The section used for mips_elf_la25_stub trampolines. | 
|  | See the comment above that structure for details.  */ | 
|  | asection *strampoline; | 
|  |  | 
|  | /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) | 
|  | pairs.  */ | 
|  | htab_t la25_stubs; | 
|  |  | 
|  | /* A function FN (NAME, IS, OS) that creates a new input section | 
|  | called NAME and links it to output section OS.  If IS is nonnull, | 
|  | the new section should go immediately before it, otherwise it | 
|  | should go at the (current) beginning of OS. | 
|  |  | 
|  | The function returns the new section on success, otherwise it | 
|  | returns null.  */ | 
|  | asection *(*add_stub_section) (const char *, asection *, asection *); | 
|  |  | 
|  | /* Is the PLT header compressed?  */ | 
|  | unsigned int plt_header_is_comp : 1; | 
|  | }; | 
|  |  | 
|  | /* Get the MIPS ELF linker hash table from a link_info structure.  */ | 
|  |  | 
|  | #define mips_elf_hash_table(p) \ | 
|  | ((is_elf_hash_table ((p)->hash)					\ | 
|  | && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA)		\ | 
|  | ? (struct mips_elf_link_hash_table *) (p)->hash : NULL) | 
|  |  | 
|  | /* A structure used to communicate with htab_traverse callbacks.  */ | 
|  | struct mips_htab_traverse_info | 
|  | { | 
|  | /* The usual link-wide information.  */ | 
|  | struct bfd_link_info *info; | 
|  | bfd *output_bfd; | 
|  |  | 
|  | /* Starts off FALSE and is set to TRUE if the link should be aborted.  */ | 
|  | bool error; | 
|  | }; | 
|  |  | 
|  | /* MIPS ELF private object data.  */ | 
|  |  | 
|  | struct mips_elf_obj_tdata | 
|  | { | 
|  | /* Generic ELF private object data.  */ | 
|  | struct elf_obj_tdata root; | 
|  |  | 
|  | /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */ | 
|  | bfd *abi_fp_bfd; | 
|  |  | 
|  | /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */ | 
|  | bfd *abi_msa_bfd; | 
|  |  | 
|  | /* The abiflags for this object.  */ | 
|  | Elf_Internal_ABIFlags_v0 abiflags; | 
|  | bool abiflags_valid; | 
|  |  | 
|  | /* The GOT requirements of input bfds.  */ | 
|  | struct mips_got_info *got; | 
|  |  | 
|  | /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be | 
|  | included directly in this one, but there's no point to wasting | 
|  | the memory just for the infrequently called find_nearest_line.  */ | 
|  | struct mips_elf_find_line *find_line_info; | 
|  |  | 
|  | /* An array of stub sections indexed by symbol number.  */ | 
|  | asection **local_stubs; | 
|  | asection **local_call_stubs; | 
|  |  | 
|  | /* The Irix 5 support uses two virtual sections, which represent | 
|  | text/data symbols defined in dynamic objects.  */ | 
|  | asymbol *elf_data_symbol; | 
|  | asymbol *elf_text_symbol; | 
|  | asection *elf_data_section; | 
|  | asection *elf_text_section; | 
|  | }; | 
|  |  | 
|  | /* Get MIPS ELF private object data from BFD's tdata.  */ | 
|  |  | 
|  | #define mips_elf_tdata(bfd) \ | 
|  | ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) | 
|  |  | 
|  | #define TLS_RELOC_P(r_type) \ | 
|  | (r_type == R_MIPS_TLS_DTPMOD32		\ | 
|  | || r_type == R_MIPS_TLS_DTPMOD64		\ | 
|  | || r_type == R_MIPS_TLS_DTPREL32		\ | 
|  | || r_type == R_MIPS_TLS_DTPREL64		\ | 
|  | || r_type == R_MIPS_TLS_GD			\ | 
|  | || r_type == R_MIPS_TLS_LDM			\ | 
|  | || r_type == R_MIPS_TLS_DTPREL_HI16		\ | 
|  | || r_type == R_MIPS_TLS_DTPREL_LO16		\ | 
|  | || r_type == R_MIPS_TLS_GOTTPREL		\ | 
|  | || r_type == R_MIPS_TLS_TPREL32		\ | 
|  | || r_type == R_MIPS_TLS_TPREL64		\ | 
|  | || r_type == R_MIPS_TLS_TPREL_HI16		\ | 
|  | || r_type == R_MIPS_TLS_TPREL_LO16		\ | 
|  | || r_type == R_MIPS16_TLS_GD			\ | 
|  | || r_type == R_MIPS16_TLS_LDM		\ | 
|  | || r_type == R_MIPS16_TLS_DTPREL_HI16	\ | 
|  | || r_type == R_MIPS16_TLS_DTPREL_LO16	\ | 
|  | || r_type == R_MIPS16_TLS_GOTTPREL		\ | 
|  | || r_type == R_MIPS16_TLS_TPREL_HI16		\ | 
|  | || r_type == R_MIPS16_TLS_TPREL_LO16		\ | 
|  | || r_type == R_MICROMIPS_TLS_GD		\ | 
|  | || r_type == R_MICROMIPS_TLS_LDM		\ | 
|  | || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\ | 
|  | || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\ | 
|  | || r_type == R_MICROMIPS_TLS_GOTTPREL	\ | 
|  | || r_type == R_MICROMIPS_TLS_TPREL_HI16	\ | 
|  | || r_type == R_MICROMIPS_TLS_TPREL_LO16) | 
|  |  | 
|  | /* Structure used to pass information to mips_elf_output_extsym.  */ | 
|  |  | 
|  | struct extsym_info | 
|  | { | 
|  | bfd *abfd; | 
|  | struct bfd_link_info *info; | 
|  | struct ecoff_debug_info *debug; | 
|  | const struct ecoff_debug_swap *swap; | 
|  | bool failed; | 
|  | }; | 
|  |  | 
|  | /* The names of the runtime procedure table symbols used on IRIX5.  */ | 
|  |  | 
|  | static const char * const mips_elf_dynsym_rtproc_names[] = | 
|  | { | 
|  | "_procedure_table", | 
|  | "_procedure_string_table", | 
|  | "_procedure_table_size", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | /* These structures are used to generate the .compact_rel section on | 
|  | IRIX5.  */ | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | unsigned long id1;		/* Always one?  */ | 
|  | unsigned long num;		/* Number of compact relocation entries.  */ | 
|  | unsigned long id2;		/* Always two?  */ | 
|  | unsigned long offset;		/* The file offset of the first relocation.  */ | 
|  | unsigned long reserved0;	/* Zero?  */ | 
|  | unsigned long reserved1;	/* Zero?  */ | 
|  | } Elf32_compact_rel; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | bfd_byte id1[4]; | 
|  | bfd_byte num[4]; | 
|  | bfd_byte id2[4]; | 
|  | bfd_byte offset[4]; | 
|  | bfd_byte reserved0[4]; | 
|  | bfd_byte reserved1[4]; | 
|  | } Elf32_External_compact_rel; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */ | 
|  | unsigned int rtype : 4;	/* Relocation types. See below.  */ | 
|  | unsigned int dist2to : 8; | 
|  | unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */ | 
|  | unsigned long konst;		/* KONST field. See below.  */ | 
|  | unsigned long vaddr;		/* VADDR to be relocated.  */ | 
|  | } Elf32_crinfo; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */ | 
|  | unsigned int rtype : 4;	/* Relocation types. See below.  */ | 
|  | unsigned int dist2to : 8; | 
|  | unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */ | 
|  | unsigned long konst;		/* KONST field. See below.  */ | 
|  | } Elf32_crinfo2; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | bfd_byte info[4]; | 
|  | bfd_byte konst[4]; | 
|  | bfd_byte vaddr[4]; | 
|  | } Elf32_External_crinfo; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | bfd_byte info[4]; | 
|  | bfd_byte konst[4]; | 
|  | } Elf32_External_crinfo2; | 
|  |  | 
|  | /* These are the constants used to swap the bitfields in a crinfo.  */ | 
|  |  | 
|  | #define CRINFO_CTYPE (0x1U) | 
|  | #define CRINFO_CTYPE_SH (31) | 
|  | #define CRINFO_RTYPE (0xfU) | 
|  | #define CRINFO_RTYPE_SH (27) | 
|  | #define CRINFO_DIST2TO (0xffU) | 
|  | #define CRINFO_DIST2TO_SH (19) | 
|  | #define CRINFO_RELVADDR (0x7ffffU) | 
|  | #define CRINFO_RELVADDR_SH (0) | 
|  |  | 
|  | /* A compact relocation info has long (3 words) or short (2 words) | 
|  | formats.  A short format doesn't have VADDR field and relvaddr | 
|  | fields contains ((VADDR - vaddr of the previous entry) >> 2).  */ | 
|  | #define CRF_MIPS_LONG			1 | 
|  | #define CRF_MIPS_SHORT			0 | 
|  |  | 
|  | /* There are 4 types of compact relocation at least. The value KONST | 
|  | has different meaning for each type: | 
|  |  | 
|  | (type)		(konst) | 
|  | CT_MIPS_REL32	Address in data | 
|  | CT_MIPS_WORD		Address in word (XXX) | 
|  | CT_MIPS_GPHI_LO	GP - vaddr | 
|  | CT_MIPS_JMPAD	Address to jump | 
|  | */ | 
|  |  | 
|  | #define CRT_MIPS_REL32			0xa | 
|  | #define CRT_MIPS_WORD			0xb | 
|  | #define CRT_MIPS_GPHI_LO		0xc | 
|  | #define CRT_MIPS_JMPAD			0xd | 
|  |  | 
|  | #define mips_elf_set_cr_format(x,format)	((x).ctype = (format)) | 
|  | #define mips_elf_set_cr_type(x,type)		((x).rtype = (type)) | 
|  | #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v)) | 
|  | #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2) | 
|  |  | 
|  | /* The structure of the runtime procedure descriptor created by the | 
|  | loader for use by the static exception system.  */ | 
|  |  | 
|  | typedef struct runtime_pdr { | 
|  | bfd_vma	adr;		/* Memory address of start of procedure.  */ | 
|  | long	regmask;	/* Save register mask.  */ | 
|  | long	regoffset;	/* Save register offset.  */ | 
|  | long	fregmask;	/* Save floating point register mask.  */ | 
|  | long	fregoffset;	/* Save floating point register offset.  */ | 
|  | long	frameoffset;	/* Frame size.  */ | 
|  | short	framereg;	/* Frame pointer register.  */ | 
|  | short	pcreg;		/* Offset or reg of return pc.  */ | 
|  | long	irpss;		/* Index into the runtime string table.  */ | 
|  | long	reserved; | 
|  | struct exception_info *exception_info;/* Pointer to exception array.  */ | 
|  | } RPDR, *pRPDR; | 
|  | #define cbRPDR sizeof (RPDR) | 
|  | #define rpdNil ((pRPDR) 0) | 
|  |  | 
|  | static struct mips_got_entry *mips_elf_create_local_got_entry | 
|  | (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, | 
|  | struct mips_elf_link_hash_entry *, int); | 
|  | static bool mips_elf_sort_hash_table_f | 
|  | (struct mips_elf_link_hash_entry *, void *); | 
|  | static bfd_vma mips_elf_high | 
|  | (bfd_vma); | 
|  | static bool mips_elf_create_dynamic_relocation | 
|  | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, | 
|  | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | 
|  | bfd_vma *, asection *); | 
|  | static bfd_vma mips_elf_adjust_gp | 
|  | (bfd *, struct mips_got_info *, bfd *); | 
|  |  | 
|  | /* This will be used when we sort the dynamic relocation records.  */ | 
|  | static bfd *reldyn_sorting_bfd; | 
|  |  | 
|  | /* True if ABFD is for CPUs with load interlocking that include | 
|  | non-MIPS1 CPUs and R3900.  */ | 
|  | #define LOAD_INTERLOCKS_P(abfd) \ | 
|  | (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ | 
|  | || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) | 
|  |  | 
|  | /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. | 
|  | This should be safe for all architectures.  We enable this predicate | 
|  | for RM9000 for now.  */ | 
|  | #define JAL_TO_BAL_P(abfd) \ | 
|  | ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) | 
|  |  | 
|  | /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. | 
|  | This should be safe for all architectures.  We enable this predicate for | 
|  | all CPUs.  */ | 
|  | #define JALR_TO_BAL_P(abfd) 1 | 
|  |  | 
|  | /* True if ABFD is for CPUs that are faster if JR is converted to B. | 
|  | This should be safe for all architectures.  We enable this predicate for | 
|  | all CPUs.  */ | 
|  | #define JR_TO_B_P(abfd) 1 | 
|  |  | 
|  | /* True if ABFD is a PIC object.  */ | 
|  | #define PIC_OBJECT_P(abfd) \ | 
|  | ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) | 
|  |  | 
|  | /* Nonzero if ABFD is using the O32 ABI.  */ | 
|  | #define ABI_O32_P(abfd) \ | 
|  | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | 
|  |  | 
|  | /* Nonzero if ABFD is using the N32 ABI.  */ | 
|  | #define ABI_N32_P(abfd) \ | 
|  | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | 
|  |  | 
|  | /* Nonzero if ABFD is using the N64 ABI.  */ | 
|  | #define ABI_64_P(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) | 
|  |  | 
|  | /* Nonzero if ABFD is using NewABI conventions.  */ | 
|  | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | 
|  |  | 
|  | /* Nonzero if ABFD has microMIPS code.  */ | 
|  | #define MICROMIPS_P(abfd) \ | 
|  | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) | 
|  |  | 
|  | /* Nonzero if ABFD is MIPS R6.  */ | 
|  | #define MIPSR6_P(abfd) \ | 
|  | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ | 
|  | || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) | 
|  |  | 
|  | /* The IRIX compatibility level we are striving for.  */ | 
|  | #define IRIX_COMPAT(abfd) \ | 
|  | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | 
|  |  | 
|  | /* Whether we are trying to be compatible with IRIX at all.  */ | 
|  | #define SGI_COMPAT(abfd) \ | 
|  | (IRIX_COMPAT (abfd) != ict_none) | 
|  |  | 
|  | /* The name of the options section.  */ | 
|  | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | 
|  | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") | 
|  |  | 
|  | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. | 
|  | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */ | 
|  | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | 
|  | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | 
|  |  | 
|  | /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section.  */ | 
|  | #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ | 
|  | (strcmp (NAME, ".MIPS.abiflags") == 0) | 
|  |  | 
|  | /* Whether the section is readonly.  */ | 
|  | #define MIPS_ELF_READONLY_SECTION(sec) \ | 
|  | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\ | 
|  | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | 
|  |  | 
|  | /* The name of the stub section.  */ | 
|  | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" | 
|  |  | 
|  | /* The size of an external REL relocation.  */ | 
|  | #define MIPS_ELF_REL_SIZE(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->sizeof_rel) | 
|  |  | 
|  | /* The size of an external RELA relocation.  */ | 
|  | #define MIPS_ELF_RELA_SIZE(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->sizeof_rela) | 
|  |  | 
|  | /* The size of an external dynamic table entry.  */ | 
|  | #define MIPS_ELF_DYN_SIZE(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->sizeof_dyn) | 
|  |  | 
|  | /* The size of a GOT entry.  */ | 
|  | #define MIPS_ELF_GOT_SIZE(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->arch_size / 8) | 
|  |  | 
|  | /* The size of the .rld_map section. */ | 
|  | #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->arch_size / 8) | 
|  |  | 
|  | /* The size of a symbol-table entry.  */ | 
|  | #define MIPS_ELF_SYM_SIZE(abfd) \ | 
|  | (get_elf_backend_data (abfd)->s->sizeof_sym) | 
|  |  | 
|  | /* The default alignment for sections, as a power of two.  */ | 
|  | #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\ | 
|  | (get_elf_backend_data (abfd)->s->log_file_align) | 
|  |  | 
|  | /* Get word-sized data.  */ | 
|  | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | 
|  | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | 
|  |  | 
|  | /* Put out word-sized data.  */ | 
|  | #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\ | 
|  | (ABI_64_P (abfd)				\ | 
|  | ? bfd_put_64 (abfd, val, ptr)		\ | 
|  | : bfd_put_32 (abfd, val, ptr)) | 
|  |  | 
|  | /* The opcode for word-sized loads (LW or LD).  */ | 
|  | #define MIPS_ELF_LOAD_WORD(abfd) \ | 
|  | (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) | 
|  |  | 
|  | /* Add a dynamic symbol table-entry.  */ | 
|  | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\ | 
|  | _bfd_elf_add_dynamic_entry (info, tag, val) | 
|  |  | 
|  | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\ | 
|  | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela)) | 
|  |  | 
|  | /* The name of the dynamic relocation section.  */ | 
|  | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | 
|  | (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ | 
|  | ? ".rela.dyn" : ".rel.dyn") | 
|  |  | 
|  | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value | 
|  | from smaller values.  Start with zero, widen, *then* decrement.  */ | 
|  | #define MINUS_ONE	(((bfd_vma)0) - 1) | 
|  | #define MINUS_TWO	(((bfd_vma)0) - 2) | 
|  |  | 
|  | /* The value to write into got[1] for SVR4 targets, to identify it is | 
|  | a GNU object.  The dynamic linker can then use got[1] to store the | 
|  | module pointer.  */ | 
|  | #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ | 
|  | ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) | 
|  |  | 
|  | /* The offset of $gp from the beginning of the .got section.  */ | 
|  | #define ELF_MIPS_GP_OFFSET(INFO) \ | 
|  | (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ | 
|  | ? 0x0 : 0x7ff0) | 
|  |  | 
|  | /* The maximum size of the GOT for it to be addressable using 16-bit | 
|  | offsets from $gp.  */ | 
|  | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) | 
|  |  | 
|  | /* Instructions which appear in a stub.  */ | 
|  | #define STUB_LW(abfd)							\ | 
|  | ((ABI_64_P (abfd)							\ | 
|  | ? 0xdf998010				/* ld t9,0x8010(gp) */	\ | 
|  | : 0x8f998010))				/* lw t9,0x8010(gp) */ | 
|  | #define STUB_MOVE 0x03e07825			/* or t7,ra,zero */ | 
|  | #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */ | 
|  | #define STUB_JALR 0x0320f809			/* jalr ra,t9 */ | 
|  | #define STUB_JALRC 0xf8190000			/* jalrc ra,t9 */ | 
|  | #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */ | 
|  | #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */ | 
|  | #define STUB_LI16S(abfd, VAL)						\ | 
|  | ((ABI_64_P (abfd)							\ | 
|  | ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\ | 
|  | : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */ | 
|  |  | 
|  | /* Likewise for the microMIPS ASE.  */ | 
|  | #define STUB_LW_MICROMIPS(abfd)						\ | 
|  | (ABI_64_P (abfd)							\ | 
|  | ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\ | 
|  | : 0xff3c8010)				/* lw t9,0x8010(gp) */ | 
|  | #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */ | 
|  | #define STUB_MOVE32_MICROMIPS 0x001f7a90	/* or t7,ra,zero */ | 
|  | #define STUB_LUI_MICROMIPS(VAL)						\ | 
|  | (0x41b80000 + (VAL))				/* lui t8,VAL */ | 
|  | #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */ | 
|  | #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */ | 
|  | #define STUB_ORI_MICROMIPS(VAL)						\ | 
|  | (0x53180000 + (VAL))				/* ori t8,t8,VAL */ | 
|  | #define STUB_LI16U_MICROMIPS(VAL)					\ | 
|  | (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */ | 
|  | #define STUB_LI16S_MICROMIPS(abfd, VAL)					\ | 
|  | (ABI_64_P (abfd)							\ | 
|  | ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\ | 
|  | : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */ | 
|  |  | 
|  | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 | 
|  | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 | 
|  | #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 | 
|  | #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 | 
|  | #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 | 
|  | #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 | 
|  |  | 
|  | /* The name of the dynamic interpreter.  This is put in the .interp | 
|  | section.  */ | 
|  |  | 
|  | #define ELF_DYNAMIC_INTERPRETER(abfd)		\ | 
|  | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1"	\ | 
|  | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1"	\ | 
|  | : "/usr/lib/libc.so.1") | 
|  |  | 
|  | #ifdef BFD64 | 
|  | #define MNAME(bfd,pre,pos) \ | 
|  | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | 
|  | #define ELF_R_SYM(bfd, i)					\ | 
|  | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | 
|  | #define ELF_R_TYPE(bfd, i)					\ | 
|  | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | 
|  | #define ELF_R_INFO(bfd, s, t)					\ | 
|  | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | 
|  | #else | 
|  | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) | 
|  | #define ELF_R_SYM(bfd, i)					\ | 
|  | (ELF32_R_SYM (i)) | 
|  | #define ELF_R_TYPE(bfd, i)					\ | 
|  | (ELF32_R_TYPE (i)) | 
|  | #define ELF_R_INFO(bfd, s, t)					\ | 
|  | (ELF32_R_INFO (s, t)) | 
|  | #endif | 
|  |  | 
|  | /* The mips16 compiler uses a couple of special sections to handle | 
|  | floating point arguments. | 
|  |  | 
|  | Section names that look like .mips16.fn.FNNAME contain stubs that | 
|  | copy floating point arguments from the fp regs to the gp regs and | 
|  | then jump to FNNAME.  If any 32 bit function calls FNNAME, the | 
|  | call should be redirected to the stub instead.  If no 32 bit | 
|  | function calls FNNAME, the stub should be discarded.  We need to | 
|  | consider any reference to the function, not just a call, because | 
|  | if the address of the function is taken we will need the stub, | 
|  | since the address might be passed to a 32 bit function. | 
|  |  | 
|  | Section names that look like .mips16.call.FNNAME contain stubs | 
|  | that copy floating point arguments from the gp regs to the fp | 
|  | regs and then jump to FNNAME.  If FNNAME is a 32 bit function, | 
|  | then any 16 bit function that calls FNNAME should be redirected | 
|  | to the stub instead.  If FNNAME is not a 32 bit function, the | 
|  | stub should be discarded. | 
|  |  | 
|  | .mips16.call.fp.FNNAME sections are similar, but contain stubs | 
|  | which call FNNAME and then copy the return value from the fp regs | 
|  | to the gp regs.  These stubs store the return value in $18 while | 
|  | calling FNNAME; any function which might call one of these stubs | 
|  | must arrange to save $18 around the call.  (This case is not | 
|  | needed for 32 bit functions that call 16 bit functions, because | 
|  | 16 bit functions always return floating point values in both | 
|  | $f0/$f1 and $2/$3.) | 
|  |  | 
|  | Note that in all cases FNNAME might be defined statically. | 
|  | Therefore, FNNAME is not used literally.  Instead, the relocation | 
|  | information will indicate which symbol the section is for. | 
|  |  | 
|  | We record any stubs that we find in the symbol table.  */ | 
|  |  | 
|  | #define FN_STUB ".mips16.fn." | 
|  | #define CALL_STUB ".mips16.call." | 
|  | #define CALL_FP_STUB ".mips16.call.fp." | 
|  |  | 
|  | #define FN_STUB_P(name) startswith (name, FN_STUB) | 
|  | #define CALL_STUB_P(name) startswith (name, CALL_STUB) | 
|  | #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB) | 
|  |  | 
|  | /* The format of the first PLT entry in an O32 executable.  */ | 
|  | static const bfd_vma mips_o32_exec_plt0_entry[] = | 
|  | { | 
|  | 0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/ | 
|  | 0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/ | 
|  | 0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/ | 
|  | 0x031cc023,	/* subu $24, $24, $28					*/ | 
|  | 0x03e07825,	/* or t7, ra, zero					*/ | 
|  | 0x0018c082,	/* srl $24, $24, 2					*/ | 
|  | 0x0320f809,	/* jalr $25						*/ | 
|  | 0x2718fffe	/* subu $24, $24, 2					*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in an O32 executable using compact | 
|  | jumps.  */ | 
|  | static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] = | 
|  | { | 
|  | 0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/ | 
|  | 0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/ | 
|  | 0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/ | 
|  | 0x031cc023,	/* subu $24, $24, $28					*/ | 
|  | 0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/ | 
|  | 0x0018c082,	/* srl $24, $24, 2					*/ | 
|  | 0x2718fffe,	/* subu $24, $24, 2					*/ | 
|  | 0xf8190000	/* jalrc $25						*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in an N32 executable.  Different | 
|  | because gp ($28) is not available; we use t2 ($14) instead.  */ | 
|  | static const bfd_vma mips_n32_exec_plt0_entry[] = | 
|  | { | 
|  | 0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/ | 
|  | 0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/ | 
|  | 0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/ | 
|  | 0x030ec023,	/* subu $24, $24, $14					*/ | 
|  | 0x03e07825,	/* or t7, ra, zero					*/ | 
|  | 0x0018c082,	/* srl $24, $24, 2					*/ | 
|  | 0x0320f809,	/* jalr $25						*/ | 
|  | 0x2718fffe	/* subu $24, $24, 2					*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in an N32 executable using compact | 
|  | jumps.  Different because gp ($28) is not available; we use t2 ($14) | 
|  | instead.  */ | 
|  | static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] = | 
|  | { | 
|  | 0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/ | 
|  | 0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/ | 
|  | 0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/ | 
|  | 0x030ec023,	/* subu $24, $24, $14					*/ | 
|  | 0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/ | 
|  | 0x0018c082,	/* srl $24, $24, 2					*/ | 
|  | 0x2718fffe,	/* subu $24, $24, 2					*/ | 
|  | 0xf8190000	/* jalrc $25						*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in an N64 executable.  Different | 
|  | from N32 because of the increased size of GOT entries.  */ | 
|  | static const bfd_vma mips_n64_exec_plt0_entry[] = | 
|  | { | 
|  | 0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/ | 
|  | 0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/ | 
|  | 0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/ | 
|  | 0x030ec023,	/* subu $24, $24, $14					*/ | 
|  | 0x03e07825,	/* or t7, ra, zero					*/ | 
|  | 0x0018c0c2,	/* srl $24, $24, 3					*/ | 
|  | 0x0320f809,	/* jalr $25						*/ | 
|  | 0x2718fffe	/* subu $24, $24, 2					*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in an N64 executable using compact | 
|  | jumps.  Different from N32 because of the increased size of GOT | 
|  | entries.  */ | 
|  | static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] = | 
|  | { | 
|  | 0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/ | 
|  | 0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/ | 
|  | 0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/ | 
|  | 0x030ec023,	/* subu $24, $24, $14					*/ | 
|  | 0x03e0782d,	/* move $15, $31	# 64-bit move (daddu)		*/ | 
|  | 0x0018c0c2,	/* srl $24, $24, 3					*/ | 
|  | 0x2718fffe,	/* subu $24, $24, 2					*/ | 
|  | 0xf8190000	/* jalrc $25						*/ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* The format of the microMIPS first PLT entry in an O32 executable. | 
|  | We rely on v0 ($2) rather than t8 ($24) to contain the address | 
|  | of the GOTPLT entry handled, so this stub may only be used when | 
|  | all the subsequent PLT entries are microMIPS code too. | 
|  |  | 
|  | The trailing NOP is for alignment and correct disassembly only.  */ | 
|  | static const bfd_vma micromips_o32_exec_plt0_entry[] = | 
|  | { | 
|  | 0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/ | 
|  | 0xff23, 0x0000,	/* lw $25, 0($3)				*/ | 
|  | 0x0535,		/* subu $2, $2, $3				*/ | 
|  | 0x2525,		/* srl $2, $2, 2				*/ | 
|  | 0x3302, 0xfffe,	/* subu $24, $2, 2				*/ | 
|  | 0x0dff,		/* move $15, $31				*/ | 
|  | 0x45f9,		/* jalrs $25					*/ | 
|  | 0x0f83,		/* move $28, $3					*/ | 
|  | 0x0c00		/* nop						*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the microMIPS first PLT entry in an O32 executable | 
|  | in the insn32 mode.  */ | 
|  | static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = | 
|  | { | 
|  | 0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/ | 
|  | 0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/ | 
|  | 0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/ | 
|  | 0x0398, 0xc1d0,	/* subu $24, $24, $28				*/ | 
|  | 0x001f, 0x7a90,	/* or $15, $31, zero				*/ | 
|  | 0x0318, 0x1040,	/* srl $24, $24, 2				*/ | 
|  | 0x03f9, 0x0f3c,	/* jalr $25					*/ | 
|  | 0x3318, 0xfffe	/* subu $24, $24, 2				*/ | 
|  | }; | 
|  |  | 
|  | /* The format of subsequent standard PLT entries.  */ | 
|  | static const bfd_vma mips_exec_plt_entry[] = | 
|  | { | 
|  | 0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/ | 
|  | 0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/ | 
|  | 0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/ | 
|  | 0x03200008	/* jr $25					*/ | 
|  | }; | 
|  |  | 
|  | static const bfd_vma mipsr6_exec_plt_entry[] = | 
|  | { | 
|  | 0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/ | 
|  | 0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/ | 
|  | 0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/ | 
|  | 0x03200009	/* jr $25					*/ | 
|  | }; | 
|  |  | 
|  | static const bfd_vma mipsr6_exec_plt_entry_compact[] = | 
|  | { | 
|  | 0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/ | 
|  | 0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/ | 
|  | 0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/ | 
|  | 0xd8190000	/* jic $25, 0					*/ | 
|  | }; | 
|  |  | 
|  | /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2) | 
|  | and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not | 
|  | directly addressable.  */ | 
|  | static const bfd_vma mips16_o32_exec_plt_entry[] = | 
|  | { | 
|  | 0xb203,		/* lw $2, 12($pc)			*/ | 
|  | 0x9a60,		/* lw $3, 0($2)				*/ | 
|  | 0x651a,		/* move $24, $2				*/ | 
|  | 0xeb00,		/* jr $3				*/ | 
|  | 0x653b,		/* move $25, $3				*/ | 
|  | 0x6500,		/* nop					*/ | 
|  | 0x0000, 0x0000	/* .word (.got.plt entry)		*/ | 
|  | }; | 
|  |  | 
|  | /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2) | 
|  | as a temporary because t8 ($24) is not addressable with ADDIUPC.  */ | 
|  | static const bfd_vma micromips_o32_exec_plt_entry[] = | 
|  | { | 
|  | 0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/ | 
|  | 0xff22, 0x0000,	/* lw $25, 0($2)			*/ | 
|  | 0x4599,		/* jr $25				*/ | 
|  | 0x0f02		/* move $24, $2				*/ | 
|  | }; | 
|  |  | 
|  | /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */ | 
|  | static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = | 
|  | { | 
|  | 0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/ | 
|  | 0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/ | 
|  | 0x0019, 0x0f3c,	/* jr $25				*/ | 
|  | 0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in a VxWorks executable.  */ | 
|  | static const bfd_vma mips_vxworks_exec_plt0_entry[] = | 
|  | { | 
|  | 0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/ | 
|  | 0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/ | 
|  | 0x8f390008,	/* lw t9, 8(t9)					*/ | 
|  | 0x00000000,	/* nop						*/ | 
|  | 0x03200008,	/* jr t9					*/ | 
|  | 0x00000000	/* nop						*/ | 
|  | }; | 
|  |  | 
|  | /* The format of subsequent PLT entries.  */ | 
|  | static const bfd_vma mips_vxworks_exec_plt_entry[] = | 
|  | { | 
|  | 0x10000000,	/* b .PLT_resolver			*/ | 
|  | 0x24180000,	/* li t8, <pltindex>			*/ | 
|  | 0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/ | 
|  | 0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/ | 
|  | 0x8f390000,	/* lw t9, 0(t9)				*/ | 
|  | 0x00000000,	/* nop					*/ | 
|  | 0x03200008,	/* jr t9				*/ | 
|  | 0x00000000	/* nop					*/ | 
|  | }; | 
|  |  | 
|  | /* The format of the first PLT entry in a VxWorks shared object.  */ | 
|  | static const bfd_vma mips_vxworks_shared_plt0_entry[] = | 
|  | { | 
|  | 0x8f990008,	/* lw t9, 8(gp)		*/ | 
|  | 0x00000000,	/* nop			*/ | 
|  | 0x03200008,	/* jr t9		*/ | 
|  | 0x00000000,	/* nop			*/ | 
|  | 0x00000000,	/* nop			*/ | 
|  | 0x00000000	/* nop			*/ | 
|  | }; | 
|  |  | 
|  | /* The format of subsequent PLT entries.  */ | 
|  | static const bfd_vma mips_vxworks_shared_plt_entry[] = | 
|  | { | 
|  | 0x10000000,	/* b .PLT_resolver	*/ | 
|  | 0x24180000	/* li t8, <pltindex>	*/ | 
|  | }; | 
|  |  | 
|  | /* microMIPS 32-bit opcode helper installer.  */ | 
|  |  | 
|  | static void | 
|  | bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) | 
|  | { | 
|  | bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); | 
|  | bfd_put_16 (abfd,  opcode	   & 0xffff, ptr + 2); | 
|  | } | 
|  |  | 
|  | /* microMIPS 32-bit opcode helper retriever.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) | 
|  | { | 
|  | return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); | 
|  | } | 
|  |  | 
|  | /* Look up an entry in a MIPS ELF linker hash table.  */ | 
|  |  | 
|  | #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\ | 
|  | ((struct mips_elf_link_hash_entry *)					\ | 
|  | elf_link_hash_lookup (&(table)->root, (string), (create),		\ | 
|  | (copy), (follow))) | 
|  |  | 
|  | /* Traverse a MIPS ELF linker hash table.  */ | 
|  |  | 
|  | #define mips_elf_link_hash_traverse(table, func, info)			\ | 
|  | (elf_link_hash_traverse						\ | 
|  | (&(table)->root,							\ | 
|  | (bool (*) (struct elf_link_hash_entry *, void *)) (func),		\ | 
|  | (info))) | 
|  |  | 
|  | /* Find the base offsets for thread-local storage in this object, | 
|  | for GD/LD and IE/LE respectively.  */ | 
|  |  | 
|  | #define TP_OFFSET 0x7000 | 
|  | #define DTP_OFFSET 0x8000 | 
|  |  | 
|  | static bfd_vma | 
|  | dtprel_base (struct bfd_link_info *info) | 
|  | { | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (elf_hash_table (info)->tls_sec == NULL) | 
|  | return 0; | 
|  | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | 
|  | } | 
|  |  | 
|  | static bfd_vma | 
|  | tprel_base (struct bfd_link_info *info) | 
|  | { | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (elf_hash_table (info)->tls_sec == NULL) | 
|  | return 0; | 
|  | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | 
|  | } | 
|  |  | 
|  | /* Create an entry in a MIPS ELF linker hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, | 
|  | struct bfd_hash_table *table, const char *string) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *ret = | 
|  | (struct mips_elf_link_hash_entry *) entry; | 
|  |  | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (ret == NULL) | 
|  | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | 
|  | if (ret == NULL) | 
|  | return (struct bfd_hash_entry *) ret; | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | ret = ((struct mips_elf_link_hash_entry *) | 
|  | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | 
|  | table, string)); | 
|  | if (ret != NULL) | 
|  | { | 
|  | /* Set local fields.  */ | 
|  | memset (&ret->esym, 0, sizeof (EXTR)); | 
|  | /* We use -2 as a marker to indicate that the information has | 
|  | not been set.  -1 means there is no associated ifd.  */ | 
|  | ret->esym.ifd = -2; | 
|  | ret->la25_stub = 0; | 
|  | ret->possibly_dynamic_relocs = 0; | 
|  | ret->fn_stub = NULL; | 
|  | ret->call_stub = NULL; | 
|  | ret->call_fp_stub = NULL; | 
|  | ret->mipsxhash_loc = 0; | 
|  | ret->global_got_area = GGA_NONE; | 
|  | ret->got_only_for_calls = true; | 
|  | ret->readonly_reloc = false; | 
|  | ret->has_static_relocs = false; | 
|  | ret->no_fn_stub = false; | 
|  | ret->need_fn_stub = false; | 
|  | ret->has_nonpic_branches = false; | 
|  | ret->needs_lazy_stub = false; | 
|  | ret->use_plt_entry = false; | 
|  | } | 
|  |  | 
|  | return (struct bfd_hash_entry *) ret; | 
|  | } | 
|  |  | 
|  | /* Allocate MIPS ELF private object data.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_mkobject (bfd *abfd) | 
|  | { | 
|  | return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), | 
|  | MIPS_ELF_DATA); | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) | 
|  | { | 
|  | if (!sec->used_by_bfd) | 
|  | { | 
|  | struct _mips_elf_section_data *sdata; | 
|  | size_t amt = sizeof (*sdata); | 
|  |  | 
|  | sdata = bfd_zalloc (abfd, amt); | 
|  | if (sdata == NULL) | 
|  | return false; | 
|  | sec->used_by_bfd = sdata; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_new_section_hook (abfd, sec); | 
|  | } | 
|  |  | 
|  | /* Read ECOFF debugging information from a .mdebug section into a | 
|  | ecoff_debug_info structure.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, | 
|  | struct ecoff_debug_info *debug) | 
|  | { | 
|  | HDRR *symhdr; | 
|  | const struct ecoff_debug_swap *swap; | 
|  | char *ext_hdr; | 
|  |  | 
|  | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | 
|  | memset (debug, 0, sizeof (*debug)); | 
|  |  | 
|  | ext_hdr = bfd_malloc (swap->external_hdr_size); | 
|  | if (ext_hdr == NULL && swap->external_hdr_size != 0) | 
|  | goto error_return; | 
|  |  | 
|  | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, | 
|  | swap->external_hdr_size)) | 
|  | goto error_return; | 
|  |  | 
|  | symhdr = &debug->symbolic_header; | 
|  | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | 
|  |  | 
|  | /* The symbolic header contains absolute file offsets and sizes to | 
|  | read.  */ | 
|  | #define READ(ptr, offset, count, size, type)				\ | 
|  | do									\ | 
|  | {									\ | 
|  | size_t amt;							\ | 
|  | debug->ptr = NULL;						\ | 
|  | if (symhdr->count == 0)						\ | 
|  | break;								\ | 
|  | if (_bfd_mul_overflow (size, symhdr->count, &amt))		\ | 
|  | {								\ | 
|  | bfd_set_error (bfd_error_file_too_big);			\ | 
|  | goto error_return;						\ | 
|  | }								\ | 
|  | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0)		\ | 
|  | goto error_return;						\ | 
|  | debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt);	\ | 
|  | if (debug->ptr == NULL)						\ | 
|  | goto error_return;						\ | 
|  | } while (0) | 
|  |  | 
|  | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | 
|  | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); | 
|  | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | 
|  | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | 
|  | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | 
|  | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), | 
|  | union aux_ext *); | 
|  | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | 
|  | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | 
|  | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); | 
|  | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | 
|  | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | 
|  | #undef READ | 
|  |  | 
|  | debug->fdr = NULL; | 
|  |  | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | free (ext_hdr); | 
|  | free (debug->line); | 
|  | free (debug->external_dnr); | 
|  | free (debug->external_pdr); | 
|  | free (debug->external_sym); | 
|  | free (debug->external_opt); | 
|  | free (debug->external_aux); | 
|  | free (debug->ss); | 
|  | free (debug->ssext); | 
|  | free (debug->external_fdr); | 
|  | free (debug->external_rfd); | 
|  | free (debug->external_ext); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Swap RPDR (runtime procedure table entry) for output.  */ | 
|  |  | 
|  | static void | 
|  | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) | 
|  | { | 
|  | H_PUT_S32 (abfd, in->adr, ex->p_adr); | 
|  | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | 
|  | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | 
|  | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | 
|  | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | 
|  | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | 
|  |  | 
|  | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | 
|  | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | 
|  |  | 
|  | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | 
|  | } | 
|  |  | 
|  | /* Create a runtime procedure table from the .mdebug section.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_create_procedure_table (void *handle, bfd *abfd, | 
|  | struct bfd_link_info *info, asection *s, | 
|  | struct ecoff_debug_info *debug) | 
|  | { | 
|  | const struct ecoff_debug_swap *swap; | 
|  | HDRR *hdr = &debug->symbolic_header; | 
|  | RPDR *rpdr, *rp; | 
|  | struct rpdr_ext *erp; | 
|  | void *rtproc; | 
|  | struct pdr_ext *epdr; | 
|  | struct sym_ext *esym; | 
|  | char *ss, **sv; | 
|  | char *str; | 
|  | bfd_size_type size; | 
|  | bfd_size_type count; | 
|  | unsigned long sindex; | 
|  | unsigned long i; | 
|  | PDR pdr; | 
|  | SYMR sym; | 
|  | const char *no_name_func = _("static procedure (no name)"); | 
|  |  | 
|  | epdr = NULL; | 
|  | rpdr = NULL; | 
|  | esym = NULL; | 
|  | ss = NULL; | 
|  | sv = NULL; | 
|  |  | 
|  | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | 
|  |  | 
|  | sindex = strlen (no_name_func) + 1; | 
|  | count = hdr->ipdMax; | 
|  | if (count > 0) | 
|  | { | 
|  | size = swap->external_pdr_size; | 
|  |  | 
|  | epdr = bfd_malloc (size * count); | 
|  | if (epdr == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) | 
|  | goto error_return; | 
|  |  | 
|  | size = sizeof (RPDR); | 
|  | rp = rpdr = bfd_malloc (size * count); | 
|  | if (rpdr == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | size = sizeof (char *); | 
|  | sv = bfd_malloc (size * count); | 
|  | if (sv == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | count = hdr->isymMax; | 
|  | size = swap->external_sym_size; | 
|  | esym = bfd_malloc (size * count); | 
|  | if (esym == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) | 
|  | goto error_return; | 
|  |  | 
|  | count = hdr->issMax; | 
|  | ss = bfd_malloc (count); | 
|  | if (ss == NULL) | 
|  | goto error_return; | 
|  | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) | 
|  | goto error_return; | 
|  |  | 
|  | count = hdr->ipdMax; | 
|  | for (i = 0; i < (unsigned long) count; i++, rp++) | 
|  | { | 
|  | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); | 
|  | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | 
|  | rp->adr = sym.value; | 
|  | rp->regmask = pdr.regmask; | 
|  | rp->regoffset = pdr.regoffset; | 
|  | rp->fregmask = pdr.fregmask; | 
|  | rp->fregoffset = pdr.fregoffset; | 
|  | rp->frameoffset = pdr.frameoffset; | 
|  | rp->framereg = pdr.framereg; | 
|  | rp->pcreg = pdr.pcreg; | 
|  | rp->irpss = sindex; | 
|  | sv[i] = ss + sym.iss; | 
|  | sindex += strlen (sv[i]) + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | 
|  | size = BFD_ALIGN (size, 16); | 
|  | rtproc = bfd_alloc (abfd, size); | 
|  | if (rtproc == NULL) | 
|  | { | 
|  | mips_elf_hash_table (info)->procedure_count = 0; | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | mips_elf_hash_table (info)->procedure_count = count + 2; | 
|  |  | 
|  | erp = rtproc; | 
|  | memset (erp, 0, sizeof (struct rpdr_ext)); | 
|  | erp++; | 
|  | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | 
|  | strcpy (str, no_name_func); | 
|  | str += strlen (no_name_func) + 1; | 
|  | for (i = 0; i < count; i++) | 
|  | { | 
|  | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | 
|  | strcpy (str, sv[i]); | 
|  | str += strlen (sv[i]) + 1; | 
|  | } | 
|  | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | 
|  |  | 
|  | /* Set the size and contents of .rtproc section.  */ | 
|  | s->size = size; | 
|  | s->contents = rtproc; | 
|  |  | 
|  | /* Skip this section later on (I don't think this currently | 
|  | matters, but someday it might).  */ | 
|  | s->map_head.link_order = NULL; | 
|  |  | 
|  | free (epdr); | 
|  | free (rpdr); | 
|  | free (esym); | 
|  | free (ss); | 
|  | free (sv); | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | free (epdr); | 
|  | free (rpdr); | 
|  | free (esym); | 
|  | free (ss); | 
|  | free (sv); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We're going to create a stub for H.  Create a symbol for the stub's | 
|  | value and size, to help make the disassembly easier to read.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_create_stub_symbol (struct bfd_link_info *info, | 
|  | struct mips_elf_link_hash_entry *h, | 
|  | const char *prefix, asection *s, bfd_vma value, | 
|  | bfd_vma size) | 
|  | { | 
|  | bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other); | 
|  | struct bfd_link_hash_entry *bh; | 
|  | struct elf_link_hash_entry *elfh; | 
|  | char *name; | 
|  | bool res; | 
|  |  | 
|  | if (micromips_p) | 
|  | value |= 1; | 
|  |  | 
|  | /* Create a new symbol.  */ | 
|  | name = concat (prefix, h->root.root.root.string, NULL); | 
|  | bh = NULL; | 
|  | res = _bfd_generic_link_add_one_symbol (info, s->owner, name, | 
|  | BSF_LOCAL, s, value, NULL, | 
|  | true, false, &bh); | 
|  | free (name); | 
|  | if (! res) | 
|  | return false; | 
|  |  | 
|  | /* Make it a local function.  */ | 
|  | elfh = (struct elf_link_hash_entry *) bh; | 
|  | elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); | 
|  | elfh->size = size; | 
|  | elfh->forced_local = 1; | 
|  | if (micromips_p) | 
|  | elfh->other = ELF_ST_SET_MICROMIPS (elfh->other); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* We're about to redefine H.  Create a symbol to represent H's | 
|  | current value and size, to help make the disassembly easier | 
|  | to read.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_create_shadow_symbol (struct bfd_link_info *info, | 
|  | struct mips_elf_link_hash_entry *h, | 
|  | const char *prefix) | 
|  | { | 
|  | struct bfd_link_hash_entry *bh; | 
|  | struct elf_link_hash_entry *elfh; | 
|  | char *name; | 
|  | asection *s; | 
|  | bfd_vma value; | 
|  | bool res; | 
|  |  | 
|  | /* Read the symbol's value.  */ | 
|  | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak); | 
|  | s = h->root.root.u.def.section; | 
|  | value = h->root.root.u.def.value; | 
|  |  | 
|  | /* Create a new symbol.  */ | 
|  | name = concat (prefix, h->root.root.root.string, NULL); | 
|  | bh = NULL; | 
|  | res = _bfd_generic_link_add_one_symbol (info, s->owner, name, | 
|  | BSF_LOCAL, s, value, NULL, | 
|  | true, false, &bh); | 
|  | free (name); | 
|  | if (! res) | 
|  | return false; | 
|  |  | 
|  | /* Make it local and copy the other attributes from H.  */ | 
|  | elfh = (struct elf_link_hash_entry *) bh; | 
|  | elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); | 
|  | elfh->other = h->root.other; | 
|  | elfh->size = h->root.size; | 
|  | elfh->forced_local = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 | 
|  | function rather than to a hard-float stub.  */ | 
|  |  | 
|  | static bool | 
|  | section_allows_mips16_refs_p (asection *section) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | name = bfd_section_name (section); | 
|  | return (FN_STUB_P (name) | 
|  | || CALL_STUB_P (name) | 
|  | || CALL_FP_STUB_P (name) | 
|  | || strcmp (name, ".pdr") == 0); | 
|  | } | 
|  |  | 
|  | /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 | 
|  | stub section of some kind.  Return the R_SYMNDX of the target | 
|  | function, or 0 if we can't decide which function that is.  */ | 
|  |  | 
|  | static unsigned long | 
|  | mips16_stub_symndx (const struct elf_backend_data *bed, | 
|  | asection *sec ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Rela *relocs, | 
|  | const Elf_Internal_Rela *relend) | 
|  | { | 
|  | int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; | 
|  | const Elf_Internal_Rela *rel; | 
|  |  | 
|  | /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent | 
|  | one in a compound relocation.  */ | 
|  | for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) | 
|  | if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) | 
|  | return ELF_R_SYM (sec->owner, rel->r_info); | 
|  |  | 
|  | /* Otherwise trust the first relocation, whatever its kind.  This is | 
|  | the traditional behavior.  */ | 
|  | if (relocs < relend) | 
|  | return ELF_R_SYM (sec->owner, relocs->r_info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check the mips16 stubs for a particular symbol, and see if we can | 
|  | discard them.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_check_mips16_stubs (struct bfd_link_info *info, | 
|  | struct mips_elf_link_hash_entry *h) | 
|  | { | 
|  | /* Dynamic symbols must use the standard call interface, in case other | 
|  | objects try to call them.  */ | 
|  | if (h->fn_stub != NULL | 
|  | && h->root.dynindx != -1) | 
|  | { | 
|  | mips_elf_create_shadow_symbol (info, h, ".mips16."); | 
|  | h->need_fn_stub = true; | 
|  | } | 
|  |  | 
|  | if (h->fn_stub != NULL | 
|  | && ! h->need_fn_stub) | 
|  | { | 
|  | /* We don't need the fn_stub; the only references to this symbol | 
|  | are 16 bit calls.  Clobber the size to 0 to prevent it from | 
|  | being included in the link.  */ | 
|  | h->fn_stub->size = 0; | 
|  | h->fn_stub->flags &= ~SEC_RELOC; | 
|  | h->fn_stub->reloc_count = 0; | 
|  | h->fn_stub->flags |= SEC_EXCLUDE; | 
|  | h->fn_stub->output_section = bfd_abs_section_ptr; | 
|  | } | 
|  |  | 
|  | if (h->call_stub != NULL | 
|  | && ELF_ST_IS_MIPS16 (h->root.other)) | 
|  | { | 
|  | /* We don't need the call_stub; this is a 16 bit function, so | 
|  | calls from other 16 bit functions are OK.  Clobber the size | 
|  | to 0 to prevent it from being included in the link.  */ | 
|  | h->call_stub->size = 0; | 
|  | h->call_stub->flags &= ~SEC_RELOC; | 
|  | h->call_stub->reloc_count = 0; | 
|  | h->call_stub->flags |= SEC_EXCLUDE; | 
|  | h->call_stub->output_section = bfd_abs_section_ptr; | 
|  | } | 
|  |  | 
|  | if (h->call_fp_stub != NULL | 
|  | && ELF_ST_IS_MIPS16 (h->root.other)) | 
|  | { | 
|  | /* We don't need the call_stub; this is a 16 bit function, so | 
|  | calls from other 16 bit functions are OK.  Clobber the size | 
|  | to 0 to prevent it from being included in the link.  */ | 
|  | h->call_fp_stub->size = 0; | 
|  | h->call_fp_stub->flags &= ~SEC_RELOC; | 
|  | h->call_fp_stub->reloc_count = 0; | 
|  | h->call_fp_stub->flags |= SEC_EXCLUDE; | 
|  | h->call_fp_stub->output_section = bfd_abs_section_ptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Hashtable callbacks for mips_elf_la25_stubs.  */ | 
|  |  | 
|  | static hashval_t | 
|  | mips_elf_la25_stub_hash (const void *entry_) | 
|  | { | 
|  | const struct mips_elf_la25_stub *entry; | 
|  |  | 
|  | entry = (struct mips_elf_la25_stub *) entry_; | 
|  | return entry->h->root.root.u.def.section->id | 
|  | + entry->h->root.root.u.def.value; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) | 
|  | { | 
|  | const struct mips_elf_la25_stub *entry1, *entry2; | 
|  |  | 
|  | entry1 = (struct mips_elf_la25_stub *) entry1_; | 
|  | entry2 = (struct mips_elf_la25_stub *) entry2_; | 
|  | return ((entry1->h->root.root.u.def.section | 
|  | == entry2->h->root.root.u.def.section) | 
|  | && (entry1->h->root.root.u.def.value | 
|  | == entry2->h->root.root.u.def.value)); | 
|  | } | 
|  |  | 
|  | /* Called by the linker to set up the la25 stub-creation code.  FN is | 
|  | the linker's implementation of add_stub_function.  Return true on | 
|  | success.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_init_stubs (struct bfd_link_info *info, | 
|  | asection *(*fn) (const char *, asection *, | 
|  | asection *)) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | htab->add_stub_section = fn; | 
|  | htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, | 
|  | mips_elf_la25_stub_eq, NULL); | 
|  | if (htab->la25_stubs == NULL) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if H is a locally-defined PIC function, in the sense | 
|  | that it or its fn_stub might need $25 to be valid on entry. | 
|  | Note that MIPS16 functions set up $gp using PC-relative instructions, | 
|  | so they themselves never need $25 to be valid.  Only non-MIPS16 | 
|  | entry points are of interest here.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) | 
|  | { | 
|  | return ((h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak) | 
|  | && h->root.def_regular | 
|  | && !bfd_is_abs_section (h->root.root.u.def.section) | 
|  | && !bfd_is_und_section (h->root.root.u.def.section) | 
|  | && (!ELF_ST_IS_MIPS16 (h->root.other) | 
|  | || (h->fn_stub && h->need_fn_stub)) | 
|  | && (PIC_OBJECT_P (h->root.root.u.def.section->owner) | 
|  | || ELF_ST_IS_MIPS_PIC (h->root.other))); | 
|  | } | 
|  |  | 
|  | /* Set *SEC to the input section that contains the target of STUB. | 
|  | Return the offset of the target from the start of that section.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, | 
|  | asection **sec) | 
|  | { | 
|  | if (ELF_ST_IS_MIPS16 (stub->h->root.other)) | 
|  | { | 
|  | BFD_ASSERT (stub->h->need_fn_stub); | 
|  | *sec = stub->h->fn_stub; | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | *sec = stub->h->root.root.u.def.section; | 
|  | return stub->h->root.root.u.def.value; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* STUB describes an la25 stub that we have decided to implement | 
|  | by inserting an LUI/ADDIU pair before the target function. | 
|  | Create the section and redirect the function symbol to it.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | char *name; | 
|  | asection *s, *input_section; | 
|  | unsigned int align; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Create a unique name for the new section.  */ | 
|  | name = bfd_malloc (11 + sizeof (".text.stub.")); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); | 
|  |  | 
|  | /* Create the section.  */ | 
|  | mips_elf_get_la25_target (stub, &input_section); | 
|  | s = htab->add_stub_section (name, input_section, | 
|  | input_section->output_section); | 
|  | if (s == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Make sure that any padding goes before the stub.  */ | 
|  | align = input_section->alignment_power; | 
|  | if (!bfd_set_section_alignment (s, align)) | 
|  | return false; | 
|  | if (align > 3) | 
|  | s->size = (1 << align) - 8; | 
|  |  | 
|  | /* Create a symbol for the stub.  */ | 
|  | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); | 
|  | stub->stub_section = s; | 
|  | stub->offset = s->size; | 
|  |  | 
|  | /* Allocate room for it.  */ | 
|  | s->size += 8; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* STUB describes an la25 stub that we have decided to implement | 
|  | with a separate trampoline.  Allocate room for it and redirect | 
|  | the function symbol to it.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | asection *s; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Create a trampoline section, if we haven't already.  */ | 
|  | s = htab->strampoline; | 
|  | if (s == NULL) | 
|  | { | 
|  | asection *input_section = stub->h->root.root.u.def.section; | 
|  | s = htab->add_stub_section (".text", NULL, | 
|  | input_section->output_section); | 
|  | if (s == NULL || !bfd_set_section_alignment (s, 4)) | 
|  | return false; | 
|  | htab->strampoline = s; | 
|  | } | 
|  |  | 
|  | /* Create a symbol for the stub.  */ | 
|  | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); | 
|  | stub->stub_section = s; | 
|  | stub->offset = s->size; | 
|  |  | 
|  | /* Allocate room for it.  */ | 
|  | s->size += 16; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* H describes a symbol that needs an la25 stub.  Make sure that an | 
|  | appropriate stub exists and point H at it.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_add_la25_stub (struct bfd_link_info *info, | 
|  | struct mips_elf_link_hash_entry *h) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_la25_stub search, *stub; | 
|  | bool use_trampoline_p; | 
|  | asection *s; | 
|  | bfd_vma value; | 
|  | void **slot; | 
|  |  | 
|  | /* Describe the stub we want.  */ | 
|  | search.stub_section = NULL; | 
|  | search.offset = 0; | 
|  | search.h = h; | 
|  |  | 
|  | /* See if we've already created an equivalent stub.  */ | 
|  | htab = mips_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | slot = htab_find_slot (htab->la25_stubs, &search, INSERT); | 
|  | if (slot == NULL) | 
|  | return false; | 
|  |  | 
|  | stub = (struct mips_elf_la25_stub *) *slot; | 
|  | if (stub != NULL) | 
|  | { | 
|  | /* We can reuse the existing stub.  */ | 
|  | h->la25_stub = stub; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create a permanent copy of ENTRY and add it to the hash table.  */ | 
|  | stub = bfd_malloc (sizeof (search)); | 
|  | if (stub == NULL) | 
|  | return false; | 
|  | *stub = search; | 
|  | *slot = stub; | 
|  |  | 
|  | /* Prefer to use LUI/ADDIU stubs if the function is at the beginning | 
|  | of the section and if we would need no more than 2 nops.  */ | 
|  | value = mips_elf_get_la25_target (stub, &s); | 
|  | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) | 
|  | value &= ~1; | 
|  | use_trampoline_p = (value != 0 || s->alignment_power > 4); | 
|  |  | 
|  | h->la25_stub = stub; | 
|  | return (use_trampoline_p | 
|  | ? mips_elf_add_la25_trampoline (stub, info) | 
|  | : mips_elf_add_la25_intro (stub, info)); | 
|  | } | 
|  |  | 
|  | /* A mips_elf_link_hash_traverse callback that is called before sizing | 
|  | sections.  DATA points to a mips_htab_traverse_info structure.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) | 
|  | { | 
|  | struct mips_htab_traverse_info *hti; | 
|  |  | 
|  | hti = (struct mips_htab_traverse_info *) data; | 
|  | if (!bfd_link_relocatable (hti->info)) | 
|  | mips_elf_check_mips16_stubs (hti->info, h); | 
|  |  | 
|  | if (mips_elf_local_pic_function_p (h)) | 
|  | { | 
|  | /* PR 12845: If H is in a section that has been garbage | 
|  | collected it will have its output section set to *ABS*.  */ | 
|  | if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) | 
|  | return true; | 
|  |  | 
|  | /* H is a function that might need $25 to be valid on entry. | 
|  | If we're creating a non-PIC relocatable object, mark H as | 
|  | being PIC.  If we're creating a non-relocatable object with | 
|  | non-PIC branches and jumps to H, make sure that H has an la25 | 
|  | stub.  */ | 
|  | if (bfd_link_relocatable (hti->info)) | 
|  | { | 
|  | if (!PIC_OBJECT_P (hti->output_bfd)) | 
|  | h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); | 
|  | } | 
|  | else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) | 
|  | { | 
|  | hti->error = true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. | 
|  | Most mips16 instructions are 16 bits, but these instructions | 
|  | are 32 bits. | 
|  |  | 
|  | The format of these instructions is: | 
|  |  | 
|  | +--------------+--------------------------------+ | 
|  | |     JALX     | X|   Imm 20:16  |   Imm 25:21  | | 
|  | +--------------+--------------------------------+ | 
|  | |		    Immediate  15:0		   | | 
|  | +-----------------------------------------------+ | 
|  |  | 
|  | JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx. | 
|  | Note that the immediate value in the first word is swapped. | 
|  |  | 
|  | When producing a relocatable object file, R_MIPS16_26 is | 
|  | handled mostly like R_MIPS_26.  In particular, the addend is | 
|  | stored as a straight 26-bit value in a 32-bit instruction. | 
|  | (gas makes life simpler for itself by never adjusting a | 
|  | R_MIPS16_26 reloc to be against a section, so the addend is | 
|  | always zero).  However, the 32 bit instruction is stored as 2 | 
|  | 16-bit values, rather than a single 32-bit value.  In a | 
|  | big-endian file, the result is the same; in a little-endian | 
|  | file, the two 16-bit halves of the 32 bit value are swapped. | 
|  | This is so that a disassembler can recognize the jal | 
|  | instruction. | 
|  |  | 
|  | When doing a final link, R_MIPS16_26 is treated as a 32 bit | 
|  | instruction stored as two 16-bit values.  The addend A is the | 
|  | contents of the targ26 field.  The calculation is the same as | 
|  | R_MIPS_26.  When storing the calculated value, reorder the | 
|  | immediate value as shown above, and don't forget to store the | 
|  | value as two 16-bit values. | 
|  |  | 
|  | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | 
|  | defined as | 
|  |  | 
|  | big-endian: | 
|  | +--------+----------------------+ | 
|  | |	    |			   | | 
|  | |	    |	 targ26-16	   | | 
|  | |31	  26|25			  0| | 
|  | +--------+----------------------+ | 
|  |  | 
|  | little-endian: | 
|  | +----------+------+-------------+ | 
|  | |	      |	     |		   | | 
|  | |  sub1    |	     |	   sub2	   | | 
|  | |0	     9|10  15|16	 31| | 
|  | +----------+--------------------+ | 
|  | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | 
|  | ((sub1 << 16) | sub2)). | 
|  |  | 
|  | When producing a relocatable object file, the calculation is | 
|  | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | 
|  | When producing a fully linked file, the calculation is | 
|  | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | 
|  | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | 
|  |  | 
|  | The table below lists the other MIPS16 instruction relocations. | 
|  | Each one is calculated in the same way as the non-MIPS16 relocation | 
|  | given on the right, but using the extended MIPS16 layout of 16-bit | 
|  | immediate fields: | 
|  |  | 
|  | R_MIPS16_GPREL		R_MIPS_GPREL16 | 
|  | R_MIPS16_GOT16		R_MIPS_GOT16 | 
|  | R_MIPS16_CALL16		R_MIPS_CALL16 | 
|  | R_MIPS16_HI16		R_MIPS_HI16 | 
|  | R_MIPS16_LO16		R_MIPS_LO16 | 
|  |  | 
|  | A typical instruction will have a format like this: | 
|  |  | 
|  | +--------------+--------------------------------+ | 
|  | |    EXTEND    |     Imm 10:5    |   Imm 15:11  | | 
|  | +--------------+--------------------------------+ | 
|  | |    Major     |   rx   |   ry   |   Imm  4:0   | | 
|  | +--------------+--------------------------------+ | 
|  |  | 
|  | EXTEND is the five bit value 11110.  Major is the instruction | 
|  | opcode. | 
|  |  | 
|  | All we need to do here is shuffle the bits appropriately. | 
|  | As above, the two 16-bit halves must be swapped on a | 
|  | little-endian system. | 
|  |  | 
|  | Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the | 
|  | relocatable field is shifted by 1 rather than 2 and the same bit | 
|  | shuffling is done as with the relocations above.  */ | 
|  |  | 
|  | static inline bool | 
|  | mips16_reloc_p (int r_type) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS16_26: | 
|  | case R_MIPS16_GPREL: | 
|  | case R_MIPS16_GOT16: | 
|  | case R_MIPS16_CALL16: | 
|  | case R_MIPS16_HI16: | 
|  | case R_MIPS16_LO16: | 
|  | case R_MIPS16_TLS_GD: | 
|  | case R_MIPS16_TLS_LDM: | 
|  | case R_MIPS16_TLS_DTPREL_HI16: | 
|  | case R_MIPS16_TLS_DTPREL_LO16: | 
|  | case R_MIPS16_TLS_GOTTPREL: | 
|  | case R_MIPS16_TLS_TPREL_HI16: | 
|  | case R_MIPS16_TLS_TPREL_LO16: | 
|  | case R_MIPS16_PC16_S1: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if a microMIPS reloc.  */ | 
|  |  | 
|  | static inline bool | 
|  | micromips_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; | 
|  | } | 
|  |  | 
|  | /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped | 
|  | on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1 | 
|  | and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */ | 
|  |  | 
|  | static inline bool | 
|  | micromips_reloc_shuffle_p (unsigned int r_type) | 
|  | { | 
|  | return (micromips_reloc_p (r_type) | 
|  | && r_type != R_MICROMIPS_PC7_S1 | 
|  | && r_type != R_MICROMIPS_PC10_S1); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | got16_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_GOT16 | 
|  | || r_type == R_MIPS16_GOT16 | 
|  | || r_type == R_MICROMIPS_GOT16); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | call16_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_CALL16 | 
|  | || r_type == R_MIPS16_CALL16 | 
|  | || r_type == R_MICROMIPS_CALL16); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | got_disp_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | got_page_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | got_lo16_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | call_hi16_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | call_lo16_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | hi16_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_HI16 | 
|  | || r_type == R_MIPS16_HI16 | 
|  | || r_type == R_MICROMIPS_HI16 | 
|  | || r_type == R_MIPS_PCHI16); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | lo16_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_LO16 | 
|  | || r_type == R_MIPS16_LO16 | 
|  | || r_type == R_MICROMIPS_LO16 | 
|  | || r_type == R_MIPS_PCLO16); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | mips16_call_reloc_p (int r_type) | 
|  | { | 
|  | return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | jal_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_26 | 
|  | || r_type == R_MIPS16_26 | 
|  | || r_type == R_MICROMIPS_26_S1); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | b_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_PC26_S2 | 
|  | || r_type == R_MIPS_PC21_S2 | 
|  | || r_type == R_MIPS_PC16 | 
|  | || r_type == R_MIPS_GNU_REL16_S2 | 
|  | || r_type == R_MIPS16_PC16_S1 | 
|  | || r_type == R_MICROMIPS_PC16_S1 | 
|  | || r_type == R_MICROMIPS_PC10_S1 | 
|  | || r_type == R_MICROMIPS_PC7_S1); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | aligned_pcrel_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_PC18_S3 | 
|  | || r_type == R_MIPS_PC19_S2); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | branch_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_26 | 
|  | || r_type == R_MIPS_PC26_S2 | 
|  | || r_type == R_MIPS_PC21_S2 | 
|  | || r_type == R_MIPS_PC16 | 
|  | || r_type == R_MIPS_GNU_REL16_S2); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | mips16_branch_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS16_26 | 
|  | || r_type == R_MIPS16_PC16_S1); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | micromips_branch_reloc_p (int r_type) | 
|  | { | 
|  | return (r_type == R_MICROMIPS_26_S1 | 
|  | || r_type == R_MICROMIPS_PC16_S1 | 
|  | || r_type == R_MICROMIPS_PC10_S1 | 
|  | || r_type == R_MICROMIPS_PC7_S1); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | tls_gd_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_TLS_GD | 
|  | || r_type == R_MIPS16_TLS_GD | 
|  | || r_type == R_MICROMIPS_TLS_GD); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | tls_ldm_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_TLS_LDM | 
|  | || r_type == R_MIPS16_TLS_LDM | 
|  | || r_type == R_MICROMIPS_TLS_LDM); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | tls_gottprel_reloc_p (unsigned int r_type) | 
|  | { | 
|  | return (r_type == R_MIPS_TLS_GOTTPREL | 
|  | || r_type == R_MIPS16_TLS_GOTTPREL | 
|  | || r_type == R_MICROMIPS_TLS_GOTTPREL); | 
|  | } | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, | 
|  | bool jal_shuffle, bfd_byte *data) | 
|  | { | 
|  | bfd_vma first, second, val; | 
|  |  | 
|  | if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) | 
|  | return; | 
|  |  | 
|  | /* Pick up the first and second halfwords of the instruction.  */ | 
|  | first = bfd_get_16 (abfd, data); | 
|  | second = bfd_get_16 (abfd, data + 2); | 
|  | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) | 
|  | val = first << 16 | second; | 
|  | else if (r_type != R_MIPS16_26) | 
|  | val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) | 
|  | | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); | 
|  | else | 
|  | val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) | 
|  | | ((first & 0x1f) << 21) | second); | 
|  | bfd_put_32 (abfd, val, data); | 
|  | } | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, | 
|  | bool jal_shuffle, bfd_byte *data) | 
|  | { | 
|  | bfd_vma first, second, val; | 
|  |  | 
|  | if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) | 
|  | return; | 
|  |  | 
|  | val = bfd_get_32 (abfd, data); | 
|  | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) | 
|  | { | 
|  | second = val & 0xffff; | 
|  | first = val >> 16; | 
|  | } | 
|  | else if (r_type != R_MIPS16_26) | 
|  | { | 
|  | second = ((val >> 11) & 0xffe0) | (val & 0x1f); | 
|  | first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | 
|  | } | 
|  | else | 
|  | { | 
|  | second = val & 0xffff; | 
|  | first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | 
|  | | ((val >> 21) & 0x1f); | 
|  | } | 
|  | bfd_put_16 (abfd, second, data + 2); | 
|  | bfd_put_16 (abfd, first, data); | 
|  | } | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, | 
|  | arelent *reloc_entry, asection *input_section, | 
|  | bool relocatable, void *data, bfd_vma gp) | 
|  | { | 
|  | bfd_vma relocation; | 
|  | bfd_signed_vma val; | 
|  | bfd_reloc_status_type status; | 
|  |  | 
|  | if (bfd_is_com_section (symbol->section)) | 
|  | relocation = 0; | 
|  | else | 
|  | relocation = symbol->value; | 
|  |  | 
|  | relocation += symbol->section->output_section->vma; | 
|  | relocation += symbol->section->output_offset; | 
|  |  | 
|  | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | /* Set val to the offset into the section or symbol.  */ | 
|  | val = reloc_entry->addend; | 
|  |  | 
|  | _bfd_mips_elf_sign_extend (val, 16); | 
|  |  | 
|  | /* Adjust val for the final section location and GP value.  If we | 
|  | are producing relocatable output, we don't want to do this for | 
|  | an external symbol.  */ | 
|  | if (! relocatable | 
|  | || (symbol->flags & BSF_SECTION_SYM) != 0) | 
|  | val += relocation - gp; | 
|  |  | 
|  | if (reloc_entry->howto->partial_inplace) | 
|  | { | 
|  | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, | 
|  | (bfd_byte *) data | 
|  | + reloc_entry->address); | 
|  | if (status != bfd_reloc_ok) | 
|  | return status; | 
|  | } | 
|  | else | 
|  | reloc_entry->addend = val; | 
|  |  | 
|  | if (relocatable) | 
|  | reloc_entry->address += input_section->output_offset; | 
|  |  | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | 
|  | R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section | 
|  | that contains the relocation field and DATA points to the start of | 
|  | INPUT_SECTION.  */ | 
|  |  | 
|  | struct mips_hi16 | 
|  | { | 
|  | struct mips_hi16 *next; | 
|  | bfd_byte *data; | 
|  | asection *input_section; | 
|  | arelent rel; | 
|  | }; | 
|  |  | 
|  | /* FIXME: This should not be a static variable.  */ | 
|  |  | 
|  | static struct mips_hi16 *mips_hi16_list; | 
|  |  | 
|  | /* A howto special_function for REL *HI16 relocations.  We can only | 
|  | calculate the correct value once we've seen the partnering | 
|  | *LO16 relocation, so just save the information for later. | 
|  |  | 
|  | The ABI requires that the *LO16 immediately follow the *HI16. | 
|  | However, as a GNU extension, we permit an arbitrary number of | 
|  | *HI16s to be associated with a single *LO16.  This significantly | 
|  | simplies the relocation handling in gcc.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | 
|  | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | 
|  | asection *input_section, bfd *output_bfd, | 
|  | char **error_message ATTRIBUTE_UNUSED) | 
|  | { | 
|  | struct mips_hi16 *n; | 
|  |  | 
|  | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | n = bfd_malloc (sizeof *n); | 
|  | if (n == NULL) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | n->next = mips_hi16_list; | 
|  | n->data = data; | 
|  | n->input_section = input_section; | 
|  | n->rel = *reloc_entry; | 
|  | mips_hi16_list = n; | 
|  |  | 
|  | if (output_bfd != NULL) | 
|  | reloc_entry->address += input_section->output_offset; | 
|  |  | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just | 
|  | like any other 16-bit relocation when applied to global symbols, but is | 
|  | treated in the same as R_MIPS_HI16 when applied to local symbols.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | 
|  | void *data, asection *input_section, | 
|  | bfd *output_bfd, char **error_message) | 
|  | { | 
|  | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | 
|  | || bfd_is_und_section (bfd_asymbol_section (symbol)) | 
|  | || bfd_is_com_section (bfd_asymbol_section (symbol))) | 
|  | /* The relocation is against a global symbol.  */ | 
|  | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | 
|  | input_section, output_bfd, | 
|  | error_message); | 
|  |  | 
|  | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | 
|  | input_section, output_bfd, error_message); | 
|  | } | 
|  |  | 
|  | /* A howto special_function for REL *LO16 relocations.  The *LO16 itself | 
|  | is a straightforward 16 bit inplace relocation, but we must deal with | 
|  | any partnering high-part relocations as well.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | 
|  | void *data, asection *input_section, | 
|  | bfd *output_bfd, char **error_message) | 
|  | { | 
|  | bfd_vma vallo; | 
|  | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; | 
|  |  | 
|  | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, | 
|  | location); | 
|  | vallo = bfd_get_32 (abfd, location); | 
|  | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, | 
|  | location); | 
|  |  | 
|  | while (mips_hi16_list != NULL) | 
|  | { | 
|  | bfd_reloc_status_type ret; | 
|  | struct mips_hi16 *hi; | 
|  |  | 
|  | hi = mips_hi16_list; | 
|  |  | 
|  | /* R_MIPS*_GOT16 relocations are something of a special case.  We | 
|  | want to install the addend in the same way as for a R_MIPS*_HI16 | 
|  | relocation (with a rightshift of 16).  However, since GOT16 | 
|  | relocations can also be used with global symbols, their howto | 
|  | has a rightshift of 0.  */ | 
|  | if (hi->rel.howto->type == R_MIPS_GOT16) | 
|  | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false); | 
|  | else if (hi->rel.howto->type == R_MIPS16_GOT16) | 
|  | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false); | 
|  | else if (hi->rel.howto->type == R_MICROMIPS_GOT16) | 
|  | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false); | 
|  |  | 
|  | /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any | 
|  | carry or borrow will induce a change of +1 or -1 in the high part.  */ | 
|  | hi->rel.addend += (vallo + 0x8000) & 0xffff; | 
|  |  | 
|  | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, | 
|  | hi->input_section, output_bfd, | 
|  | error_message); | 
|  | if (ret != bfd_reloc_ok) | 
|  | return ret; | 
|  |  | 
|  | mips_hi16_list = hi->next; | 
|  | free (hi); | 
|  | } | 
|  |  | 
|  | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | 
|  | input_section, output_bfd, | 
|  | error_message); | 
|  | } | 
|  |  | 
|  | /* A generic howto special_function.  This calculates and installs the | 
|  | relocation itself, thus avoiding the oft-discussed problems in | 
|  | bfd_perform_relocation and bfd_install_relocation.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | 
|  | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | 
|  | asection *input_section, bfd *output_bfd, | 
|  | char **error_message ATTRIBUTE_UNUSED) | 
|  | { | 
|  | bfd_signed_vma val; | 
|  | bfd_reloc_status_type status; | 
|  | bool relocatable; | 
|  |  | 
|  | relocatable = (output_bfd != NULL); | 
|  |  | 
|  | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | /* Build up the field adjustment in VAL.  */ | 
|  | val = 0; | 
|  | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | 
|  | { | 
|  | /* Either we're calculating the final field value or we have a | 
|  | relocation against a section symbol.  Add in the section's | 
|  | offset or address.  */ | 
|  | val += symbol->section->output_section->vma; | 
|  | val += symbol->section->output_offset; | 
|  | } | 
|  |  | 
|  | if (!relocatable) | 
|  | { | 
|  | /* We're calculating the final field value.  Add in the symbol's value | 
|  | and, if pc-relative, subtract the address of the field itself.  */ | 
|  | val += symbol->value; | 
|  | if (reloc_entry->howto->pc_relative) | 
|  | { | 
|  | val -= input_section->output_section->vma; | 
|  | val -= input_section->output_offset; | 
|  | val -= reloc_entry->address; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* VAL is now the final adjustment.  If we're keeping this relocation | 
|  | in the output file, and if the relocation uses a separate addend, | 
|  | we just need to add VAL to that addend.  Otherwise we need to add | 
|  | VAL to the relocation field itself.  */ | 
|  | if (relocatable && !reloc_entry->howto->partial_inplace) | 
|  | reloc_entry->addend += val; | 
|  | else | 
|  | { | 
|  | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; | 
|  |  | 
|  | /* Add in the separate addend, if any.  */ | 
|  | val += reloc_entry->addend; | 
|  |  | 
|  | /* Add VAL to the relocation field.  */ | 
|  | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, | 
|  | location); | 
|  | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, | 
|  | location); | 
|  | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, | 
|  | location); | 
|  |  | 
|  | if (status != bfd_reloc_ok) | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (relocatable) | 
|  | reloc_entry->address += input_section->output_offset; | 
|  |  | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Swap an entry in a .gptab section.  Note that these routines rely | 
|  | on the equivalence of the two elements of the union.  */ | 
|  |  | 
|  | static void | 
|  | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, | 
|  | Elf32_gptab *in) | 
|  | { | 
|  | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | 
|  | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | 
|  | } | 
|  |  | 
|  | static void | 
|  | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, | 
|  | Elf32_External_gptab *ex) | 
|  | { | 
|  | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | 
|  | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | 
|  | } | 
|  |  | 
|  | static void | 
|  | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, | 
|  | Elf32_External_compact_rel *ex) | 
|  | { | 
|  | H_PUT_32 (abfd, in->id1, ex->id1); | 
|  | H_PUT_32 (abfd, in->num, ex->num); | 
|  | H_PUT_32 (abfd, in->id2, ex->id2); | 
|  | H_PUT_32 (abfd, in->offset, ex->offset); | 
|  | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | 
|  | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | 
|  | } | 
|  |  | 
|  | static void | 
|  | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, | 
|  | Elf32_External_crinfo *ex) | 
|  | { | 
|  | unsigned long l; | 
|  |  | 
|  | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | 
|  | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | 
|  | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | 
|  | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | 
|  | H_PUT_32 (abfd, l, ex->info); | 
|  | H_PUT_32 (abfd, in->konst, ex->konst); | 
|  | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | 
|  | } | 
|  |  | 
|  | /* A .reginfo section holds a single Elf32_RegInfo structure.  These | 
|  | routines swap this structure in and out.  They are used outside of | 
|  | BFD, so they are globally visible.  */ | 
|  |  | 
|  | void | 
|  | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, | 
|  | Elf32_RegInfo *in) | 
|  | { | 
|  | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | 
|  | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | 
|  | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | 
|  | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | 
|  | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | 
|  | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | 
|  | } | 
|  |  | 
|  | void | 
|  | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, | 
|  | Elf32_External_RegInfo *ex) | 
|  | { | 
|  | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | 
|  | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | 
|  | } | 
|  |  | 
|  | /* In the 64 bit ABI, the .MIPS.options section holds register | 
|  | information in an Elf64_Reginfo structure.  These routines swap | 
|  | them in and out.  They are globally visible because they are used | 
|  | outside of BFD.  These routines are here so that gas can call them | 
|  | without worrying about whether the 64 bit ABI has been included.  */ | 
|  |  | 
|  | void | 
|  | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, | 
|  | Elf64_Internal_RegInfo *in) | 
|  | { | 
|  | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | 
|  | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | 
|  | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | 
|  | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | 
|  | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | 
|  | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | 
|  | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | 
|  | } | 
|  |  | 
|  | void | 
|  | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, | 
|  | Elf64_External_RegInfo *ex) | 
|  | { | 
|  | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | 
|  | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | 
|  | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | 
|  | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | 
|  | } | 
|  |  | 
|  | /* Swap in an options header.  */ | 
|  |  | 
|  | void | 
|  | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, | 
|  | Elf_Internal_Options *in) | 
|  | { | 
|  | in->kind = H_GET_8 (abfd, ex->kind); | 
|  | in->size = H_GET_8 (abfd, ex->size); | 
|  | in->section = H_GET_16 (abfd, ex->section); | 
|  | in->info = H_GET_32 (abfd, ex->info); | 
|  | } | 
|  |  | 
|  | /* Swap out an options header.  */ | 
|  |  | 
|  | void | 
|  | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, | 
|  | Elf_External_Options *ex) | 
|  | { | 
|  | H_PUT_8 (abfd, in->kind, ex->kind); | 
|  | H_PUT_8 (abfd, in->size, ex->size); | 
|  | H_PUT_16 (abfd, in->section, ex->section); | 
|  | H_PUT_32 (abfd, in->info, ex->info); | 
|  | } | 
|  |  | 
|  | /* Swap in an abiflags structure.  */ | 
|  |  | 
|  | void | 
|  | bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, | 
|  | const Elf_External_ABIFlags_v0 *ex, | 
|  | Elf_Internal_ABIFlags_v0 *in) | 
|  | { | 
|  | in->version = H_GET_16 (abfd, ex->version); | 
|  | in->isa_level = H_GET_8 (abfd, ex->isa_level); | 
|  | in->isa_rev = H_GET_8 (abfd, ex->isa_rev); | 
|  | in->gpr_size = H_GET_8 (abfd, ex->gpr_size); | 
|  | in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); | 
|  | in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); | 
|  | in->fp_abi = H_GET_8 (abfd, ex->fp_abi); | 
|  | in->isa_ext = H_GET_32 (abfd, ex->isa_ext); | 
|  | in->ases = H_GET_32 (abfd, ex->ases); | 
|  | in->flags1 = H_GET_32 (abfd, ex->flags1); | 
|  | in->flags2 = H_GET_32 (abfd, ex->flags2); | 
|  | } | 
|  |  | 
|  | /* Swap out an abiflags structure.  */ | 
|  |  | 
|  | void | 
|  | bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, | 
|  | const Elf_Internal_ABIFlags_v0 *in, | 
|  | Elf_External_ABIFlags_v0 *ex) | 
|  | { | 
|  | H_PUT_16 (abfd, in->version, ex->version); | 
|  | H_PUT_8 (abfd, in->isa_level, ex->isa_level); | 
|  | H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); | 
|  | H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); | 
|  | H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); | 
|  | H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); | 
|  | H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); | 
|  | H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); | 
|  | H_PUT_32 (abfd, in->ases, ex->ases); | 
|  | H_PUT_32 (abfd, in->flags1, ex->flags1); | 
|  | H_PUT_32 (abfd, in->flags2, ex->flags2); | 
|  | } | 
|  |  | 
|  | /* This function is called via qsort() to sort the dynamic relocation | 
|  | entries by increasing r_symndx value.  */ | 
|  |  | 
|  | static int | 
|  | sort_dynamic_relocs (const void *arg1, const void *arg2) | 
|  | { | 
|  | Elf_Internal_Rela int_reloc1; | 
|  | Elf_Internal_Rela int_reloc2; | 
|  | int diff; | 
|  |  | 
|  | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); | 
|  | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | 
|  |  | 
|  | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); | 
|  | if (diff != 0) | 
|  | return diff; | 
|  |  | 
|  | if (int_reloc1.r_offset < int_reloc2.r_offset) | 
|  | return -1; | 
|  | if (int_reloc1.r_offset > int_reloc2.r_offset) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Like sort_dynamic_relocs, but used for elf64 relocations.  */ | 
|  |  | 
|  | static int | 
|  | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, | 
|  | const void *arg2 ATTRIBUTE_UNUSED) | 
|  | { | 
|  | #ifdef BFD64 | 
|  | Elf_Internal_Rela int_reloc1[3]; | 
|  | Elf_Internal_Rela int_reloc2[3]; | 
|  |  | 
|  | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | 
|  | (reldyn_sorting_bfd, arg1, int_reloc1); | 
|  | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | 
|  | (reldyn_sorting_bfd, arg2, int_reloc2); | 
|  |  | 
|  | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) | 
|  | return -1; | 
|  | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) | 
|  | return 1; | 
|  |  | 
|  | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) | 
|  | return -1; | 
|  | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) | 
|  | return 1; | 
|  | return 0; | 
|  | #else | 
|  | abort (); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This routine is used to write out ECOFF debugging external symbol | 
|  | information.  It is called via mips_elf_link_hash_traverse.  The | 
|  | ECOFF external symbol information must match the ELF external | 
|  | symbol information.  Unfortunately, at this point we don't know | 
|  | whether a symbol is required by reloc information, so the two | 
|  | tables may wind up being different.  We must sort out the external | 
|  | symbol information before we can set the final size of the .mdebug | 
|  | section, and we must set the size of the .mdebug section before we | 
|  | can relocate any sections, and we can't know which symbols are | 
|  | required by relocation until we relocate the sections. | 
|  | Fortunately, it is relatively unlikely that any symbol will be | 
|  | stripped but required by a reloc.  In particular, it can not happen | 
|  | when generating a final executable.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) | 
|  | { | 
|  | struct extsym_info *einfo = data; | 
|  | bool strip; | 
|  | asection *sec, *output_section; | 
|  |  | 
|  | if (h->root.indx == -2) | 
|  | strip = false; | 
|  | else if ((h->root.def_dynamic | 
|  | || h->root.ref_dynamic | 
|  | || h->root.type == bfd_link_hash_new) | 
|  | && !h->root.def_regular | 
|  | && !h->root.ref_regular) | 
|  | strip = true; | 
|  | else if (einfo->info->strip == strip_all | 
|  | || (einfo->info->strip == strip_some | 
|  | && bfd_hash_lookup (einfo->info->keep_hash, | 
|  | h->root.root.root.string, | 
|  | false, false) == NULL)) | 
|  | strip = true; | 
|  | else | 
|  | strip = false; | 
|  |  | 
|  | if (strip) | 
|  | return true; | 
|  |  | 
|  | if (h->esym.ifd == -2) | 
|  | { | 
|  | h->esym.jmptbl = 0; | 
|  | h->esym.cobol_main = 0; | 
|  | h->esym.weakext = 0; | 
|  | h->esym.reserved = 0; | 
|  | h->esym.ifd = ifdNil; | 
|  | h->esym.asym.value = 0; | 
|  | h->esym.asym.st = stGlobal; | 
|  |  | 
|  | if (h->root.root.type == bfd_link_hash_undefined | 
|  | || h->root.root.type == bfd_link_hash_undefweak) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | /* Use undefined class.  Also, set class and type for some | 
|  | special symbols.  */ | 
|  | name = h->root.root.root.string; | 
|  | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | 
|  | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | 
|  | { | 
|  | h->esym.asym.sc = scData; | 
|  | h->esym.asym.st = stLabel; | 
|  | h->esym.asym.value = 0; | 
|  | } | 
|  | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | 
|  | { | 
|  | h->esym.asym.sc = scAbs; | 
|  | h->esym.asym.st = stLabel; | 
|  | h->esym.asym.value = | 
|  | mips_elf_hash_table (einfo->info)->procedure_count; | 
|  | } | 
|  | else | 
|  | h->esym.asym.sc = scUndefined; | 
|  | } | 
|  | else if (h->root.root.type != bfd_link_hash_defined | 
|  | && h->root.root.type != bfd_link_hash_defweak) | 
|  | h->esym.asym.sc = scAbs; | 
|  | else | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | sec = h->root.root.u.def.section; | 
|  | output_section = sec->output_section; | 
|  |  | 
|  | /* When making a shared library and symbol h is the one from | 
|  | the another shared library, OUTPUT_SECTION may be null.  */ | 
|  | if (output_section == NULL) | 
|  | h->esym.asym.sc = scUndefined; | 
|  | else | 
|  | { | 
|  | name = bfd_section_name (output_section); | 
|  |  | 
|  | if (strcmp (name, ".text") == 0) | 
|  | h->esym.asym.sc = scText; | 
|  | else if (strcmp (name, ".data") == 0) | 
|  | h->esym.asym.sc = scData; | 
|  | else if (strcmp (name, ".sdata") == 0) | 
|  | h->esym.asym.sc = scSData; | 
|  | else if (strcmp (name, ".rodata") == 0 | 
|  | || strcmp (name, ".rdata") == 0) | 
|  | h->esym.asym.sc = scRData; | 
|  | else if (strcmp (name, ".bss") == 0) | 
|  | h->esym.asym.sc = scBss; | 
|  | else if (strcmp (name, ".sbss") == 0) | 
|  | h->esym.asym.sc = scSBss; | 
|  | else if (strcmp (name, ".init") == 0) | 
|  | h->esym.asym.sc = scInit; | 
|  | else if (strcmp (name, ".fini") == 0) | 
|  | h->esym.asym.sc = scFini; | 
|  | else | 
|  | h->esym.asym.sc = scAbs; | 
|  | } | 
|  | } | 
|  |  | 
|  | h->esym.asym.reserved = 0; | 
|  | h->esym.asym.index = indexNil; | 
|  | } | 
|  |  | 
|  | if (h->root.root.type == bfd_link_hash_common) | 
|  | h->esym.asym.value = h->root.root.u.c.size; | 
|  | else if (h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak) | 
|  | { | 
|  | if (h->esym.asym.sc == scCommon) | 
|  | h->esym.asym.sc = scBss; | 
|  | else if (h->esym.asym.sc == scSCommon) | 
|  | h->esym.asym.sc = scSBss; | 
|  |  | 
|  | sec = h->root.root.u.def.section; | 
|  | output_section = sec->output_section; | 
|  | if (output_section != NULL) | 
|  | h->esym.asym.value = (h->root.root.u.def.value | 
|  | + sec->output_offset | 
|  | + output_section->vma); | 
|  | else | 
|  | h->esym.asym.value = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | struct mips_elf_link_hash_entry *hd = h; | 
|  |  | 
|  | while (hd->root.root.type == bfd_link_hash_indirect) | 
|  | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | 
|  |  | 
|  | if (hd->needs_lazy_stub) | 
|  | { | 
|  | BFD_ASSERT (hd->root.plt.plist != NULL); | 
|  | BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); | 
|  | /* Set type and value for a symbol with a function stub.  */ | 
|  | h->esym.asym.st = stProc; | 
|  | sec = hd->root.root.u.def.section; | 
|  | if (sec == NULL) | 
|  | h->esym.asym.value = 0; | 
|  | else | 
|  | { | 
|  | output_section = sec->output_section; | 
|  | if (output_section != NULL) | 
|  | h->esym.asym.value = (hd->root.plt.plist->stub_offset | 
|  | + sec->output_offset | 
|  | + output_section->vma); | 
|  | else | 
|  | h->esym.asym.value = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | 
|  | h->root.root.root.string, | 
|  | &h->esym)) | 
|  | { | 
|  | einfo->failed = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* A comparison routine used to sort .gptab entries.  */ | 
|  |  | 
|  | static int | 
|  | gptab_compare (const void *p1, const void *p2) | 
|  | { | 
|  | const Elf32_gptab *a1 = p1; | 
|  | const Elf32_gptab *a2 = p2; | 
|  |  | 
|  | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | 
|  | } | 
|  |  | 
|  | /* Functions to manage the got entry hash table.  */ | 
|  |  | 
|  | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | 
|  | hash number.  */ | 
|  |  | 
|  | static inline hashval_t | 
|  | mips_elf_hash_bfd_vma (bfd_vma addr) | 
|  | { | 
|  | #ifdef BFD64 | 
|  | return addr + (addr >> 32); | 
|  | #else | 
|  | return addr; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static hashval_t | 
|  | mips_elf_got_entry_hash (const void *entry_) | 
|  | { | 
|  | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | 
|  |  | 
|  | return (entry->symndx | 
|  | + ((entry->tls_type == GOT_TLS_LDM) << 18) | 
|  | + (entry->tls_type == GOT_TLS_LDM ? 0 | 
|  | : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) | 
|  | : entry->symndx >= 0 ? (entry->abfd->id | 
|  | + mips_elf_hash_bfd_vma (entry->d.addend)) | 
|  | : entry->d.h->root.root.root.hash)); | 
|  | } | 
|  |  | 
|  | static int | 
|  | mips_elf_got_entry_eq (const void *entry1, const void *entry2) | 
|  | { | 
|  | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | 
|  | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | 
|  |  | 
|  | return (e1->symndx == e2->symndx | 
|  | && e1->tls_type == e2->tls_type | 
|  | && (e1->tls_type == GOT_TLS_LDM ? true | 
|  | : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address | 
|  | : e1->symndx >= 0 ? (e1->abfd == e2->abfd | 
|  | && e1->d.addend == e2->d.addend) | 
|  | : e2->abfd && e1->d.h == e2->d.h)); | 
|  | } | 
|  |  | 
|  | static hashval_t | 
|  | mips_got_page_ref_hash (const void *ref_) | 
|  | { | 
|  | const struct mips_got_page_ref *ref; | 
|  |  | 
|  | ref = (const struct mips_got_page_ref *) ref_; | 
|  | return ((ref->symndx >= 0 | 
|  | ? (hashval_t) (ref->u.abfd->id + ref->symndx) | 
|  | : ref->u.h->root.root.root.hash) | 
|  | + mips_elf_hash_bfd_vma (ref->addend)); | 
|  | } | 
|  |  | 
|  | static int | 
|  | mips_got_page_ref_eq (const void *ref1_, const void *ref2_) | 
|  | { | 
|  | const struct mips_got_page_ref *ref1, *ref2; | 
|  |  | 
|  | ref1 = (const struct mips_got_page_ref *) ref1_; | 
|  | ref2 = (const struct mips_got_page_ref *) ref2_; | 
|  | return (ref1->symndx == ref2->symndx | 
|  | && (ref1->symndx < 0 | 
|  | ? ref1->u.h == ref2->u.h | 
|  | : ref1->u.abfd == ref2->u.abfd) | 
|  | && ref1->addend == ref2->addend); | 
|  | } | 
|  |  | 
|  | static hashval_t | 
|  | mips_got_page_entry_hash (const void *entry_) | 
|  | { | 
|  | const struct mips_got_page_entry *entry; | 
|  |  | 
|  | entry = (const struct mips_got_page_entry *) entry_; | 
|  | return entry->sec->id; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mips_got_page_entry_eq (const void *entry1_, const void *entry2_) | 
|  | { | 
|  | const struct mips_got_page_entry *entry1, *entry2; | 
|  |  | 
|  | entry1 = (const struct mips_got_page_entry *) entry1_; | 
|  | entry2 = (const struct mips_got_page_entry *) entry2_; | 
|  | return entry1->sec == entry2->sec; | 
|  | } | 
|  |  | 
|  | /* Create and return a new mips_got_info structure.  */ | 
|  |  | 
|  | static struct mips_got_info * | 
|  | mips_elf_create_got_info (bfd *abfd) | 
|  | { | 
|  | struct mips_got_info *g; | 
|  |  | 
|  | g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); | 
|  | if (g == NULL) | 
|  | return NULL; | 
|  |  | 
|  | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, | 
|  | mips_elf_got_entry_eq, NULL); | 
|  | if (g->got_entries == NULL) | 
|  | return NULL; | 
|  |  | 
|  | g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, | 
|  | mips_got_page_ref_eq, NULL); | 
|  | if (g->got_page_refs == NULL) | 
|  | return NULL; | 
|  |  | 
|  | return g; | 
|  | } | 
|  |  | 
|  | /* Return the GOT info for input bfd ABFD, trying to create a new one if | 
|  | CREATE_P and if ABFD doesn't already have a GOT.  */ | 
|  |  | 
|  | static struct mips_got_info * | 
|  | mips_elf_bfd_got (bfd *abfd, bool create_p) | 
|  | { | 
|  | struct mips_elf_obj_tdata *tdata; | 
|  |  | 
|  | if (!is_mips_elf (abfd)) | 
|  | return NULL; | 
|  |  | 
|  | tdata = mips_elf_tdata (abfd); | 
|  | if (!tdata->got && create_p) | 
|  | tdata->got = mips_elf_create_got_info (abfd); | 
|  | return tdata->got; | 
|  | } | 
|  |  | 
|  | /* Record that ABFD should use output GOT G.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) | 
|  | { | 
|  | struct mips_elf_obj_tdata *tdata; | 
|  |  | 
|  | BFD_ASSERT (is_mips_elf (abfd)); | 
|  | tdata = mips_elf_tdata (abfd); | 
|  | if (tdata->got) | 
|  | { | 
|  | /* The GOT structure itself and the hash table entries are | 
|  | allocated to a bfd, but the hash tables aren't.  */ | 
|  | htab_delete (tdata->got->got_entries); | 
|  | htab_delete (tdata->got->got_page_refs); | 
|  | if (tdata->got->got_page_entries) | 
|  | htab_delete (tdata->got->got_page_entries); | 
|  | } | 
|  | tdata->got = g; | 
|  | } | 
|  |  | 
|  | /* Return the dynamic relocation section.  If it doesn't exist, try to | 
|  | create a new it if CREATE_P, otherwise return NULL.  Also return NULL | 
|  | if creation fails.  */ | 
|  |  | 
|  | static asection * | 
|  | mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p) | 
|  | { | 
|  | const char *dname; | 
|  | asection *sreloc; | 
|  | bfd *dynobj; | 
|  |  | 
|  | dname = MIPS_ELF_REL_DYN_NAME (info); | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | sreloc = bfd_get_linker_section (dynobj, dname); | 
|  | if (sreloc == NULL && create_p) | 
|  | { | 
|  | sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, | 
|  | (SEC_ALLOC | 
|  | | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED | 
|  | | SEC_READONLY)); | 
|  | if (sreloc == NULL | 
|  | || !bfd_set_section_alignment (sreloc, | 
|  | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) | 
|  | return NULL; | 
|  | } | 
|  | return sreloc; | 
|  | } | 
|  |  | 
|  | /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_reloc_tls_type (unsigned int r_type) | 
|  | { | 
|  | if (tls_gd_reloc_p (r_type)) | 
|  | return GOT_TLS_GD; | 
|  |  | 
|  | if (tls_ldm_reloc_p (r_type)) | 
|  | return GOT_TLS_LDM; | 
|  |  | 
|  | if (tls_gottprel_reloc_p (r_type)) | 
|  | return GOT_TLS_IE; | 
|  |  | 
|  | return GOT_TLS_NONE; | 
|  | } | 
|  |  | 
|  | /* Return the number of GOT slots needed for GOT TLS type TYPE.  */ | 
|  |  | 
|  | static int | 
|  | mips_tls_got_entries (unsigned int type) | 
|  | { | 
|  | switch (type) | 
|  | { | 
|  | case GOT_TLS_GD: | 
|  | case GOT_TLS_LDM: | 
|  | return 2; | 
|  |  | 
|  | case GOT_TLS_IE: | 
|  | return 1; | 
|  |  | 
|  | case GOT_TLS_NONE: | 
|  | return 0; | 
|  | } | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | /* Count the number of relocations needed for a TLS GOT entry, with | 
|  | access types from TLS_TYPE, and symbol H (or a local symbol if H | 
|  | is NULL).  */ | 
|  |  | 
|  | static int | 
|  | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | 
|  | struct elf_link_hash_entry *h) | 
|  | { | 
|  | int indx = 0; | 
|  | bool need_relocs = false; | 
|  | bool dyn = elf_hash_table (info)->dynamic_sections_created; | 
|  |  | 
|  | if (h != NULL | 
|  | && h->dynindx != -1 | 
|  | && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) | 
|  | && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) | 
|  | indx = h->dynindx; | 
|  |  | 
|  | if ((bfd_link_dll (info) || indx != 0) | 
|  | && (h == NULL | 
|  | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
|  | || h->root.type != bfd_link_hash_undefweak)) | 
|  | need_relocs = true; | 
|  |  | 
|  | if (!need_relocs) | 
|  | return 0; | 
|  |  | 
|  | switch (tls_type) | 
|  | { | 
|  | case GOT_TLS_GD: | 
|  | return indx != 0 ? 2 : 1; | 
|  |  | 
|  | case GOT_TLS_IE: | 
|  | return 1; | 
|  |  | 
|  | case GOT_TLS_LDM: | 
|  | return bfd_link_dll (info) ? 1 : 0; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add the number of GOT entries and TLS relocations required by ENTRY | 
|  | to G.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_count_got_entry (struct bfd_link_info *info, | 
|  | struct mips_got_info *g, | 
|  | struct mips_got_entry *entry) | 
|  | { | 
|  | if (entry->tls_type) | 
|  | { | 
|  | g->tls_gotno += mips_tls_got_entries (entry->tls_type); | 
|  | g->relocs += mips_tls_got_relocs (info, entry->tls_type, | 
|  | entry->symndx < 0 | 
|  | ? &entry->d.h->root : NULL); | 
|  | } | 
|  | else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) | 
|  | g->local_gotno += 1; | 
|  | else | 
|  | g->global_gotno += 1; | 
|  | } | 
|  |  | 
|  | /* Output a simple dynamic relocation into SRELOC.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_output_dynamic_relocation (bfd *output_bfd, | 
|  | asection *sreloc, | 
|  | unsigned long reloc_index, | 
|  | unsigned long indx, | 
|  | int r_type, | 
|  | bfd_vma offset) | 
|  | { | 
|  | Elf_Internal_Rela rel[3]; | 
|  |  | 
|  | memset (rel, 0, sizeof (rel)); | 
|  |  | 
|  | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | 
|  | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | 
|  |  | 
|  | if (ABI_64_P (output_bfd)) | 
|  | { | 
|  | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | 
|  | (output_bfd, &rel[0], | 
|  | (sreloc->contents | 
|  | + reloc_index * sizeof (Elf64_Mips_External_Rel))); | 
|  | } | 
|  | else | 
|  | bfd_elf32_swap_reloc_out | 
|  | (output_bfd, &rel[0], | 
|  | (sreloc->contents | 
|  | + reloc_index * sizeof (Elf32_External_Rel))); | 
|  | } | 
|  |  | 
|  | /* Initialize a set of TLS GOT entries for one symbol.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, | 
|  | struct mips_got_entry *entry, | 
|  | struct mips_elf_link_hash_entry *h, | 
|  | bfd_vma value) | 
|  | { | 
|  | bool dyn = elf_hash_table (info)->dynamic_sections_created; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | int indx; | 
|  | asection *sreloc, *sgot; | 
|  | bfd_vma got_offset, got_offset2; | 
|  | bool need_relocs = false; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return; | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  |  | 
|  | indx = 0; | 
|  | if (h != NULL | 
|  | && h->root.dynindx != -1 | 
|  | && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root) | 
|  | && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | 
|  | indx = h->root.dynindx; | 
|  |  | 
|  | if (entry->tls_initialized) | 
|  | return; | 
|  |  | 
|  | if ((bfd_link_dll (info) || indx != 0) | 
|  | && (h == NULL | 
|  | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | 
|  | || h->root.type != bfd_link_hash_undefweak)) | 
|  | need_relocs = true; | 
|  |  | 
|  | /* MINUS_ONE means the symbol is not defined in this object.  It may not | 
|  | be defined at all; assume that the value doesn't matter in that | 
|  | case.  Otherwise complain if we would use the value.  */ | 
|  | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | 
|  | || h->root.root.type == bfd_link_hash_undefweak); | 
|  |  | 
|  | /* Emit necessary relocations.  */ | 
|  | sreloc = mips_elf_rel_dyn_section (info, false); | 
|  | got_offset = entry->gotidx; | 
|  |  | 
|  | switch (entry->tls_type) | 
|  | { | 
|  | case GOT_TLS_GD: | 
|  | /* General Dynamic.  */ | 
|  | got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); | 
|  |  | 
|  | if (need_relocs) | 
|  | { | 
|  | mips_elf_output_dynamic_relocation | 
|  | (abfd, sreloc, sreloc->reloc_count++, indx, | 
|  | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | 
|  | sgot->output_offset + sgot->output_section->vma + got_offset); | 
|  |  | 
|  | if (indx) | 
|  | mips_elf_output_dynamic_relocation | 
|  | (abfd, sreloc, sreloc->reloc_count++, indx, | 
|  | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, | 
|  | sgot->output_offset + sgot->output_section->vma + got_offset2); | 
|  | else | 
|  | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | 
|  | sgot->contents + got_offset2); | 
|  | } | 
|  | else | 
|  | { | 
|  | MIPS_ELF_PUT_WORD (abfd, 1, | 
|  | sgot->contents + got_offset); | 
|  | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | 
|  | sgot->contents + got_offset2); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case GOT_TLS_IE: | 
|  | /* Initial Exec model.  */ | 
|  | if (need_relocs) | 
|  | { | 
|  | if (indx == 0) | 
|  | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | 
|  | sgot->contents + got_offset); | 
|  | else | 
|  | MIPS_ELF_PUT_WORD (abfd, 0, | 
|  | sgot->contents + got_offset); | 
|  |  | 
|  | mips_elf_output_dynamic_relocation | 
|  | (abfd, sreloc, sreloc->reloc_count++, indx, | 
|  | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, | 
|  | sgot->output_offset + sgot->output_section->vma + got_offset); | 
|  | } | 
|  | else | 
|  | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | 
|  | sgot->contents + got_offset); | 
|  | break; | 
|  |  | 
|  | case GOT_TLS_LDM: | 
|  | /* The initial offset is zero, and the LD offsets will include the | 
|  | bias by DTP_OFFSET.  */ | 
|  | MIPS_ELF_PUT_WORD (abfd, 0, | 
|  | sgot->contents + got_offset | 
|  | + MIPS_ELF_GOT_SIZE (abfd)); | 
|  |  | 
|  | if (!bfd_link_dll (info)) | 
|  | MIPS_ELF_PUT_WORD (abfd, 1, | 
|  | sgot->contents + got_offset); | 
|  | else | 
|  | mips_elf_output_dynamic_relocation | 
|  | (abfd, sreloc, sreloc->reloc_count++, indx, | 
|  | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | 
|  | sgot->output_offset + sgot->output_section->vma + got_offset); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | entry->tls_initialized = true; | 
|  | } | 
|  |  | 
|  | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry | 
|  | for global symbol H.  .got.plt comes before the GOT, so the offset | 
|  | will be negative.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_gotplt_index (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h) | 
|  | { | 
|  | bfd_vma got_address, got_value; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | BFD_ASSERT (h->plt.plist != NULL); | 
|  | BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); | 
|  |  | 
|  | /* Calculate the address of the associated .got.plt entry.  */ | 
|  | got_address = (htab->root.sgotplt->output_section->vma | 
|  | + htab->root.sgotplt->output_offset | 
|  | + (h->plt.plist->gotplt_index | 
|  | * MIPS_ELF_GOT_SIZE (info->output_bfd))); | 
|  |  | 
|  | /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */ | 
|  | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | 
|  | + htab->root.hgot->root.u.def.section->output_offset | 
|  | + htab->root.hgot->root.u.def.value); | 
|  |  | 
|  | return got_address - got_value; | 
|  | } | 
|  |  | 
|  | /* Return the GOT offset for address VALUE.   If there is not yet a GOT | 
|  | entry for this value, create one.  If R_SYMNDX refers to a TLS symbol, | 
|  | create a TLS GOT entry instead.  Return -1 if no satisfactory GOT | 
|  | offset can be found.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, | 
|  | bfd_vma value, unsigned long r_symndx, | 
|  | struct mips_elf_link_hash_entry *h, int r_type) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_entry *entry; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, | 
|  | r_symndx, h, r_type); | 
|  | if (!entry) | 
|  | return MINUS_ONE; | 
|  |  | 
|  | if (entry->tls_type) | 
|  | mips_elf_initialize_tls_slots (abfd, info, entry, h, value); | 
|  | return entry->gotidx; | 
|  | } | 
|  |  | 
|  | /* Return the GOT index of global symbol H in the primary GOT.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | long global_got_dynindx; | 
|  | struct mips_got_info *g; | 
|  | bfd_vma got_index; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | global_got_dynindx = 0; | 
|  | if (htab->global_gotsym != NULL) | 
|  | global_got_dynindx = htab->global_gotsym->dynindx; | 
|  |  | 
|  | /* Once we determine the global GOT entry with the lowest dynamic | 
|  | symbol table index, we must put all dynamic symbols with greater | 
|  | indices into the primary GOT.  That makes it easy to calculate the | 
|  | GOT offset.  */ | 
|  | BFD_ASSERT (h->dynindx >= global_got_dynindx); | 
|  | g = mips_elf_bfd_got (obfd, false); | 
|  | got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) | 
|  | * MIPS_ELF_GOT_SIZE (obfd)); | 
|  | BFD_ASSERT (got_index < htab->root.sgot->size); | 
|  |  | 
|  | return got_index; | 
|  | } | 
|  |  | 
|  | /* Return the GOT index for the global symbol indicated by H, which is | 
|  | referenced by a relocation of type R_TYPE in IBFD.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, | 
|  | struct elf_link_hash_entry *h, int r_type) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_info *g; | 
|  | struct mips_got_entry lookup, *entry; | 
|  | bfd_vma gotidx; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | g = mips_elf_bfd_got (ibfd, false); | 
|  | BFD_ASSERT (g); | 
|  |  | 
|  | lookup.tls_type = mips_elf_reloc_tls_type (r_type); | 
|  | if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false)) | 
|  | return mips_elf_primary_global_got_index (obfd, info, h); | 
|  |  | 
|  | lookup.abfd = ibfd; | 
|  | lookup.symndx = -1; | 
|  | lookup.d.h = (struct mips_elf_link_hash_entry *) h; | 
|  | entry = htab_find (g->got_entries, &lookup); | 
|  | BFD_ASSERT (entry); | 
|  |  | 
|  | gotidx = entry->gotidx; | 
|  | BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); | 
|  |  | 
|  | if (lookup.tls_type) | 
|  | { | 
|  | bfd_vma value = MINUS_ONE; | 
|  |  | 
|  | if ((h->root.type == bfd_link_hash_defined | 
|  | || h->root.type == bfd_link_hash_defweak) | 
|  | && h->root.u.def.section->output_section) | 
|  | value = (h->root.u.def.value | 
|  | + h->root.u.def.section->output_offset | 
|  | + h->root.u.def.section->output_section->vma); | 
|  |  | 
|  | mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); | 
|  | } | 
|  | return gotidx; | 
|  | } | 
|  |  | 
|  | /* Find a GOT page entry that points to within 32KB of VALUE.  These | 
|  | entries are supposed to be placed at small offsets in the GOT, i.e., | 
|  | within 32KB of GP.  Return the index of the GOT entry, or -1 if no | 
|  | entry could be created.  If OFFSETP is nonnull, use it to return the | 
|  | offset of the GOT entry from VALUE.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, | 
|  | bfd_vma value, bfd_vma *offsetp) | 
|  | { | 
|  | bfd_vma page, got_index; | 
|  | struct mips_got_entry *entry; | 
|  |  | 
|  | page = (value + 0x8000) & ~(bfd_vma) 0xffff; | 
|  | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, | 
|  | NULL, R_MIPS_GOT_PAGE); | 
|  |  | 
|  | if (!entry) | 
|  | return MINUS_ONE; | 
|  |  | 
|  | got_index = entry->gotidx; | 
|  |  | 
|  | if (offsetp) | 
|  | *offsetp = value - entry->d.address; | 
|  |  | 
|  | return got_index; | 
|  | } | 
|  |  | 
|  | /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. | 
|  | EXTERNAL is true if the relocation was originally against a global | 
|  | symbol that binds locally.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, | 
|  | bfd_vma value, bool external) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  |  | 
|  | /* GOT16 relocations against local symbols are followed by a LO16 | 
|  | relocation; those against global symbols are not.  Thus if the | 
|  | symbol was originally local, the GOT16 relocation should load the | 
|  | equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */ | 
|  | if (! external) | 
|  | value = mips_elf_high (value) << 16; | 
|  |  | 
|  | /* It doesn't matter whether the original relocation was R_MIPS_GOT16, | 
|  | R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the | 
|  | same in all cases.  */ | 
|  | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, | 
|  | NULL, R_MIPS_GOT16); | 
|  | if (entry) | 
|  | return entry->gotidx; | 
|  | else | 
|  | return MINUS_ONE; | 
|  | } | 
|  |  | 
|  | /* Returns the offset for the entry at the INDEXth position | 
|  | in the GOT.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, | 
|  | bfd *input_bfd, bfd_vma got_index) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | asection *sgot; | 
|  | bfd_vma gp; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | gp = _bfd_get_gp_value (output_bfd) | 
|  | + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); | 
|  |  | 
|  | return sgot->output_section->vma + sgot->output_offset + got_index - gp; | 
|  | } | 
|  |  | 
|  | /* Create and return a local GOT entry for VALUE, which was calculated | 
|  | from a symbol belonging to INPUT_SECTON.  Return NULL if it could not | 
|  | be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry | 
|  | instead.  */ | 
|  |  | 
|  | static struct mips_got_entry * | 
|  | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, | 
|  | bfd *ibfd, bfd_vma value, | 
|  | unsigned long r_symndx, | 
|  | struct mips_elf_link_hash_entry *h, | 
|  | int r_type) | 
|  | { | 
|  | struct mips_got_entry lookup, *entry; | 
|  | void **loc; | 
|  | struct mips_got_info *g; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | bfd_vma gotidx; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | g = mips_elf_bfd_got (ibfd, false); | 
|  | if (g == NULL) | 
|  | { | 
|  | g = mips_elf_bfd_got (abfd, false); | 
|  | BFD_ASSERT (g != NULL); | 
|  | } | 
|  |  | 
|  | /* This function shouldn't be called for symbols that live in the global | 
|  | area of the GOT.  */ | 
|  | BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); | 
|  |  | 
|  | lookup.tls_type = mips_elf_reloc_tls_type (r_type); | 
|  | if (lookup.tls_type) | 
|  | { | 
|  | lookup.abfd = ibfd; | 
|  | if (tls_ldm_reloc_p (r_type)) | 
|  | { | 
|  | lookup.symndx = 0; | 
|  | lookup.d.addend = 0; | 
|  | } | 
|  | else if (h == NULL) | 
|  | { | 
|  | lookup.symndx = r_symndx; | 
|  | lookup.d.addend = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | lookup.symndx = -1; | 
|  | lookup.d.h = h; | 
|  | } | 
|  |  | 
|  | entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); | 
|  | BFD_ASSERT (entry); | 
|  |  | 
|  | gotidx = entry->gotidx; | 
|  | BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | lookup.abfd = NULL; | 
|  | lookup.symndx = -1; | 
|  | lookup.d.address = value; | 
|  | loc = htab_find_slot (g->got_entries, &lookup, INSERT); | 
|  | if (!loc) | 
|  | return NULL; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *loc; | 
|  | if (entry) | 
|  | return entry; | 
|  |  | 
|  | if (g->assigned_low_gotno > g->assigned_high_gotno) | 
|  | { | 
|  | /* We didn't allocate enough space in the GOT.  */ | 
|  | _bfd_error_handler | 
|  | (_("not enough GOT space for local GOT entries")); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | if (got16_reloc_p (r_type) | 
|  | || call16_reloc_p (r_type) | 
|  | || got_page_reloc_p (r_type) | 
|  | || got_disp_reloc_p (r_type)) | 
|  | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; | 
|  | else | 
|  | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; | 
|  |  | 
|  | *entry = lookup; | 
|  | *loc = entry; | 
|  |  | 
|  | MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx); | 
|  |  | 
|  | /* These GOT entries need a dynamic relocation on VxWorks.  */ | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | asection *s; | 
|  | bfd_byte *rloc; | 
|  | bfd_vma got_address; | 
|  |  | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | got_address = (htab->root.sgot->output_section->vma | 
|  | + htab->root.sgot->output_offset | 
|  | + entry->gotidx); | 
|  |  | 
|  | rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | 
|  | outrel.r_offset = got_address; | 
|  | outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); | 
|  | outrel.r_addend = value; | 
|  | bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Return the number of dynamic section symbols required by OUTPUT_BFD. | 
|  | The number might be exact or a worst-case estimate, depending on how | 
|  | much information is available to elf_backend_omit_section_dynsym at | 
|  | the current linking stage.  */ | 
|  |  | 
|  | static bfd_size_type | 
|  | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd_size_type count; | 
|  |  | 
|  | count = 0; | 
|  | if (bfd_link_pic (info) | 
|  | || elf_hash_table (info)->is_relocatable_executable) | 
|  | { | 
|  | asection *p; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | bed = get_elf_backend_data (output_bfd); | 
|  | for (p = output_bfd->sections; p ; p = p->next) | 
|  | if ((p->flags & SEC_EXCLUDE) == 0 | 
|  | && (p->flags & SEC_ALLOC) != 0 | 
|  | && elf_hash_table (info)->dynamic_relocs | 
|  | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | 
|  | ++count; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* Sort the dynamic symbol table so that symbols that need GOT entries | 
|  | appear towards the end.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_hash_sort_data hsd; | 
|  | struct mips_got_info *g; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (htab->root.dynsymcount == 0) | 
|  | return true; | 
|  |  | 
|  | g = htab->got_info; | 
|  | if (g == NULL) | 
|  | return true; | 
|  |  | 
|  | hsd.low = NULL; | 
|  | hsd.max_unref_got_dynindx | 
|  | = hsd.min_got_dynindx | 
|  | = (htab->root.dynsymcount - g->reloc_only_gotno); | 
|  | /* Add 1 to local symbol indices to account for the mandatory NULL entry | 
|  | at the head of the table; see `_bfd_elf_link_renumber_dynsyms'.  */ | 
|  | hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1; | 
|  | hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1; | 
|  | hsd.output_bfd = abfd; | 
|  | if (htab->root.dynobj != NULL | 
|  | && htab->root.dynamic_sections_created | 
|  | && info->emit_gnu_hash) | 
|  | { | 
|  | asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash"); | 
|  | BFD_ASSERT (s != NULL); | 
|  | hsd.mipsxhash = s->contents; | 
|  | BFD_ASSERT (hsd.mipsxhash != NULL); | 
|  | } | 
|  | else | 
|  | hsd.mipsxhash = NULL; | 
|  | mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd); | 
|  |  | 
|  | /* There should have been enough room in the symbol table to | 
|  | accommodate both the GOT and non-GOT symbols.  */ | 
|  | BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1); | 
|  | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); | 
|  | BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount); | 
|  | BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno); | 
|  |  | 
|  | /* Now we know which dynamic symbol has the lowest dynamic symbol | 
|  | table index in the GOT.  */ | 
|  | htab->global_gotsym = hsd.low; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If H needs a GOT entry, assign it the highest available dynamic | 
|  | index.  Otherwise, assign it the lowest available dynamic | 
|  | index.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) | 
|  | { | 
|  | struct mips_elf_hash_sort_data *hsd = data; | 
|  |  | 
|  | /* Symbols without dynamic symbol table entries aren't interesting | 
|  | at all.  */ | 
|  | if (h->root.dynindx == -1) | 
|  | return true; | 
|  |  | 
|  | switch (h->global_got_area) | 
|  | { | 
|  | case GGA_NONE: | 
|  | if (h->root.forced_local) | 
|  | h->root.dynindx = hsd->max_local_dynindx++; | 
|  | else | 
|  | h->root.dynindx = hsd->max_non_got_dynindx++; | 
|  | break; | 
|  |  | 
|  | case GGA_NORMAL: | 
|  | h->root.dynindx = --hsd->min_got_dynindx; | 
|  | hsd->low = (struct elf_link_hash_entry *) h; | 
|  | break; | 
|  |  | 
|  | case GGA_RELOC_ONLY: | 
|  | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) | 
|  | hsd->low = (struct elf_link_hash_entry *) h; | 
|  | h->root.dynindx = hsd->max_unref_got_dynindx++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Populate the .MIPS.xhash translation table entry with | 
|  | the symbol dynindx.  */ | 
|  | if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL) | 
|  | bfd_put_32 (hsd->output_bfd, h->root.dynindx, | 
|  | hsd->mipsxhash + h->mipsxhash_loc); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Record that input bfd ABFD requires a GOT entry like *LOOKUP | 
|  | (which is owned by the caller and shouldn't be added to the | 
|  | hash table directly).  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, | 
|  | struct mips_got_entry *lookup) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_entry *entry; | 
|  | struct mips_got_info *g; | 
|  | void **loc, **bfd_loc; | 
|  |  | 
|  | /* Make sure there's a slot for this entry in the master GOT.  */ | 
|  | htab = mips_elf_hash_table (info); | 
|  | g = htab->got_info; | 
|  | loc = htab_find_slot (g->got_entries, lookup, INSERT); | 
|  | if (!loc) | 
|  | return false; | 
|  |  | 
|  | /* Populate the entry if it isn't already.  */ | 
|  | entry = (struct mips_got_entry *) *loc; | 
|  | if (!entry) | 
|  | { | 
|  | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); | 
|  | if (!entry) | 
|  | return false; | 
|  |  | 
|  | lookup->tls_initialized = false; | 
|  | lookup->gotidx = -1; | 
|  | *entry = *lookup; | 
|  | *loc = entry; | 
|  | } | 
|  |  | 
|  | /* Reuse the same GOT entry for the BFD's GOT.  */ | 
|  | g = mips_elf_bfd_got (abfd, true); | 
|  | if (!g) | 
|  | return false; | 
|  |  | 
|  | bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); | 
|  | if (!bfd_loc) | 
|  | return false; | 
|  |  | 
|  | if (!*bfd_loc) | 
|  | *bfd_loc = entry; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT | 
|  | entry for it.  FOR_CALL is true if the caller is only interested in | 
|  | using the GOT entry for calls.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, | 
|  | bfd *abfd, struct bfd_link_info *info, | 
|  | bool for_call, int r_type) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  | struct mips_got_entry entry; | 
|  | unsigned char tls_type; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  | if (!for_call) | 
|  | hmips->got_only_for_calls = false; | 
|  |  | 
|  | /* A global symbol in the GOT must also be in the dynamic symbol | 
|  | table.  */ | 
|  | if (h->dynindx == -1) | 
|  | { | 
|  | switch (ELF_ST_VISIBILITY (h->other)) | 
|  | { | 
|  | case STV_INTERNAL: | 
|  | case STV_HIDDEN: | 
|  | _bfd_mips_elf_hide_symbol (info, h, true); | 
|  | break; | 
|  | } | 
|  | if (!bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | tls_type = mips_elf_reloc_tls_type (r_type); | 
|  | if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) | 
|  | hmips->global_got_area = GGA_NORMAL; | 
|  |  | 
|  | entry.abfd = abfd; | 
|  | entry.symndx = -1; | 
|  | entry.d.h = (struct mips_elf_link_hash_entry *) h; | 
|  | entry.tls_type = tls_type; | 
|  | return mips_elf_record_got_entry (info, abfd, &entry); | 
|  | } | 
|  |  | 
|  | /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, | 
|  | where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, | 
|  | struct bfd_link_info *info, int r_type) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_info *g; | 
|  | struct mips_got_entry entry; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | g = htab->got_info; | 
|  | BFD_ASSERT (g != NULL); | 
|  |  | 
|  | entry.abfd = abfd; | 
|  | entry.symndx = symndx; | 
|  | entry.d.addend = addend; | 
|  | entry.tls_type = mips_elf_reloc_tls_type (r_type); | 
|  | return mips_elf_record_got_entry (info, abfd, &entry); | 
|  | } | 
|  |  | 
|  | /* Record that ABFD has a page relocation against SYMNDX + ADDEND. | 
|  | H is the symbol's hash table entry, or null if SYMNDX is local | 
|  | to ABFD.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, | 
|  | long symndx, struct elf_link_hash_entry *h, | 
|  | bfd_signed_vma addend) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_info *g1, *g2; | 
|  | struct mips_got_page_ref lookup, *entry; | 
|  | void **loc, **bfd_loc; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | g1 = htab->got_info; | 
|  | BFD_ASSERT (g1 != NULL); | 
|  |  | 
|  | if (h) | 
|  | { | 
|  | lookup.symndx = -1; | 
|  | lookup.u.h = (struct mips_elf_link_hash_entry *) h; | 
|  | } | 
|  | else | 
|  | { | 
|  | lookup.symndx = symndx; | 
|  | lookup.u.abfd = abfd; | 
|  | } | 
|  | lookup.addend = addend; | 
|  | loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); | 
|  | if (loc == NULL) | 
|  | return false; | 
|  |  | 
|  | entry = (struct mips_got_page_ref *) *loc; | 
|  | if (!entry) | 
|  | { | 
|  | entry = bfd_alloc (abfd, sizeof (*entry)); | 
|  | if (!entry) | 
|  | return false; | 
|  |  | 
|  | *entry = lookup; | 
|  | *loc = entry; | 
|  | } | 
|  |  | 
|  | /* Add the same entry to the BFD's GOT.  */ | 
|  | g2 = mips_elf_bfd_got (abfd, true); | 
|  | if (!g2) | 
|  | return false; | 
|  |  | 
|  | bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); | 
|  | if (!bfd_loc) | 
|  | return false; | 
|  |  | 
|  | if (!*bfd_loc) | 
|  | *bfd_loc = entry; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, | 
|  | unsigned int n) | 
|  | { | 
|  | asection *s; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | BFD_ASSERT (s != NULL); | 
|  |  | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | 
|  | else | 
|  | { | 
|  | if (s->size == 0) | 
|  | { | 
|  | /* Make room for a null element.  */ | 
|  | s->size += MIPS_ELF_REL_SIZE (abfd); | 
|  | ++s->reloc_count; | 
|  | } | 
|  | s->size += n * MIPS_ELF_REL_SIZE (abfd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for GOT entries, with DATA pointing to a | 
|  | mips_elf_traverse_got_arg structure.  Count the number of GOT | 
|  | entries and TLS relocs.  Set DATA->value to true if we need | 
|  | to resolve indirect or warning symbols and then recreate the GOT.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_check_recreate_got (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | if (entry->abfd != NULL && entry->symndx == -1) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *h; | 
|  |  | 
|  | h = entry->d.h; | 
|  | if (h->root.root.type == bfd_link_hash_indirect | 
|  | || h->root.root.type == bfd_link_hash_warning) | 
|  | { | 
|  | arg->value = true; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | mips_elf_count_got_entry (arg->info, arg->g, entry); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for GOT entries, with DATA pointing to a | 
|  | mips_elf_traverse_got_arg structure.  Add all entries to DATA->g, | 
|  | converting entries for indirect and warning symbols into entries | 
|  | for the target symbol.  Set DATA->g to null on error.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_recreate_got (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_entry new_entry, *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  | void **slot; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | if (entry->abfd != NULL | 
|  | && entry->symndx == -1 | 
|  | && (entry->d.h->root.root.type == bfd_link_hash_indirect | 
|  | || entry->d.h->root.root.type == bfd_link_hash_warning)) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *h; | 
|  |  | 
|  | new_entry = *entry; | 
|  | entry = &new_entry; | 
|  | h = entry->d.h; | 
|  | do | 
|  | { | 
|  | BFD_ASSERT (h->global_got_area == GGA_NONE); | 
|  | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | 
|  | } | 
|  | while (h->root.root.type == bfd_link_hash_indirect | 
|  | || h->root.root.type == bfd_link_hash_warning); | 
|  | entry->d.h = h; | 
|  | } | 
|  | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); | 
|  | if (slot == NULL) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  | if (*slot == NULL) | 
|  | { | 
|  | if (entry == &new_entry) | 
|  | { | 
|  | entry = bfd_alloc (entry->abfd, sizeof (*entry)); | 
|  | if (!entry) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  | *entry = new_entry; | 
|  | } | 
|  | *slot = entry; | 
|  | mips_elf_count_got_entry (arg->info, arg->g, entry); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Return the maximum number of GOT page entries required for RANGE.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_pages_for_range (const struct mips_got_page_range *range) | 
|  | { | 
|  | return (range->max_addend - range->min_addend + 0x1ffff) >> 16; | 
|  | } | 
|  |  | 
|  | /* Record that G requires a page entry that can reach SEC + ADDEND.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, | 
|  | asection *sec, bfd_signed_vma addend) | 
|  | { | 
|  | struct mips_got_info *g = arg->g; | 
|  | struct mips_got_page_entry lookup, *entry; | 
|  | struct mips_got_page_range **range_ptr, *range; | 
|  | bfd_vma old_pages, new_pages; | 
|  | void **loc; | 
|  |  | 
|  | /* Find the mips_got_page_entry hash table entry for this section.  */ | 
|  | lookup.sec = sec; | 
|  | loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); | 
|  | if (loc == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Create a mips_got_page_entry if this is the first time we've | 
|  | seen the section.  */ | 
|  | entry = (struct mips_got_page_entry *) *loc; | 
|  | if (!entry) | 
|  | { | 
|  | entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); | 
|  | if (!entry) | 
|  | return false; | 
|  |  | 
|  | entry->sec = sec; | 
|  | *loc = entry; | 
|  | } | 
|  |  | 
|  | /* Skip over ranges whose maximum extent cannot share a page entry | 
|  | with ADDEND.  */ | 
|  | range_ptr = &entry->ranges; | 
|  | while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) | 
|  | range_ptr = &(*range_ptr)->next; | 
|  |  | 
|  | /* If we scanned to the end of the list, or found a range whose | 
|  | minimum extent cannot share a page entry with ADDEND, create | 
|  | a new singleton range.  */ | 
|  | range = *range_ptr; | 
|  | if (!range || addend < range->min_addend - 0xffff) | 
|  | { | 
|  | range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); | 
|  | if (!range) | 
|  | return false; | 
|  |  | 
|  | range->next = *range_ptr; | 
|  | range->min_addend = addend; | 
|  | range->max_addend = addend; | 
|  |  | 
|  | *range_ptr = range; | 
|  | entry->num_pages++; | 
|  | g->page_gotno++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Remember how many pages the old range contributed.  */ | 
|  | old_pages = mips_elf_pages_for_range (range); | 
|  |  | 
|  | /* Update the ranges.  */ | 
|  | if (addend < range->min_addend) | 
|  | range->min_addend = addend; | 
|  | else if (addend > range->max_addend) | 
|  | { | 
|  | if (range->next && addend >= range->next->min_addend - 0xffff) | 
|  | { | 
|  | old_pages += mips_elf_pages_for_range (range->next); | 
|  | range->max_addend = range->next->max_addend; | 
|  | range->next = range->next->next; | 
|  | } | 
|  | else | 
|  | range->max_addend = addend; | 
|  | } | 
|  |  | 
|  | /* Record any change in the total estimate.  */ | 
|  | new_pages = mips_elf_pages_for_range (range); | 
|  | if (old_pages != new_pages) | 
|  | { | 
|  | entry->num_pages += new_pages - old_pages; | 
|  | g->page_gotno += new_pages - old_pages; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for which *REFP points to a mips_got_page_ref | 
|  | and for which DATA points to a mips_elf_traverse_got_arg.  Work out | 
|  | whether the page reference described by *REFP needs a GOT page entry, | 
|  | and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_resolve_got_page_ref (void **refp, void *data) | 
|  | { | 
|  | struct mips_got_page_ref *ref; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | asection *sec; | 
|  | bfd_vma addend; | 
|  |  | 
|  | ref = (struct mips_got_page_ref *) *refp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | htab = mips_elf_hash_table (arg->info); | 
|  |  | 
|  | if (ref->symndx < 0) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *h; | 
|  |  | 
|  | /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */ | 
|  | h = ref->u.h; | 
|  | if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) | 
|  | return 1; | 
|  |  | 
|  | /* Ignore undefined symbols; we'll issue an error later if | 
|  | appropriate.  */ | 
|  | if (!((h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak) | 
|  | && h->root.root.u.def.section)) | 
|  | return 1; | 
|  |  | 
|  | sec = h->root.root.u.def.section; | 
|  | addend = h->root.root.u.def.value + ref->addend; | 
|  | } | 
|  | else | 
|  | { | 
|  | Elf_Internal_Sym *isym; | 
|  |  | 
|  | /* Read in the symbol.  */ | 
|  | isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd, | 
|  | ref->symndx); | 
|  | if (isym == NULL) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get the associated input section.  */ | 
|  | sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); | 
|  | if (sec == NULL) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If this is a mergable section, work out the section and offset | 
|  | of the merged data.  For section symbols, the addend specifies | 
|  | of the offset _of_ the first byte in the data, otherwise it | 
|  | specifies the offset _from_ the first byte.  */ | 
|  | if (sec->flags & SEC_MERGE) | 
|  | { | 
|  | void *secinfo; | 
|  |  | 
|  | secinfo = elf_section_data (sec)->sec_info; | 
|  | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | 
|  | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, | 
|  | isym->st_value + ref->addend); | 
|  | else | 
|  | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, | 
|  | isym->st_value) + ref->addend; | 
|  | } | 
|  | else | 
|  | addend = isym->st_value + ref->addend; | 
|  | } | 
|  | if (!mips_elf_record_got_page_entry (arg, sec, addend)) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* If any entries in G->got_entries are for indirect or warning symbols, | 
|  | replace them with entries for the target symbol.  Convert g->got_page_refs | 
|  | into got_page_entry structures and estimate the number of page entries | 
|  | that they require.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_resolve_final_got_entries (struct bfd_link_info *info, | 
|  | struct mips_got_info *g) | 
|  | { | 
|  | struct mips_elf_traverse_got_arg tga; | 
|  | struct mips_got_info oldg; | 
|  |  | 
|  | oldg = *g; | 
|  |  | 
|  | tga.info = info; | 
|  | tga.g = g; | 
|  | tga.value = false; | 
|  | htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); | 
|  | if (tga.value) | 
|  | { | 
|  | *g = oldg; | 
|  | g->got_entries = htab_create (htab_size (oldg.got_entries), | 
|  | mips_elf_got_entry_hash, | 
|  | mips_elf_got_entry_eq, NULL); | 
|  | if (!g->got_entries) | 
|  | return false; | 
|  |  | 
|  | htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); | 
|  | if (!tga.g) | 
|  | return false; | 
|  |  | 
|  | htab_delete (oldg.got_entries); | 
|  | } | 
|  |  | 
|  | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, | 
|  | mips_got_page_entry_eq, NULL); | 
|  | if (g->got_page_entries == NULL) | 
|  | return false; | 
|  |  | 
|  | tga.info = info; | 
|  | tga.g = g; | 
|  | htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if a GOT entry for H should live in the local rather than | 
|  | global GOT area.  */ | 
|  |  | 
|  | static bool | 
|  | mips_use_local_got_p (struct bfd_link_info *info, | 
|  | struct mips_elf_link_hash_entry *h) | 
|  | { | 
|  | /* Symbols that aren't in the dynamic symbol table must live in the | 
|  | local GOT.  This includes symbols that are completely undefined | 
|  | and which therefore don't bind locally.  We'll report undefined | 
|  | symbols later if appropriate.  */ | 
|  | if (h->root.dynindx == -1) | 
|  | return true; | 
|  |  | 
|  | /* Absolute symbols, if ever they need a GOT entry, cannot ever go | 
|  | to the local GOT, as they would be implicitly relocated by the | 
|  | base address by the dynamic loader.  */ | 
|  | if (bfd_is_abs_symbol (&h->root.root)) | 
|  | return false; | 
|  |  | 
|  | /* Symbols that bind locally can (and in the case of forced-local | 
|  | symbols, must) live in the local GOT.  */ | 
|  | if (h->got_only_for_calls | 
|  | ? SYMBOL_CALLS_LOCAL (info, &h->root) | 
|  | : SYMBOL_REFERENCES_LOCAL (info, &h->root)) | 
|  | return true; | 
|  |  | 
|  | /* If this is an executable that must provide a definition of the symbol, | 
|  | either though PLTs or copy relocations, then that address should go in | 
|  | the local rather than global GOT.  */ | 
|  | if (bfd_link_executable (info) && h->has_static_relocs) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* A mips_elf_link_hash_traverse callback for which DATA points to the | 
|  | link_info structure.  Decide whether the hash entry needs an entry in | 
|  | the global part of the primary GOT, setting global_got_area accordingly. | 
|  | Count the number of global symbols that are in the primary GOT only | 
|  | because they have relocations against them (reloc_only_gotno).  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_info *g; | 
|  |  | 
|  | info = (struct bfd_link_info *) data; | 
|  | htab = mips_elf_hash_table (info); | 
|  | g = htab->got_info; | 
|  | if (h->global_got_area != GGA_NONE) | 
|  | { | 
|  | /* Make a final decision about whether the symbol belongs in the | 
|  | local or global GOT.  */ | 
|  | if (mips_use_local_got_p (info, h)) | 
|  | /* The symbol belongs in the local GOT.  We no longer need this | 
|  | entry if it was only used for relocations; those relocations | 
|  | will be against the null or section symbol instead of H.  */ | 
|  | h->global_got_area = GGA_NONE; | 
|  | else if (htab->root.target_os == is_vxworks | 
|  | && h->got_only_for_calls | 
|  | && h->root.plt.plist->mips_offset != MINUS_ONE) | 
|  | /* On VxWorks, calls can refer directly to the .got.plt entry; | 
|  | they don't need entries in the regular GOT.  .got.plt entries | 
|  | will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */ | 
|  | h->global_got_area = GGA_NONE; | 
|  | else if (h->global_got_area == GGA_RELOC_ONLY) | 
|  | { | 
|  | g->reloc_only_gotno++; | 
|  | g->global_gotno++; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for GOT entries.  Add each one to the GOT | 
|  | given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_add_got_entry (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  | void **slot; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); | 
|  | if (!slot) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  | if (!*slot) | 
|  | { | 
|  | *slot = entry; | 
|  | mips_elf_count_got_entry (arg->info, arg->g, entry); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for GOT page entries.  Add each one to the GOT | 
|  | given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_add_got_page_entry (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_page_entry *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  | void **slot; | 
|  |  | 
|  | entry = (struct mips_got_page_entry *) *entryp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); | 
|  | if (!slot) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  | if (!*slot) | 
|  | { | 
|  | *slot = entry; | 
|  | arg->g->page_gotno += entry->num_pages; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if | 
|  | this would lead to overflow, 1 if they were merged successfully, | 
|  | and 0 if a merge failed due to lack of memory.  (These values are chosen | 
|  | so that nonnegative return values can be returned by a htab_traverse | 
|  | callback.)  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, | 
|  | struct mips_got_info *to, | 
|  | struct mips_elf_got_per_bfd_arg *arg) | 
|  | { | 
|  | struct mips_elf_traverse_got_arg tga; | 
|  | unsigned int estimate; | 
|  |  | 
|  | /* Work out how many page entries we would need for the combined GOT.  */ | 
|  | estimate = arg->max_pages; | 
|  | if (estimate >= from->page_gotno + to->page_gotno) | 
|  | estimate = from->page_gotno + to->page_gotno; | 
|  |  | 
|  | /* And conservatively estimate how many local and TLS entries | 
|  | would be needed.  */ | 
|  | estimate += from->local_gotno + to->local_gotno; | 
|  | estimate += from->tls_gotno + to->tls_gotno; | 
|  |  | 
|  | /* If we're merging with the primary got, any TLS relocations will | 
|  | come after the full set of global entries.  Otherwise estimate those | 
|  | conservatively as well.  */ | 
|  | if (to == arg->primary && from->tls_gotno + to->tls_gotno) | 
|  | estimate += arg->global_count; | 
|  | else | 
|  | estimate += from->global_gotno + to->global_gotno; | 
|  |  | 
|  | /* Bail out if the combined GOT might be too big.  */ | 
|  | if (estimate > arg->max_count) | 
|  | return -1; | 
|  |  | 
|  | /* Transfer the bfd's got information from FROM to TO.  */ | 
|  | tga.info = arg->info; | 
|  | tga.g = to; | 
|  | htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); | 
|  | if (!tga.g) | 
|  | return 0; | 
|  |  | 
|  | htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); | 
|  | if (!tga.g) | 
|  | return 0; | 
|  |  | 
|  | mips_elf_replace_bfd_got (abfd, to); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much | 
|  | as possible of the primary got, since it doesn't require explicit | 
|  | dynamic relocations, but don't use bfds that would reference global | 
|  | symbols out of the addressable range.  Failing the primary got, | 
|  | attempt to merge with the current got, or finish the current got | 
|  | and then make make the new got current.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, | 
|  | struct mips_elf_got_per_bfd_arg *arg) | 
|  | { | 
|  | unsigned int estimate; | 
|  | int result; | 
|  |  | 
|  | if (!mips_elf_resolve_final_got_entries (arg->info, g)) | 
|  | return false; | 
|  |  | 
|  | /* Work out the number of page, local and TLS entries.  */ | 
|  | estimate = arg->max_pages; | 
|  | if (estimate > g->page_gotno) | 
|  | estimate = g->page_gotno; | 
|  | estimate += g->local_gotno + g->tls_gotno; | 
|  |  | 
|  | /* We place TLS GOT entries after both locals and globals.  The globals | 
|  | for the primary GOT may overflow the normal GOT size limit, so be | 
|  | sure not to merge a GOT which requires TLS with the primary GOT in that | 
|  | case.  This doesn't affect non-primary GOTs.  */ | 
|  | estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); | 
|  |  | 
|  | if (estimate <= arg->max_count) | 
|  | { | 
|  | /* If we don't have a primary GOT, use it as | 
|  | a starting point for the primary GOT.  */ | 
|  | if (!arg->primary) | 
|  | { | 
|  | arg->primary = g; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Try merging with the primary GOT.  */ | 
|  | result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); | 
|  | if (result >= 0) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* If we can merge with the last-created got, do it.  */ | 
|  | if (arg->current) | 
|  | { | 
|  | result = mips_elf_merge_got_with (abfd, g, arg->current, arg); | 
|  | if (result >= 0) | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Well, we couldn't merge, so create a new GOT.  Don't check if it | 
|  | fits; if it turns out that it doesn't, we'll get relocation | 
|  | overflows anyway.  */ | 
|  | g->next = arg->current; | 
|  | arg->current = g; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx | 
|  | to GOTIDX, duplicating the entry if it has already been assigned | 
|  | an index in a different GOT.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_set_gotidx (void **entryp, long gotidx) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | if (entry->gotidx > 0) | 
|  | { | 
|  | struct mips_got_entry *new_entry; | 
|  |  | 
|  | new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); | 
|  | if (!new_entry) | 
|  | return false; | 
|  |  | 
|  | *new_entry = *entry; | 
|  | *entryp = new_entry; | 
|  | entry = new_entry; | 
|  | } | 
|  | entry->gotidx = gotidx; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a | 
|  | mips_elf_traverse_got_arg in which DATA->value is the size of one | 
|  | GOT entry.  Set DATA->g to null on failure.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_initialize_tls_index (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  |  | 
|  | /* We're only interested in TLS symbols.  */ | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | if (entry->tls_type == GOT_TLS_NONE) | 
|  | return 1; | 
|  |  | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Account for the entries we've just allocated.  */ | 
|  | arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for GOT entries, where DATA points to a | 
|  | mips_elf_traverse_got_arg.  Set the global_got_area of each global | 
|  | symbol to DATA->value.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_set_global_got_area (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | if (entry->abfd != NULL | 
|  | && entry->symndx == -1 | 
|  | && entry->d.h->global_got_area != GGA_NONE) | 
|  | entry->d.h->global_got_area = arg->value; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for secondary GOT entries, where DATA points | 
|  | to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries | 
|  | and record the number of relocations they require.  DATA->value is | 
|  | the size of one GOT entry.  Set DATA->g to null on failure.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_set_global_gotidx (void **entryp, void *data) | 
|  | { | 
|  | struct mips_got_entry *entry; | 
|  | struct mips_elf_traverse_got_arg *arg; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | arg = (struct mips_elf_traverse_got_arg *) data; | 
|  | if (entry->abfd != NULL | 
|  | && entry->symndx == -1 | 
|  | && entry->d.h->global_got_area != GGA_NONE) | 
|  | { | 
|  | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) | 
|  | { | 
|  | arg->g = NULL; | 
|  | return 0; | 
|  | } | 
|  | arg->g->assigned_low_gotno += 1; | 
|  |  | 
|  | if (bfd_link_pic (arg->info) | 
|  | || (elf_hash_table (arg->info)->dynamic_sections_created | 
|  | && entry->d.h->root.def_dynamic | 
|  | && !entry->d.h->root.def_regular)) | 
|  | arg->g->relocs += 1; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* A htab_traverse callback for GOT entries for which DATA is the | 
|  | bfd_link_info.  Forbid any global symbols from having traditional | 
|  | lazy-binding stubs.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_forbid_lazy_stubs (void **entryp, void *data) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_got_entry *entry; | 
|  |  | 
|  | entry = (struct mips_got_entry *) *entryp; | 
|  | info = (struct bfd_link_info *) data; | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (entry->abfd != NULL | 
|  | && entry->symndx == -1 | 
|  | && entry->d.h->needs_lazy_stub) | 
|  | { | 
|  | entry->d.h->needs_lazy_stub = false; | 
|  | htab->lazy_stub_count--; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Return the offset of an input bfd IBFD's GOT from the beginning of | 
|  | the primary GOT.  */ | 
|  | static bfd_vma | 
|  | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) | 
|  | { | 
|  | if (!g->next) | 
|  | return 0; | 
|  |  | 
|  | g = mips_elf_bfd_got (ibfd, false); | 
|  | if (! g) | 
|  | return 0; | 
|  |  | 
|  | BFD_ASSERT (g->next); | 
|  |  | 
|  | g = g->next; | 
|  |  | 
|  | return (g->local_gotno + g->global_gotno + g->tls_gotno) | 
|  | * MIPS_ELF_GOT_SIZE (abfd); | 
|  | } | 
|  |  | 
|  | /* Turn a single GOT that is too big for 16-bit addressing into | 
|  | a sequence of GOTs, each one 16-bit addressable.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, | 
|  | asection *got, bfd_size_type pages) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | 
|  | struct mips_elf_traverse_got_arg tga; | 
|  | struct mips_got_info *g, *gg; | 
|  | unsigned int assign, needed_relocs; | 
|  | bfd *dynobj, *ibfd; | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | g = htab->got_info; | 
|  |  | 
|  | got_per_bfd_arg.obfd = abfd; | 
|  | got_per_bfd_arg.info = info; | 
|  | got_per_bfd_arg.current = NULL; | 
|  | got_per_bfd_arg.primary = NULL; | 
|  | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) | 
|  | / MIPS_ELF_GOT_SIZE (abfd)) | 
|  | - htab->reserved_gotno); | 
|  | got_per_bfd_arg.max_pages = pages; | 
|  | /* The number of globals that will be included in the primary GOT. | 
|  | See the calls to mips_elf_set_global_got_area below for more | 
|  | information.  */ | 
|  | got_per_bfd_arg.global_count = g->global_gotno; | 
|  |  | 
|  | /* Try to merge the GOTs of input bfds together, as long as they | 
|  | don't seem to exceed the maximum GOT size, choosing one of them | 
|  | to be the primary GOT.  */ | 
|  | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) | 
|  | { | 
|  | gg = mips_elf_bfd_got (ibfd, false); | 
|  | if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If we do not find any suitable primary GOT, create an empty one.  */ | 
|  | if (got_per_bfd_arg.primary == NULL) | 
|  | g->next = mips_elf_create_got_info (abfd); | 
|  | else | 
|  | g->next = got_per_bfd_arg.primary; | 
|  | g->next->next = got_per_bfd_arg.current; | 
|  |  | 
|  | /* GG is now the master GOT, and G is the primary GOT.  */ | 
|  | gg = g; | 
|  | g = g->next; | 
|  |  | 
|  | /* Map the output bfd to the primary got.  That's what we're going | 
|  | to use for bfds that use GOT16 or GOT_PAGE relocations that we | 
|  | didn't mark in check_relocs, and we want a quick way to find it. | 
|  | We can't just use gg->next because we're going to reverse the | 
|  | list.  */ | 
|  | mips_elf_replace_bfd_got (abfd, g); | 
|  |  | 
|  | /* Every symbol that is referenced in a dynamic relocation must be | 
|  | present in the primary GOT, so arrange for them to appear after | 
|  | those that are actually referenced.  */ | 
|  | gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; | 
|  | g->global_gotno = gg->global_gotno; | 
|  |  | 
|  | tga.info = info; | 
|  | tga.value = GGA_RELOC_ONLY; | 
|  | htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); | 
|  | tga.value = GGA_NORMAL; | 
|  | htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); | 
|  |  | 
|  | /* Now go through the GOTs assigning them offset ranges. | 
|  | [assigned_low_gotno, local_gotno[ will be set to the range of local | 
|  | entries in each GOT.  We can then compute the end of a GOT by | 
|  | adding local_gotno to global_gotno.  We reverse the list and make | 
|  | it circular since then we'll be able to quickly compute the | 
|  | beginning of a GOT, by computing the end of its predecessor.  To | 
|  | avoid special cases for the primary GOT, while still preserving | 
|  | assertions that are valid for both single- and multi-got links, | 
|  | we arrange for the main got struct to have the right number of | 
|  | global entries, but set its local_gotno such that the initial | 
|  | offset of the primary GOT is zero.  Remember that the primary GOT | 
|  | will become the last item in the circular linked list, so it | 
|  | points back to the master GOT.  */ | 
|  | gg->local_gotno = -g->global_gotno; | 
|  | gg->global_gotno = g->global_gotno; | 
|  | gg->tls_gotno = 0; | 
|  | assign = 0; | 
|  | gg->next = gg; | 
|  |  | 
|  | do | 
|  | { | 
|  | struct mips_got_info *gn; | 
|  |  | 
|  | assign += htab->reserved_gotno; | 
|  | g->assigned_low_gotno = assign; | 
|  | g->local_gotno += assign; | 
|  | g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); | 
|  | g->assigned_high_gotno = g->local_gotno - 1; | 
|  | assign = g->local_gotno + g->global_gotno + g->tls_gotno; | 
|  |  | 
|  | /* Take g out of the direct list, and push it onto the reversed | 
|  | list that gg points to.  g->next is guaranteed to be nonnull after | 
|  | this operation, as required by mips_elf_initialize_tls_index. */ | 
|  | gn = g->next; | 
|  | g->next = gg->next; | 
|  | gg->next = g; | 
|  |  | 
|  | /* Set up any TLS entries.  We always place the TLS entries after | 
|  | all non-TLS entries.  */ | 
|  | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | 
|  | tga.g = g; | 
|  | tga.value = MIPS_ELF_GOT_SIZE (abfd); | 
|  | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); | 
|  | if (!tga.g) | 
|  | return false; | 
|  | BFD_ASSERT (g->tls_assigned_gotno == assign); | 
|  |  | 
|  | /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */ | 
|  | g = gn; | 
|  |  | 
|  | /* Forbid global symbols in every non-primary GOT from having | 
|  | lazy-binding stubs.  */ | 
|  | if (g) | 
|  | htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); | 
|  | } | 
|  | while (g); | 
|  |  | 
|  | got->size = assign * MIPS_ELF_GOT_SIZE (abfd); | 
|  |  | 
|  | needed_relocs = 0; | 
|  | for (g = gg->next; g && g->next != gg; g = g->next) | 
|  | { | 
|  | unsigned int save_assign; | 
|  |  | 
|  | /* Assign offsets to global GOT entries and count how many | 
|  | relocations they need.  */ | 
|  | save_assign = g->assigned_low_gotno; | 
|  | g->assigned_low_gotno = g->local_gotno; | 
|  | tga.info = info; | 
|  | tga.value = MIPS_ELF_GOT_SIZE (abfd); | 
|  | tga.g = g; | 
|  | htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); | 
|  | if (!tga.g) | 
|  | return false; | 
|  | BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); | 
|  | g->assigned_low_gotno = save_assign; | 
|  |  | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | g->relocs += g->local_gotno - g->assigned_low_gotno; | 
|  | BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno | 
|  | + g->next->global_gotno | 
|  | + g->next->tls_gotno | 
|  | + htab->reserved_gotno); | 
|  | } | 
|  | needed_relocs += g->relocs; | 
|  | } | 
|  | needed_relocs += g->relocs; | 
|  |  | 
|  | if (needed_relocs) | 
|  | mips_elf_allocate_dynamic_relocations (dynobj, info, | 
|  | needed_relocs); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Returns the first relocation of type r_type found, beginning with | 
|  | RELOCATION.  RELEND is one-past-the-end of the relocation table.  */ | 
|  |  | 
|  | static const Elf_Internal_Rela * | 
|  | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | const Elf_Internal_Rela *relend) | 
|  | { | 
|  | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); | 
|  |  | 
|  | while (relocation < relend) | 
|  | { | 
|  | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type | 
|  | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) | 
|  | return relocation; | 
|  |  | 
|  | ++relocation; | 
|  | } | 
|  |  | 
|  | /* We didn't find it.  */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Return whether an input relocation is against a local symbol.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_local_relocation_p (bfd *input_bfd, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | asection **local_sections) | 
|  | { | 
|  | unsigned long r_symndx; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | size_t extsymoff; | 
|  |  | 
|  | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | 
|  |  | 
|  | if (r_symndx < extsymoff) | 
|  | return true; | 
|  | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Sign-extend VALUE, which has the indicated number of BITS.  */ | 
|  |  | 
|  | bfd_vma | 
|  | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) | 
|  | { | 
|  | if (value & ((bfd_vma) 1 << (bits - 1))) | 
|  | /* VALUE is negative.  */ | 
|  | value |= ((bfd_vma) - 1) << bits; | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /* Return non-zero if the indicated VALUE has overflowed the maximum | 
|  | range expressible by a signed number with the indicated number of | 
|  | BITS.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_overflow_p (bfd_vma value, int bits) | 
|  | { | 
|  | bfd_signed_vma svalue = (bfd_signed_vma) value; | 
|  |  | 
|  | if (svalue > (1 << (bits - 1)) - 1) | 
|  | /* The value is too big.  */ | 
|  | return true; | 
|  | else if (svalue < -(1 << (bits - 1))) | 
|  | /* The value is too small.  */ | 
|  | return true; | 
|  |  | 
|  | /* All is well.  */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Calculate the %high function.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_high (bfd_vma value) | 
|  | { | 
|  | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | 
|  | } | 
|  |  | 
|  | /* Calculate the %higher function.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) | 
|  | { | 
|  | #ifdef BFD64 | 
|  | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | 
|  | #else | 
|  | abort (); | 
|  | return MINUS_ONE; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Calculate the %highest function.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) | 
|  | { | 
|  | #ifdef BFD64 | 
|  | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; | 
|  | #else | 
|  | abort (); | 
|  | return MINUS_ONE; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Create the .compact_rel section.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_create_compact_rel_section | 
|  | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | flagword flags; | 
|  | register asection *s; | 
|  |  | 
|  | if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) | 
|  | { | 
|  | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | 
|  | | SEC_READONLY); | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) | 
|  | return false; | 
|  |  | 
|  | s->size = sizeof (Elf32_External_compact_rel); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create the .got section to hold the global offset table.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | flagword flags; | 
|  | register asection *s; | 
|  | struct elf_link_hash_entry *h; | 
|  | struct bfd_link_hash_entry *bh; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* This function may be called more than once.  */ | 
|  | if (htab->root.sgot) | 
|  | return true; | 
|  |  | 
|  | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED); | 
|  |  | 
|  | /* We have to use an alignment of 2**4 here because this is hardcoded | 
|  | in the function stub generation and in the linker script.  */ | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, 4)) | 
|  | return false; | 
|  | htab->root.sgot = s; | 
|  |  | 
|  | /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the | 
|  | linker script because we don't want to define the symbol if we | 
|  | are not creating a global offset table.  */ | 
|  | bh = NULL; | 
|  | if (! (_bfd_generic_link_add_one_symbol | 
|  | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | 
|  | 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh))) | 
|  | return false; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) bh; | 
|  | h->non_elf = 0; | 
|  | h->def_regular = 1; | 
|  | h->type = STT_OBJECT; | 
|  | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | 
|  | elf_hash_table (info)->hgot = h; | 
|  |  | 
|  | if (bfd_link_pic (info) | 
|  | && ! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  |  | 
|  | htab->got_info = mips_elf_create_got_info (abfd); | 
|  | mips_elf_section_data (s)->elf.this_hdr.sh_flags | 
|  | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | 
|  |  | 
|  | /* We also need a .got.plt section when generating PLTs.  */ | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", | 
|  | SEC_ALLOC | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED); | 
|  | if (s == NULL) | 
|  | return false; | 
|  | htab->root.sgotplt = s; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or | 
|  | __GOTT_INDEX__ symbols.  These symbols are only special for | 
|  | shared objects; they are not used in executables.  */ | 
|  |  | 
|  | static bool | 
|  | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | 
|  | { | 
|  | return (mips_elf_hash_table (info)->root.target_os == is_vxworks | 
|  | && bfd_link_pic (info) | 
|  | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | 
|  | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | 
|  | } | 
|  |  | 
|  | /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might | 
|  | require an la25 stub.  See also mips_elf_local_pic_function_p, | 
|  | which determines whether the destination function ever requires a | 
|  | stub.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, | 
|  | bool target_is_16_bit_code_p) | 
|  | { | 
|  | /* We specifically ignore branches and jumps from EF_PIC objects, | 
|  | where the onus is on the compiler or programmer to perform any | 
|  | necessary initialization of $25.  Sometimes such initialization | 
|  | is unnecessary; for example, -mno-shared functions do not use | 
|  | the incoming value of $25, and may therefore be called directly.  */ | 
|  | if (PIC_OBJECT_P (input_bfd)) | 
|  | return false; | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS_26: | 
|  | case R_MIPS_PC16: | 
|  | case R_MIPS_PC21_S2: | 
|  | case R_MIPS_PC26_S2: | 
|  | case R_MICROMIPS_26_S1: | 
|  | case R_MICROMIPS_PC7_S1: | 
|  | case R_MICROMIPS_PC10_S1: | 
|  | case R_MICROMIPS_PC16_S1: | 
|  | case R_MICROMIPS_PC23_S2: | 
|  | return true; | 
|  |  | 
|  | case R_MIPS16_26: | 
|  | return !target_is_16_bit_code_p; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Obtain the field relocated by RELOCATION.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_obtain_contents (reloc_howto_type *howto, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | bfd *input_bfd, bfd_byte *contents) | 
|  | { | 
|  | bfd_vma x = 0; | 
|  | bfd_byte *location = contents + relocation->r_offset; | 
|  | unsigned int size = bfd_get_reloc_size (howto); | 
|  |  | 
|  | /* Obtain the bytes.  */ | 
|  | if (size != 0) | 
|  | x = bfd_get (8 * size, input_bfd, location); | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* Store the field relocated by RELOCATION.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_store_contents (reloc_howto_type *howto, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | bfd *input_bfd, bfd_byte *contents, bfd_vma x) | 
|  | { | 
|  | bfd_byte *location = contents + relocation->r_offset; | 
|  | unsigned int size = bfd_get_reloc_size (howto); | 
|  |  | 
|  | /* Put the value into the output.  */ | 
|  | if (size != 0) | 
|  | bfd_put (8 * size, input_bfd, x, location); | 
|  | } | 
|  |  | 
|  | /* Try to patch a load from GOT instruction in CONTENTS pointed to by | 
|  | RELOCATION described by HOWTO, with a move of 0 to the load target | 
|  | register, returning TRUE if that is successful and FALSE otherwise. | 
|  | If DOIT is FALSE, then only determine it patching is possible and | 
|  | return status without actually changing CONTENTS. | 
|  | */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | reloc_howto_type *howto, bool doit) | 
|  | { | 
|  | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | 
|  | bfd_byte *location = contents + relocation->r_offset; | 
|  | bool nullified = true; | 
|  | bfd_vma x; | 
|  |  | 
|  | _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); | 
|  |  | 
|  | /* Obtain the current value.  */ | 
|  | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | 
|  |  | 
|  | /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19] | 
|  | while RY is at bits [18:16] of the combined 32-bit instruction word.  */ | 
|  | if (mips16_reloc_p (r_type) | 
|  | && (((x >> 22) & 0x3ff) == 0x3d3				/* LW */ | 
|  | || ((x >> 22) & 0x3ff) == 0x3c7))			/* LD */ | 
|  | x = (0x3cdU << 22) | (x & (7 << 16)) << 3;			/* LI */ | 
|  | else if (micromips_reloc_p (r_type) | 
|  | && ((x >> 26) & 0x37) == 0x37)			/* LW/LD */ | 
|  | x = (0xc << 26) | (x & (0x1f << 21));			/* ADDIU */ | 
|  | else if (((x >> 26) & 0x3f) == 0x23				/* LW */ | 
|  | || ((x >> 26) & 0x3f) == 0x37)			/* LD */ | 
|  | x = (0x9 << 26) | (x & (0x1f << 16));			/* ADDIU */ | 
|  | else | 
|  | nullified = false; | 
|  |  | 
|  | /* Put the value into the output.  */ | 
|  | if (doit && nullified) | 
|  | mips_elf_store_contents (howto, relocation, input_bfd, contents, x); | 
|  |  | 
|  | _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location); | 
|  |  | 
|  | return nullified; | 
|  | } | 
|  |  | 
|  | /* Calculate the value produced by the RELOCATION (which comes from | 
|  | the INPUT_BFD).  The ADDEND is the addend to use for this | 
|  | RELOCATION; RELOCATION->R_ADDEND is ignored. | 
|  |  | 
|  | The result of the relocation calculation is stored in VALUEP. | 
|  | On exit, set *CROSS_MODE_JUMP_P to true if the relocation field | 
|  | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. | 
|  |  | 
|  | This function returns bfd_reloc_continue if the caller need take no | 
|  | further action regarding this relocation, bfd_reloc_notsupported if | 
|  | something goes dramatically wrong, bfd_reloc_overflow if an | 
|  | overflow occurs, and bfd_reloc_ok to indicate success.  */ | 
|  |  | 
|  | static bfd_reloc_status_type | 
|  | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, | 
|  | asection *input_section, bfd_byte *contents, | 
|  | struct bfd_link_info *info, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | bfd_vma addend, reloc_howto_type *howto, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections, bfd_vma *valuep, | 
|  | const char **namep, | 
|  | bool *cross_mode_jump_p, | 
|  | bool save_addend) | 
|  | { | 
|  | /* The eventual value we will return.  */ | 
|  | bfd_vma value; | 
|  | /* The address of the symbol against which the relocation is | 
|  | occurring.  */ | 
|  | bfd_vma symbol = 0; | 
|  | /* The final GP value to be used for the relocatable, executable, or | 
|  | shared object file being produced.  */ | 
|  | bfd_vma gp; | 
|  | /* The place (section offset or address) of the storage unit being | 
|  | relocated.  */ | 
|  | bfd_vma p; | 
|  | /* The value of GP used to create the relocatable object.  */ | 
|  | bfd_vma gp0; | 
|  | /* The offset into the global offset table at which the address of | 
|  | the relocation entry symbol, adjusted by the addend, resides | 
|  | during execution.  */ | 
|  | bfd_vma g = MINUS_ONE; | 
|  | /* The section in which the symbol referenced by the relocation is | 
|  | located.  */ | 
|  | asection *sec = NULL; | 
|  | struct mips_elf_link_hash_entry *h = NULL; | 
|  | /* TRUE if the symbol referred to by this relocation is a local | 
|  | symbol.  */ | 
|  | bool local_p, was_local_p; | 
|  | /* TRUE if the symbol referred to by this relocation is a section | 
|  | symbol.  */ | 
|  | bool section_p = false; | 
|  | /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */ | 
|  | bool gp_disp_p = false; | 
|  | /* TRUE if the symbol referred to by this relocation is | 
|  | "__gnu_local_gp".  */ | 
|  | bool gnu_local_gp_p = false; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | size_t extsymoff; | 
|  | unsigned long r_symndx; | 
|  | int r_type; | 
|  | /* TRUE if overflow occurred during the calculation of the | 
|  | relocation value.  */ | 
|  | bool overflowed_p; | 
|  | /* TRUE if this relocation refers to a MIPS16 function.  */ | 
|  | bool target_is_16_bit_code_p = false; | 
|  | bool target_is_micromips_code_p = false; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | bfd *dynobj; | 
|  | bool resolved_to_zero; | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* Parse the relocation.  */ | 
|  | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | 
|  | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | 
|  | p = (input_section->output_section->vma | 
|  | + input_section->output_offset | 
|  | + relocation->r_offset); | 
|  |  | 
|  | /* Assume that there will be no overflow.  */ | 
|  | overflowed_p = false; | 
|  |  | 
|  | /* Figure out whether or not the symbol is local, and get the offset | 
|  | used in the array of hash table entries.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | 
|  | local_sections); | 
|  | was_local_p = local_p; | 
|  | if (! elf_bad_symtab (input_bfd)) | 
|  | extsymoff = symtab_hdr->sh_info; | 
|  | else | 
|  | { | 
|  | /* The symbol table does not follow the rule that local symbols | 
|  | must come before globals.  */ | 
|  | extsymoff = 0; | 
|  | } | 
|  |  | 
|  | /* Figure out the value of the symbol.  */ | 
|  | if (local_p) | 
|  | { | 
|  | bool micromips_p = MICROMIPS_P (abfd); | 
|  | Elf_Internal_Sym *sym; | 
|  |  | 
|  | sym = local_syms + r_symndx; | 
|  | sec = local_sections[r_symndx]; | 
|  |  | 
|  | section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; | 
|  |  | 
|  | symbol = sec->output_section->vma + sec->output_offset; | 
|  | if (!section_p || (sec->flags & SEC_MERGE)) | 
|  | symbol += sym->st_value; | 
|  | if ((sec->flags & SEC_MERGE) && section_p) | 
|  | { | 
|  | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | 
|  | addend -= symbol; | 
|  | addend += sec->output_section->vma + sec->output_offset; | 
|  | } | 
|  |  | 
|  | /* MIPS16/microMIPS text labels should be treated as odd.  */ | 
|  | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | 
|  | ++symbol; | 
|  |  | 
|  | /* Record the name of this symbol, for our caller.  */ | 
|  | *namep = bfd_elf_string_from_elf_section (input_bfd, | 
|  | symtab_hdr->sh_link, | 
|  | sym->st_name); | 
|  | if (*namep == NULL || **namep == '\0') | 
|  | *namep = bfd_section_name (sec); | 
|  |  | 
|  | /* For relocations against a section symbol and ones against no | 
|  | symbol (absolute relocations) infer the ISA mode from the addend.  */ | 
|  | if (section_p || r_symndx == STN_UNDEF) | 
|  | { | 
|  | target_is_16_bit_code_p = (addend & 1) && !micromips_p; | 
|  | target_is_micromips_code_p = (addend & 1) && micromips_p; | 
|  | } | 
|  | /* For relocations against an absolute symbol infer the ISA mode | 
|  | from the value of the symbol plus addend.  */ | 
|  | else if (bfd_is_abs_section (sec)) | 
|  | { | 
|  | target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p; | 
|  | target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p; | 
|  | } | 
|  | /* Otherwise just use the regular symbol annotation available.  */ | 
|  | else | 
|  | { | 
|  | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); | 
|  | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */ | 
|  |  | 
|  | /* For global symbols we look up the symbol in the hash-table.  */ | 
|  | h = ((struct mips_elf_link_hash_entry *) | 
|  | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | 
|  | /* Find the real hash-table entry for this symbol.  */ | 
|  | while (h->root.root.type == bfd_link_hash_indirect | 
|  | || h->root.root.type == bfd_link_hash_warning) | 
|  | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | 
|  |  | 
|  | /* Record the name of this symbol, for our caller.  */ | 
|  | *namep = h->root.root.root.string; | 
|  |  | 
|  | /* See if this is the special _gp_disp symbol.  Note that such a | 
|  | symbol must always be a global symbol.  */ | 
|  | if (strcmp (*namep, "_gp_disp") == 0 | 
|  | && ! NEWABI_P (input_bfd)) | 
|  | { | 
|  | /* Relocations against _gp_disp are permitted only with | 
|  | R_MIPS_HI16 and R_MIPS_LO16 relocations.  */ | 
|  | if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) | 
|  | return bfd_reloc_notsupported; | 
|  |  | 
|  | gp_disp_p = true; | 
|  | } | 
|  | /* See if this is the special _gp symbol.  Note that such a | 
|  | symbol must always be a global symbol.  */ | 
|  | else if (strcmp (*namep, "__gnu_local_gp") == 0) | 
|  | gnu_local_gp_p = true; | 
|  |  | 
|  |  | 
|  | /* If this symbol is defined, calculate its address.  Note that | 
|  | _gp_disp is a magic symbol, always implicitly defined by the | 
|  | linker, so it's inappropriate to check to see whether or not | 
|  | its defined.  */ | 
|  | else if ((h->root.root.type == bfd_link_hash_defined | 
|  | || h->root.root.type == bfd_link_hash_defweak) | 
|  | && h->root.root.u.def.section) | 
|  | { | 
|  | sec = h->root.root.u.def.section; | 
|  | if (sec->output_section) | 
|  | symbol = (h->root.root.u.def.value | 
|  | + sec->output_section->vma | 
|  | + sec->output_offset); | 
|  | else | 
|  | symbol = h->root.root.u.def.value; | 
|  | } | 
|  | else if (h->root.root.type == bfd_link_hash_undefweak) | 
|  | /* We allow relocations against undefined weak symbols, giving | 
|  | it the value zero, so that you can undefined weak functions | 
|  | and check to see if they exist by looking at their | 
|  | addresses.  */ | 
|  | symbol = 0; | 
|  | else if (info->unresolved_syms_in_objects == RM_IGNORE | 
|  | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) | 
|  | symbol = 0; | 
|  | else if (strcmp (*namep, SGI_COMPAT (input_bfd) | 
|  | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | 
|  | { | 
|  | /* If this is a dynamic link, we should have created a | 
|  | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | 
|  | in _bfd_mips_elf_create_dynamic_sections. | 
|  | Otherwise, we should define the symbol with a value of 0. | 
|  | FIXME: It should probably get into the symbol table | 
|  | somehow as well.  */ | 
|  | BFD_ASSERT (! bfd_link_pic (info)); | 
|  | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | 
|  | symbol = 0; | 
|  | } | 
|  | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) | 
|  | { | 
|  | /* This is an optional symbol - an Irix specific extension to the | 
|  | ELF spec.  Ignore it for now. | 
|  | XXX - FIXME - there is more to the spec for OPTIONAL symbols | 
|  | than simply ignoring them, but we do not handle this for now. | 
|  | For information see the "64-bit ELF Object File Specification" | 
|  | which is available from here: | 
|  | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */ | 
|  | symbol = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | bool reject_undefined | 
|  | = ((info->unresolved_syms_in_objects == RM_DIAGNOSE | 
|  | && !info->warn_unresolved_syms) | 
|  | || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT); | 
|  |  | 
|  | info->callbacks->undefined_symbol | 
|  | (info, h->root.root.root.string, input_bfd, | 
|  | input_section, relocation->r_offset, reject_undefined); | 
|  |  | 
|  | if (reject_undefined) | 
|  | return bfd_reloc_undefined; | 
|  |  | 
|  | symbol = 0; | 
|  | } | 
|  |  | 
|  | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); | 
|  | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); | 
|  | } | 
|  |  | 
|  | /* If this is a reference to a 16-bit function with a stub, we need | 
|  | to redirect the relocation to the stub unless: | 
|  |  | 
|  | (a) the relocation is for a MIPS16 JAL; | 
|  |  | 
|  | (b) the relocation is for a MIPS16 PIC call, and there are no | 
|  | non-MIPS16 uses of the GOT slot; or | 
|  |  | 
|  | (c) the section allows direct references to MIPS16 functions.  */ | 
|  | if (r_type != R_MIPS16_26 | 
|  | && !bfd_link_relocatable (info) | 
|  | && ((h != NULL | 
|  | && h->fn_stub != NULL | 
|  | && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) | 
|  | || (local_p | 
|  | && mips_elf_tdata (input_bfd)->local_stubs != NULL | 
|  | && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | 
|  | && !section_allows_mips16_refs_p (input_section)) | 
|  | { | 
|  | /* This is a 32- or 64-bit call to a 16-bit function.  We should | 
|  | have already noticed that we were going to need the | 
|  | stub.  */ | 
|  | if (local_p) | 
|  | { | 
|  | sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; | 
|  | value = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (h->need_fn_stub); | 
|  | if (h->la25_stub) | 
|  | { | 
|  | /* If a LA25 header for the stub itself exists, point to the | 
|  | prepended LUI/ADDIU sequence.  */ | 
|  | sec = h->la25_stub->stub_section; | 
|  | value = h->la25_stub->offset; | 
|  | } | 
|  | else | 
|  | { | 
|  | sec = h->fn_stub; | 
|  | value = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | symbol = sec->output_section->vma + sec->output_offset + value; | 
|  | /* The target is 16-bit, but the stub isn't.  */ | 
|  | target_is_16_bit_code_p = false; | 
|  | } | 
|  | /* If this is a MIPS16 call with a stub, that is made through the PLT or | 
|  | to a standard MIPS function, we need to redirect the call to the stub. | 
|  | Note that we specifically exclude R_MIPS16_CALL16 from this behavior; | 
|  | indirect calls should use an indirect stub instead.  */ | 
|  | else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) | 
|  | && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) | 
|  | || (local_p | 
|  | && mips_elf_tdata (input_bfd)->local_call_stubs != NULL | 
|  | && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) | 
|  | && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) | 
|  | { | 
|  | if (local_p) | 
|  | sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; | 
|  | else | 
|  | { | 
|  | /* If both call_stub and call_fp_stub are defined, we can figure | 
|  | out which one to use by checking which one appears in the input | 
|  | file.  */ | 
|  | if (h->call_stub != NULL && h->call_fp_stub != NULL) | 
|  | { | 
|  | asection *o; | 
|  |  | 
|  | sec = NULL; | 
|  | for (o = input_bfd->sections; o != NULL; o = o->next) | 
|  | { | 
|  | if (CALL_FP_STUB_P (bfd_section_name (o))) | 
|  | { | 
|  | sec = h->call_fp_stub; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (sec == NULL) | 
|  | sec = h->call_stub; | 
|  | } | 
|  | else if (h->call_stub != NULL) | 
|  | sec = h->call_stub; | 
|  | else | 
|  | sec = h->call_fp_stub; | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (sec->size > 0); | 
|  | symbol = sec->output_section->vma + sec->output_offset; | 
|  | } | 
|  | /* If this is a direct call to a PIC function, redirect to the | 
|  | non-PIC stub.  */ | 
|  | else if (h != NULL && h->la25_stub | 
|  | && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, | 
|  | target_is_16_bit_code_p)) | 
|  | { | 
|  | symbol = (h->la25_stub->stub_section->output_section->vma | 
|  | + h->la25_stub->stub_section->output_offset | 
|  | + h->la25_stub->offset); | 
|  | if (ELF_ST_IS_MICROMIPS (h->root.other)) | 
|  | symbol |= 1; | 
|  | } | 
|  | /* For direct MIPS16 and microMIPS calls make sure the compressed PLT | 
|  | entry is used if a standard PLT entry has also been made.  In this | 
|  | case the symbol will have been set by mips_elf_set_plt_sym_value | 
|  | to point to the standard PLT entry, so redirect to the compressed | 
|  | one.  */ | 
|  | else if ((mips16_branch_reloc_p (r_type) | 
|  | || micromips_branch_reloc_p (r_type)) | 
|  | && !bfd_link_relocatable (info) | 
|  | && h != NULL | 
|  | && h->use_plt_entry | 
|  | && h->root.plt.plist->comp_offset != MINUS_ONE | 
|  | && h->root.plt.plist->mips_offset != MINUS_ONE) | 
|  | { | 
|  | bool micromips_p = MICROMIPS_P (abfd); | 
|  |  | 
|  | sec = htab->root.splt; | 
|  | symbol = (sec->output_section->vma | 
|  | + sec->output_offset | 
|  | + htab->plt_header_size | 
|  | + htab->plt_mips_offset | 
|  | + h->root.plt.plist->comp_offset | 
|  | + 1); | 
|  |  | 
|  | target_is_16_bit_code_p = !micromips_p; | 
|  | target_is_micromips_code_p = micromips_p; | 
|  | } | 
|  |  | 
|  | /* Make sure MIPS16 and microMIPS are not used together.  */ | 
|  | if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) | 
|  | || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("MIPS16 and microMIPS functions cannot call each other")); | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | /* Calls from 16-bit code to 32-bit code and vice versa require the | 
|  | mode change.  However, we can ignore calls to undefined weak symbols, | 
|  | which should never be executed at runtime.  This exception is important | 
|  | because the assembly writer may have "known" that any definition of the | 
|  | symbol would be 16-bit code, and that direct jumps were therefore | 
|  | acceptable.  */ | 
|  | *cross_mode_jump_p = (!bfd_link_relocatable (info) | 
|  | && !(h && h->root.root.type == bfd_link_hash_undefweak) | 
|  | && ((mips16_branch_reloc_p (r_type) | 
|  | && !target_is_16_bit_code_p) | 
|  | || (micromips_branch_reloc_p (r_type) | 
|  | && !target_is_micromips_code_p) | 
|  | || ((branch_reloc_p (r_type) | 
|  | || r_type == R_MIPS_JALR) | 
|  | && (target_is_16_bit_code_p | 
|  | || target_is_micromips_code_p)))); | 
|  |  | 
|  | resolved_to_zero = (h != NULL | 
|  | && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root)); | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS16_CALL16: | 
|  | case R_MIPS16_GOT16: | 
|  | case R_MIPS_CALL16: | 
|  | case R_MIPS_GOT16: | 
|  | case R_MIPS_GOT_PAGE: | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MIPS_GOT_LO16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MICROMIPS_CALL16: | 
|  | case R_MICROMIPS_GOT16: | 
|  | case R_MICROMIPS_GOT_PAGE: | 
|  | case R_MICROMIPS_GOT_DISP: | 
|  | case R_MICROMIPS_GOT_LO16: | 
|  | case R_MICROMIPS_CALL_LO16: | 
|  | if (resolved_to_zero | 
|  | && !bfd_link_relocatable (info) | 
|  | && mips_elf_nullify_got_load (input_bfd, contents, | 
|  | relocation, howto, true)) | 
|  | return bfd_reloc_continue; | 
|  |  | 
|  | /* Fall through.  */ | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MICROMIPS_GOT_HI16: | 
|  | case R_MICROMIPS_CALL_HI16: | 
|  | if (resolved_to_zero | 
|  | && htab->use_absolute_zero | 
|  | && bfd_link_pic (info)) | 
|  | { | 
|  | /* Redirect to the special `__gnu_absolute_zero' symbol.  */ | 
|  | h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero", | 
|  | false, false, false); | 
|  | BFD_ASSERT (h != NULL); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | local_p = (h == NULL || mips_use_local_got_p (info, h)); | 
|  |  | 
|  | gp0 = _bfd_get_gp_value (input_bfd); | 
|  | gp = _bfd_get_gp_value (abfd); | 
|  | if (htab->got_info) | 
|  | gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); | 
|  |  | 
|  | if (gnu_local_gp_p) | 
|  | symbol = gp; | 
|  |  | 
|  | /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent | 
|  | to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the | 
|  | corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */ | 
|  | if (got_page_reloc_p (r_type) && !local_p) | 
|  | { | 
|  | r_type = (micromips_reloc_p (r_type) | 
|  | ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); | 
|  | addend = 0; | 
|  | } | 
|  |  | 
|  | /* If we haven't already determined the GOT offset, and we're going | 
|  | to need it, get it now.  */ | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS16_CALL16: | 
|  | case R_MIPS16_GOT16: | 
|  | case R_MIPS_CALL16: | 
|  | case R_MIPS_GOT16: | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MIPS_GOT_LO16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MICROMIPS_CALL16: | 
|  | case R_MICROMIPS_GOT16: | 
|  | case R_MICROMIPS_GOT_DISP: | 
|  | case R_MICROMIPS_GOT_HI16: | 
|  | case R_MICROMIPS_CALL_HI16: | 
|  | case R_MICROMIPS_GOT_LO16: | 
|  | case R_MICROMIPS_CALL_LO16: | 
|  | case R_MIPS_TLS_GD: | 
|  | case R_MIPS_TLS_GOTTPREL: | 
|  | case R_MIPS_TLS_LDM: | 
|  | case R_MIPS16_TLS_GD: | 
|  | case R_MIPS16_TLS_GOTTPREL: | 
|  | case R_MIPS16_TLS_LDM: | 
|  | case R_MICROMIPS_TLS_GD: | 
|  | case R_MICROMIPS_TLS_GOTTPREL: | 
|  | case R_MICROMIPS_TLS_LDM: | 
|  | /* Find the index into the GOT where this value is located.  */ | 
|  | if (tls_ldm_reloc_p (r_type)) | 
|  | { | 
|  | g = mips_elf_local_got_index (abfd, input_bfd, info, | 
|  | 0, 0, NULL, r_type); | 
|  | if (g == MINUS_ONE) | 
|  | return bfd_reloc_outofrange; | 
|  | } | 
|  | else if (!local_p) | 
|  | { | 
|  | /* On VxWorks, CALL relocations should refer to the .got.plt | 
|  | entry, which is initialized to point at the PLT stub.  */ | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && (call_hi16_reloc_p (r_type) | 
|  | || call_lo16_reloc_p (r_type) | 
|  | || call16_reloc_p (r_type))) | 
|  | { | 
|  | BFD_ASSERT (addend == 0); | 
|  | BFD_ASSERT (h->root.needs_plt); | 
|  | g = mips_elf_gotplt_index (info, &h->root); | 
|  | } | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (addend == 0); | 
|  | g = mips_elf_global_got_index (abfd, info, input_bfd, | 
|  | &h->root, r_type); | 
|  | if (!TLS_RELOC_P (r_type) | 
|  | && !elf_hash_table (info)->dynamic_sections_created) | 
|  | /* This is a static link.  We must initialize the GOT entry.  */ | 
|  | MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g); | 
|  | } | 
|  | } | 
|  | else if (htab->root.target_os != is_vxworks | 
|  | && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) | 
|  | /* The calculation below does not involve "g".  */ | 
|  | break; | 
|  | else | 
|  | { | 
|  | g = mips_elf_local_got_index (abfd, input_bfd, info, | 
|  | symbol + addend, r_symndx, h, r_type); | 
|  | if (g == MINUS_ONE) | 
|  | return bfd_reloc_outofrange; | 
|  | } | 
|  |  | 
|  | /* Convert GOT indices to actual offsets.  */ | 
|  | g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ | 
|  | symbols are resolved by the loader.  Add them to .rela.dyn.  */ | 
|  | if (h != NULL && is_gott_symbol (info, &h->root)) | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | bfd_byte *loc; | 
|  | asection *s; | 
|  |  | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  |  | 
|  | outrel.r_offset = (input_section->output_section->vma | 
|  | + input_section->output_offset | 
|  | + relocation->r_offset); | 
|  | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | 
|  | outrel.r_addend = addend; | 
|  | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | 
|  |  | 
|  | /* If we've written this relocation for a readonly section, | 
|  | we need to set DF_TEXTREL again, so that we do not delete the | 
|  | DT_TEXTREL tag.  */ | 
|  | if (MIPS_ELF_READONLY_SECTION (input_section)) | 
|  | info->flags |= DF_TEXTREL; | 
|  |  | 
|  | *valuep = 0; | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Figure out what kind of relocation is being performed.  */ | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS_NONE: | 
|  | return bfd_reloc_continue; | 
|  |  | 
|  | case R_MIPS_16: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 16); | 
|  | value = symbol + addend; | 
|  | overflowed_p = mips_elf_overflow_p (value, 16); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_32: | 
|  | case R_MIPS_REL32: | 
|  | case R_MIPS_64: | 
|  | if ((bfd_link_pic (info) | 
|  | || (htab->root.dynamic_sections_created | 
|  | && h != NULL | 
|  | && h->root.def_dynamic | 
|  | && !h->root.def_regular | 
|  | && !h->has_static_relocs)) | 
|  | && r_symndx != STN_UNDEF | 
|  | && (h == NULL | 
|  | || h->root.root.type != bfd_link_hash_undefweak | 
|  | || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | 
|  | && !resolved_to_zero)) | 
|  | && (input_section->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | /* If we're creating a shared library, then we can't know | 
|  | where the symbol will end up.  So, we create a relocation | 
|  | record in the output, and leave the job up to the dynamic | 
|  | linker.  We must do the same for executable references to | 
|  | shared library symbols, unless we've decided to use copy | 
|  | relocs or PLTs instead.  */ | 
|  | value = addend; | 
|  | if (!mips_elf_create_dynamic_relocation (abfd, | 
|  | info, | 
|  | relocation, | 
|  | h, | 
|  | sec, | 
|  | symbol, | 
|  | &value, | 
|  | input_section)) | 
|  | return bfd_reloc_undefined; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (r_type != R_MIPS_REL32) | 
|  | value = symbol + addend; | 
|  | else | 
|  | value = addend; | 
|  | } | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PC32: | 
|  | value = symbol + addend - p; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS16_26: | 
|  | /* The calculation for R_MIPS16_26 is just the same as for an | 
|  | R_MIPS_26.  It's only the storage of the relocated field into | 
|  | the output file that's different.  That's handled in | 
|  | mips_elf_perform_relocation.  So, we just fall through to the | 
|  | R_MIPS_26 case here.  */ | 
|  | case R_MIPS_26: | 
|  | case R_MICROMIPS_26_S1: | 
|  | { | 
|  | unsigned int shift; | 
|  |  | 
|  | /* Shift is 2, unusually, for microMIPS JALX.  */ | 
|  | shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; | 
|  |  | 
|  | if (howto->partial_inplace && !section_p) | 
|  | value = _bfd_mips_elf_sign_extend (addend, 26 + shift); | 
|  | else | 
|  | value = addend; | 
|  | value += symbol; | 
|  |  | 
|  | /* Make sure the target of a jump is suitably aligned.  Bit 0 must | 
|  | be the correct ISA mode selector except for weak undefined | 
|  | symbols.  */ | 
|  | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | && (*cross_mode_jump_p | 
|  | ? (value & 3) != (r_type == R_MIPS_26) | 
|  | : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26))) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value >>= shift; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); | 
|  | value &= howto->dst_mask; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_MIPS_TLS_DTPREL_HI16: | 
|  | case R_MIPS16_TLS_DTPREL_HI16: | 
|  | case R_MICROMIPS_TLS_DTPREL_HI16: | 
|  | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | 
|  | & howto->dst_mask); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_TLS_DTPREL_LO16: | 
|  | case R_MIPS_TLS_DTPREL32: | 
|  | case R_MIPS_TLS_DTPREL64: | 
|  | case R_MIPS16_TLS_DTPREL_LO16: | 
|  | case R_MICROMIPS_TLS_DTPREL_LO16: | 
|  | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_TLS_TPREL_HI16: | 
|  | case R_MIPS16_TLS_TPREL_HI16: | 
|  | case R_MICROMIPS_TLS_TPREL_HI16: | 
|  | value = (mips_elf_high (addend + symbol - tprel_base (info)) | 
|  | & howto->dst_mask); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_TLS_TPREL_LO16: | 
|  | case R_MIPS_TLS_TPREL32: | 
|  | case R_MIPS_TLS_TPREL64: | 
|  | case R_MIPS16_TLS_TPREL_LO16: | 
|  | case R_MICROMIPS_TLS_TPREL_LO16: | 
|  | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_HI16: | 
|  | case R_MIPS16_HI16: | 
|  | case R_MICROMIPS_HI16: | 
|  | if (!gp_disp_p) | 
|  | { | 
|  | value = mips_elf_high (addend + symbol); | 
|  | value &= howto->dst_mask; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* For MIPS16 ABI code we generate this sequence | 
|  | 0: li      $v0,%hi(_gp_disp) | 
|  | 4: addiupc $v1,%lo(_gp_disp) | 
|  | 8: sll     $v0,16 | 
|  | 12: addu    $v0,$v1 | 
|  | 14: move    $gp,$v0 | 
|  | So the offsets of hi and lo relocs are the same, but the | 
|  | base $pc is that used by the ADDIUPC instruction at $t9 + 4. | 
|  | ADDIUPC clears the low two bits of the instruction address, | 
|  | so the base is ($t9 + 4) & ~3.  */ | 
|  | if (r_type == R_MIPS16_HI16) | 
|  | value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); | 
|  | /* The microMIPS .cpload sequence uses the same assembly | 
|  | instructions as the traditional psABI version, but the | 
|  | incoming $t9 has the low bit set.  */ | 
|  | else if (r_type == R_MICROMIPS_HI16) | 
|  | value = mips_elf_high (addend + gp - p - 1); | 
|  | else | 
|  | value = mips_elf_high (addend + gp - p); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_MIPS_LO16: | 
|  | case R_MIPS16_LO16: | 
|  | case R_MICROMIPS_LO16: | 
|  | case R_MICROMIPS_HI0_LO16: | 
|  | if (!gp_disp_p) | 
|  | value = (symbol + addend) & howto->dst_mask; | 
|  | else | 
|  | { | 
|  | /* See the comment for R_MIPS16_HI16 above for the reason | 
|  | for this conditional.  */ | 
|  | if (r_type == R_MIPS16_LO16) | 
|  | value = addend + gp - (p & ~(bfd_vma) 0x3); | 
|  | else if (r_type == R_MICROMIPS_LO16 | 
|  | || r_type == R_MICROMIPS_HI0_LO16) | 
|  | value = addend + gp - p + 3; | 
|  | else | 
|  | value = addend + gp - p + 4; | 
|  | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation | 
|  | for overflow.  But, on, say, IRIX5, relocations against | 
|  | _gp_disp are normally generated from the .cpload | 
|  | pseudo-op.  It generates code that normally looks like | 
|  | this: | 
|  |  | 
|  | lui    $gp,%hi(_gp_disp) | 
|  | addiu  $gp,$gp,%lo(_gp_disp) | 
|  | addu   $gp,$gp,$t9 | 
|  |  | 
|  | Here $t9 holds the address of the function being called, | 
|  | as required by the MIPS ELF ABI.  The R_MIPS_LO16 | 
|  | relocation can easily overflow in this situation, but the | 
|  | R_MIPS_HI16 relocation will handle the overflow. | 
|  | Therefore, we consider this a bug in the MIPS ABI, and do | 
|  | not check for overflow here.  */ | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_MIPS_LITERAL: | 
|  | case R_MICROMIPS_LITERAL: | 
|  | /* Because we don't merge literal sections, we can handle this | 
|  | just like R_MIPS_GPREL16.  In the long run, we should merge | 
|  | shared literals, and then we will need to additional work | 
|  | here.  */ | 
|  |  | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_MIPS16_GPREL: | 
|  | /* The R_MIPS16_GPREL performs the same calculation as | 
|  | R_MIPS_GPREL16, but stores the relocated bits in a different | 
|  | order.  We don't need to do anything special here; the | 
|  | differences are handled in mips_elf_perform_relocation.  */ | 
|  | case R_MIPS_GPREL16: | 
|  | case R_MICROMIPS_GPREL7_S2: | 
|  | case R_MICROMIPS_GPREL16: | 
|  | /* Only sign-extend the addend if it was extracted from the | 
|  | instruction.  If the addend was separate, leave it alone, | 
|  | otherwise we may lose significant bits.  */ | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 16); | 
|  | value = symbol + addend - gp; | 
|  | /* If the symbol was local, any earlier relocatable links will | 
|  | have adjusted its addend with the gp offset, so compensate | 
|  | for that now.  Don't do it for symbols forced local in this | 
|  | link, though, since they won't have had the gp offset applied | 
|  | to them before.  */ | 
|  | if (was_local_p) | 
|  | value += gp0; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 16); | 
|  | break; | 
|  |  | 
|  | case R_MIPS16_GOT16: | 
|  | case R_MIPS16_CALL16: | 
|  | case R_MIPS_GOT16: | 
|  | case R_MIPS_CALL16: | 
|  | case R_MICROMIPS_GOT16: | 
|  | case R_MICROMIPS_CALL16: | 
|  | /* VxWorks does not have separate local and global semantics for | 
|  | R_MIPS*_GOT16; every relocation evaluates to "G".  */ | 
|  | if (htab->root.target_os != is_vxworks && local_p) | 
|  | { | 
|  | value = mips_elf_got16_entry (abfd, input_bfd, info, | 
|  | symbol + addend, !was_local_p); | 
|  | if (value == MINUS_ONE) | 
|  | return bfd_reloc_outofrange; | 
|  | value | 
|  | = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); | 
|  | overflowed_p = mips_elf_overflow_p (value, 16); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_MIPS_TLS_GD: | 
|  | case R_MIPS_TLS_GOTTPREL: | 
|  | case R_MIPS_TLS_LDM: | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MIPS16_TLS_GD: | 
|  | case R_MIPS16_TLS_GOTTPREL: | 
|  | case R_MIPS16_TLS_LDM: | 
|  | case R_MICROMIPS_TLS_GD: | 
|  | case R_MICROMIPS_TLS_GOTTPREL: | 
|  | case R_MICROMIPS_TLS_LDM: | 
|  | case R_MICROMIPS_GOT_DISP: | 
|  | value = g; | 
|  | overflowed_p = mips_elf_overflow_p (value, 16); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GPREL32: | 
|  | value = (addend + symbol + gp0 - gp); | 
|  | if (!save_addend) | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PC16: | 
|  | case R_MIPS_GNU_REL16_S2: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 18); | 
|  |  | 
|  | /* No need to exclude weak undefined symbols here as they resolve | 
|  | to 0 and never set `*cross_mode_jump_p', so this alignment check | 
|  | will never trigger for them.  */ | 
|  | if (*cross_mode_jump_p | 
|  | ? ((symbol + addend) & 3) != 1 | 
|  | : ((symbol + addend) & 3) != 0) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 18); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS16_PC16_S1: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 17); | 
|  |  | 
|  | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | && (*cross_mode_jump_p | 
|  | ? ((symbol + addend) & 3) != 0 | 
|  | : ((symbol + addend) & 1) == 0)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 17); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PC21_S2: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 23); | 
|  |  | 
|  | if ((symbol + addend) & 3) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 23); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PC26_S2: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 28); | 
|  |  | 
|  | if ((symbol + addend) & 3) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 28); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PC18_S3: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 21); | 
|  |  | 
|  | if ((symbol + addend) & 7) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - ((p | 7) ^ 7); | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 21); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PC19_S2: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 21); | 
|  |  | 
|  | if ((symbol + addend) & 3) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 21); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PCHI16: | 
|  | value = mips_elf_high (symbol + addend - p); | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PCLO16: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 16); | 
|  | value = symbol + addend - p; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MICROMIPS_PC7_S1: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 8); | 
|  |  | 
|  | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | && (*cross_mode_jump_p | 
|  | ? ((symbol + addend + 2) & 3) != 0 | 
|  | : ((symbol + addend + 2) & 1) == 0)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 8); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MICROMIPS_PC10_S1: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 11); | 
|  |  | 
|  | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | && (*cross_mode_jump_p | 
|  | ? ((symbol + addend + 2) & 3) != 0 | 
|  | : ((symbol + addend + 2) & 1) == 0)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 11); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MICROMIPS_PC16_S1: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 17); | 
|  |  | 
|  | if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | && (*cross_mode_jump_p | 
|  | ? ((symbol + addend) & 3) != 0 | 
|  | : ((symbol + addend) & 1) == 0)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | value = symbol + addend - p; | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 17); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MICROMIPS_PC23_S2: | 
|  | if (howto->partial_inplace) | 
|  | addend = _bfd_mips_elf_sign_extend (addend, 25); | 
|  | value = symbol + addend - ((p | 3) ^ 3); | 
|  | if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) | 
|  | overflowed_p = mips_elf_overflow_p (value, 25); | 
|  | value >>= howto->rightshift; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MICROMIPS_GOT_HI16: | 
|  | case R_MICROMIPS_CALL_HI16: | 
|  | /* We're allowed to handle these two relocations identically. | 
|  | The dynamic linker is allowed to handle the CALL relocations | 
|  | differently by creating a lazy evaluation stub.  */ | 
|  | value = g; | 
|  | value = mips_elf_high (value); | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GOT_LO16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MICROMIPS_GOT_LO16: | 
|  | case R_MICROMIPS_CALL_LO16: | 
|  | value = g & howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GOT_PAGE: | 
|  | case R_MICROMIPS_GOT_PAGE: | 
|  | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); | 
|  | if (value == MINUS_ONE) | 
|  | return bfd_reloc_outofrange; | 
|  | value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); | 
|  | overflowed_p = mips_elf_overflow_p (value, 16); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GOT_OFST: | 
|  | case R_MICROMIPS_GOT_OFST: | 
|  | if (local_p) | 
|  | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); | 
|  | else | 
|  | value = addend; | 
|  | overflowed_p = mips_elf_overflow_p (value, 16); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_SUB: | 
|  | case R_MICROMIPS_SUB: | 
|  | value = symbol - addend; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_HIGHER: | 
|  | case R_MICROMIPS_HIGHER: | 
|  | value = mips_elf_higher (addend + symbol); | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_HIGHEST: | 
|  | case R_MICROMIPS_HIGHEST: | 
|  | value = mips_elf_highest (addend + symbol); | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_SCN_DISP: | 
|  | case R_MICROMIPS_SCN_DISP: | 
|  | value = symbol + addend - sec->output_offset; | 
|  | value &= howto->dst_mask; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_JALR: | 
|  | case R_MICROMIPS_JALR: | 
|  | /* This relocation is only a hint.  In some cases, we optimize | 
|  | it into a bal instruction.  But we don't try to optimize | 
|  | when the symbol does not resolve locally.  */ | 
|  | if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) | 
|  | return bfd_reloc_continue; | 
|  | /* We can't optimize cross-mode jumps either.  */ | 
|  | if (*cross_mode_jump_p) | 
|  | return bfd_reloc_continue; | 
|  | value = symbol + addend; | 
|  | /* Neither we can non-instruction-aligned targets.  */ | 
|  | if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0) | 
|  | return bfd_reloc_continue; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_PJUMP: | 
|  | case R_MIPS_GNU_VTINHERIT: | 
|  | case R_MIPS_GNU_VTENTRY: | 
|  | /* We don't do anything with these at present.  */ | 
|  | return bfd_reloc_continue; | 
|  |  | 
|  | default: | 
|  | /* An unrecognized relocation type.  */ | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | /* Store the VALUE for our caller.  */ | 
|  | *valuep = value; | 
|  | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* It has been determined that the result of the RELOCATION is the | 
|  | VALUE.  Use HOWTO to place VALUE into the output file at the | 
|  | appropriate position.  The SECTION is the section to which the | 
|  | relocation applies. | 
|  | CROSS_MODE_JUMP_P is true if the relocation field | 
|  | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. | 
|  |  | 
|  | Returns FALSE if anything goes wrong.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_perform_relocation (struct bfd_link_info *info, | 
|  | reloc_howto_type *howto, | 
|  | const Elf_Internal_Rela *relocation, | 
|  | bfd_vma value, bfd *input_bfd, | 
|  | asection *input_section, bfd_byte *contents, | 
|  | bool cross_mode_jump_p) | 
|  | { | 
|  | bfd_vma x; | 
|  | bfd_byte *location; | 
|  | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | 
|  |  | 
|  | /* Figure out where the relocation is occurring.  */ | 
|  | location = contents + relocation->r_offset; | 
|  |  | 
|  | _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); | 
|  |  | 
|  | /* Obtain the current value.  */ | 
|  | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | 
|  |  | 
|  | /* Clear the field we are setting.  */ | 
|  | x &= ~howto->dst_mask; | 
|  |  | 
|  | /* Set the field.  */ | 
|  | x |= (value & howto->dst_mask); | 
|  |  | 
|  | /* Detect incorrect JALX usage.  If required, turn JAL or BAL into JALX.  */ | 
|  | if (!cross_mode_jump_p && jal_reloc_p (r_type)) | 
|  | { | 
|  | bfd_vma opcode = x >> 26; | 
|  |  | 
|  | if (r_type == R_MIPS16_26 ? opcode == 0x7 | 
|  | : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c | 
|  | : opcode == 0x1d) | 
|  | { | 
|  | info->callbacks->einfo | 
|  | (_("%X%H: unsupported JALX to the same ISA mode\n"), | 
|  | input_bfd, input_section, relocation->r_offset); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (cross_mode_jump_p && jal_reloc_p (r_type)) | 
|  | { | 
|  | bool ok; | 
|  | bfd_vma opcode = x >> 26; | 
|  | bfd_vma jalx_opcode; | 
|  |  | 
|  | /* Check to see if the opcode is already JAL or JALX.  */ | 
|  | if (r_type == R_MIPS16_26) | 
|  | { | 
|  | ok = ((opcode == 0x6) || (opcode == 0x7)); | 
|  | jalx_opcode = 0x7; | 
|  | } | 
|  | else if (r_type == R_MICROMIPS_26_S1) | 
|  | { | 
|  | ok = ((opcode == 0x3d) || (opcode == 0x3c)); | 
|  | jalx_opcode = 0x3c; | 
|  | } | 
|  | else | 
|  | { | 
|  | ok = ((opcode == 0x3) || (opcode == 0x1d)); | 
|  | jalx_opcode = 0x1d; | 
|  | } | 
|  |  | 
|  | /* If the opcode is not JAL or JALX, there's a problem.  We cannot | 
|  | convert J or JALS to JALX.  */ | 
|  | if (!ok) | 
|  | { | 
|  | info->callbacks->einfo | 
|  | (_("%X%H: unsupported jump between ISA modes; " | 
|  | "consider recompiling with interlinking enabled\n"), | 
|  | input_bfd, input_section, relocation->r_offset); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Make this the JALX opcode.  */ | 
|  | x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26); | 
|  | } | 
|  | else if (cross_mode_jump_p && b_reloc_p (r_type)) | 
|  | { | 
|  | bool ok = false; | 
|  | bfd_vma opcode = x >> 16; | 
|  | bfd_vma jalx_opcode = 0; | 
|  | bfd_vma sign_bit = 0; | 
|  | bfd_vma addr; | 
|  | bfd_vma dest; | 
|  |  | 
|  | if (r_type == R_MICROMIPS_PC16_S1) | 
|  | { | 
|  | ok = opcode == 0x4060; | 
|  | jalx_opcode = 0x3c; | 
|  | sign_bit = 0x10000; | 
|  | value <<= 1; | 
|  | } | 
|  | else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2) | 
|  | { | 
|  | ok = opcode == 0x411; | 
|  | jalx_opcode = 0x1d; | 
|  | sign_bit = 0x20000; | 
|  | value <<= 2; | 
|  | } | 
|  |  | 
|  | if (ok && !bfd_link_pic (info)) | 
|  | { | 
|  | addr = (input_section->output_section->vma | 
|  | + input_section->output_offset | 
|  | + relocation->r_offset | 
|  | + 4); | 
|  | dest = (addr | 
|  | + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit)); | 
|  |  | 
|  | if ((addr >> 28) << 28 != (dest >> 28) << 28) | 
|  | { | 
|  | info->callbacks->einfo | 
|  | (_("%X%H: cannot convert branch between ISA modes " | 
|  | "to JALX: relocation out of range\n"), | 
|  | input_bfd, input_section, relocation->r_offset); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Make this the JALX opcode.  */ | 
|  | x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26; | 
|  | } | 
|  | else if (!mips_elf_hash_table (info)->ignore_branch_isa) | 
|  | { | 
|  | info->callbacks->einfo | 
|  | (_("%X%H: unsupported branch between ISA modes\n"), | 
|  | input_bfd, input_section, relocation->r_offset); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in | 
|  | range.  */ | 
|  | if (!bfd_link_relocatable (info) | 
|  | && !cross_mode_jump_p | 
|  | && ((JAL_TO_BAL_P (input_bfd) | 
|  | && r_type == R_MIPS_26 | 
|  | && (x >> 26) == 0x3)			/* jal addr */ | 
|  | || (JALR_TO_BAL_P (input_bfd) | 
|  | && r_type == R_MIPS_JALR | 
|  | && x == 0x0320f809)		/* jalr t9 */ | 
|  | || (JR_TO_B_P (input_bfd) | 
|  | && r_type == R_MIPS_JALR | 
|  | && (x & ~1) == 0x03200008)))	/* jr t9 / jalr zero, t9 */ | 
|  | { | 
|  | bfd_vma addr; | 
|  | bfd_vma dest; | 
|  | bfd_signed_vma off; | 
|  |  | 
|  | addr = (input_section->output_section->vma | 
|  | + input_section->output_offset | 
|  | + relocation->r_offset | 
|  | + 4); | 
|  | if (r_type == R_MIPS_26) | 
|  | dest = (value << 2) | ((addr >> 28) << 28); | 
|  | else | 
|  | dest = value; | 
|  | off = dest - addr; | 
|  | if (off <= 0x1ffff && off >= -0x20000) | 
|  | { | 
|  | if ((x & ~1) == 0x03200008)		/* jr t9 / jalr zero, t9 */ | 
|  | x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */ | 
|  | else | 
|  | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Put the value into the output.  */ | 
|  | mips_elf_store_contents (howto, relocation, input_bfd, contents, x); | 
|  |  | 
|  | _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), | 
|  | location); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL | 
|  | is the original relocation, which is now being transformed into a | 
|  | dynamic relocation.  The ADDENDP is adjusted if necessary; the | 
|  | caller should store the result in place of the original addend.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_create_dynamic_relocation (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | const Elf_Internal_Rela *rel, | 
|  | struct mips_elf_link_hash_entry *h, | 
|  | asection *sec, bfd_vma symbol, | 
|  | bfd_vma *addendp, asection *input_section) | 
|  | { | 
|  | Elf_Internal_Rela outrel[3]; | 
|  | asection *sreloc; | 
|  | bfd *dynobj; | 
|  | int r_type; | 
|  | long indx; | 
|  | bool defined_p; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | sreloc = mips_elf_rel_dyn_section (info, false); | 
|  | BFD_ASSERT (sreloc != NULL); | 
|  | BFD_ASSERT (sreloc->contents != NULL); | 
|  | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | 
|  | < sreloc->size); | 
|  |  | 
|  | outrel[0].r_offset = | 
|  | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | 
|  | if (ABI_64_P (output_bfd)) | 
|  | { | 
|  | outrel[1].r_offset = | 
|  | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | 
|  | outrel[2].r_offset = | 
|  | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | 
|  | } | 
|  |  | 
|  | if (outrel[0].r_offset == MINUS_ONE) | 
|  | /* The relocation field has been deleted.  */ | 
|  | return true; | 
|  |  | 
|  | if (outrel[0].r_offset == MINUS_TWO) | 
|  | { | 
|  | /* The relocation field has been converted into a relative value of | 
|  | some sort.  Functions like _bfd_elf_write_section_eh_frame expect | 
|  | the field to be fully relocated, so add in the symbol's value.  */ | 
|  | *addendp += symbol; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* We must now calculate the dynamic symbol table index to use | 
|  | in the relocation.  */ | 
|  | if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) | 
|  | { | 
|  | BFD_ASSERT (htab->root.target_os == is_vxworks | 
|  | || h->global_got_area != GGA_NONE); | 
|  | indx = h->root.dynindx; | 
|  | if (SGI_COMPAT (output_bfd)) | 
|  | defined_p = h->root.def_regular; | 
|  | else | 
|  | /* ??? glibc's ld.so just adds the final GOT entry to the | 
|  | relocation field.  It therefore treats relocs against | 
|  | defined symbols in the same way as relocs against | 
|  | undefined symbols.  */ | 
|  | defined_p = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (sec != NULL && bfd_is_abs_section (sec)) | 
|  | indx = 0; | 
|  | else if (sec == NULL || sec->owner == NULL) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | indx = elf_section_data (sec->output_section)->dynindx; | 
|  | if (indx == 0) | 
|  | { | 
|  | asection *osec = htab->root.text_index_section; | 
|  | indx = elf_section_data (osec)->dynindx; | 
|  | } | 
|  | if (indx == 0) | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | /* Instead of generating a relocation using the section | 
|  | symbol, we may as well make it a fully relative | 
|  | relocation.  We want to avoid generating relocations to | 
|  | local symbols because we used to generate them | 
|  | incorrectly, without adding the original symbol value, | 
|  | which is mandated by the ABI for section symbols.  In | 
|  | order to give dynamic loaders and applications time to | 
|  | phase out the incorrect use, we refrain from emitting | 
|  | section-relative relocations.  It's not like they're | 
|  | useful, after all.  This should be a bit more efficient | 
|  | as well.  */ | 
|  | /* ??? Although this behavior is compatible with glibc's ld.so, | 
|  | the ABI says that relocations against STN_UNDEF should have | 
|  | a symbol value of 0.  Irix rld honors this, so relocations | 
|  | against STN_UNDEF have no effect.  */ | 
|  | if (!SGI_COMPAT (output_bfd)) | 
|  | indx = 0; | 
|  | defined_p = true; | 
|  | } | 
|  |  | 
|  | /* If the relocation was previously an absolute relocation and | 
|  | this symbol will not be referred to by the relocation, we must | 
|  | adjust it by the value we give it in the dynamic symbol table. | 
|  | Otherwise leave the job up to the dynamic linker.  */ | 
|  | if (defined_p && r_type != R_MIPS_REL32) | 
|  | *addendp += symbol; | 
|  |  | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | /* VxWorks uses non-relative relocations for this.  */ | 
|  | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | 
|  | else | 
|  | /* The relocation is always an REL32 relocation because we don't | 
|  | know where the shared library will wind up at load-time.  */ | 
|  | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | 
|  | R_MIPS_REL32); | 
|  |  | 
|  | /* For strict adherence to the ABI specification, we should | 
|  | generate a R_MIPS_64 relocation record by itself before the | 
|  | _REL32/_64 record as well, such that the addend is read in as | 
|  | a 64-bit value (REL32 is a 32-bit relocation, after all). | 
|  | However, since none of the existing ELF64 MIPS dynamic | 
|  | loaders seems to care, we don't waste space with these | 
|  | artificial relocations.  If this turns out to not be true, | 
|  | mips_elf_allocate_dynamic_relocation() should be tweaked so | 
|  | as to make room for a pair of dynamic relocations per | 
|  | invocation if ABI_64_P, and here we should generate an | 
|  | additional relocation record with R_MIPS_64 by itself for a | 
|  | NULL symbol before this relocation record.  */ | 
|  | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | 
|  | ABI_64_P (output_bfd) | 
|  | ? R_MIPS_64 | 
|  | : R_MIPS_NONE); | 
|  | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | 
|  |  | 
|  | /* Adjust the output offset of the relocation to reference the | 
|  | correct location in the output file.  */ | 
|  | outrel[0].r_offset += (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | outrel[1].r_offset += (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | outrel[2].r_offset += (input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  |  | 
|  | /* Put the relocation back out.  We have to use the special | 
|  | relocation outputter in the 64-bit case since the 64-bit | 
|  | relocation format is non-standard.  */ | 
|  | if (ABI_64_P (output_bfd)) | 
|  | { | 
|  | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | 
|  | (output_bfd, &outrel[0], | 
|  | (sreloc->contents | 
|  | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | 
|  | } | 
|  | else if (htab->root.target_os == is_vxworks) | 
|  | { | 
|  | /* VxWorks uses RELA rather than REL dynamic relocations.  */ | 
|  | outrel[0].r_addend = *addendp; | 
|  | bfd_elf32_swap_reloca_out | 
|  | (output_bfd, &outrel[0], | 
|  | (sreloc->contents | 
|  | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | 
|  | } | 
|  | else | 
|  | bfd_elf32_swap_reloc_out | 
|  | (output_bfd, &outrel[0], | 
|  | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | 
|  |  | 
|  | /* We've now added another relocation.  */ | 
|  | ++sreloc->reloc_count; | 
|  |  | 
|  | /* Make sure the output section is writable.  The dynamic linker | 
|  | will be writing to it.  */ | 
|  | elf_section_data (input_section->output_section)->this_hdr.sh_flags | 
|  | |= SHF_WRITE; | 
|  |  | 
|  | /* On IRIX5, make an entry of compact relocation info.  */ | 
|  | if (IRIX_COMPAT (output_bfd) == ict_irix5) | 
|  | { | 
|  | asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); | 
|  | bfd_byte *cr; | 
|  |  | 
|  | if (scpt) | 
|  | { | 
|  | Elf32_crinfo cptrel; | 
|  |  | 
|  | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | 
|  | cptrel.vaddr = (rel->r_offset | 
|  | + input_section->output_section->vma | 
|  | + input_section->output_offset); | 
|  | if (r_type == R_MIPS_REL32) | 
|  | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | 
|  | else | 
|  | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | 
|  | mips_elf_set_cr_dist2to (cptrel, 0); | 
|  | cptrel.konst = *addendp; | 
|  |  | 
|  | cr = (scpt->contents | 
|  | + sizeof (Elf32_External_compact_rel)); | 
|  | mips_elf_set_cr_relvaddr (cptrel, 0); | 
|  | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, | 
|  | ((Elf32_External_crinfo *) cr | 
|  | + scpt->reloc_count)); | 
|  | ++scpt->reloc_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we've written this relocation for a readonly section, | 
|  | we need to set DF_TEXTREL again, so that we do not delete the | 
|  | DT_TEXTREL tag.  */ | 
|  | if (MIPS_ELF_READONLY_SECTION (input_section)) | 
|  | info->flags |= DF_TEXTREL; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the MACH for a MIPS e_flags value.  */ | 
|  |  | 
|  | unsigned long | 
|  | _bfd_elf_mips_mach (flagword flags) | 
|  | { | 
|  | switch (flags & EF_MIPS_MACH) | 
|  | { | 
|  | case E_MIPS_MACH_3900: | 
|  | return bfd_mach_mips3900; | 
|  |  | 
|  | case E_MIPS_MACH_4010: | 
|  | return bfd_mach_mips4010; | 
|  |  | 
|  | case E_MIPS_MACH_4100: | 
|  | return bfd_mach_mips4100; | 
|  |  | 
|  | case E_MIPS_MACH_4111: | 
|  | return bfd_mach_mips4111; | 
|  |  | 
|  | case E_MIPS_MACH_4120: | 
|  | return bfd_mach_mips4120; | 
|  |  | 
|  | case E_MIPS_MACH_4650: | 
|  | return bfd_mach_mips4650; | 
|  |  | 
|  | case E_MIPS_MACH_5400: | 
|  | return bfd_mach_mips5400; | 
|  |  | 
|  | case E_MIPS_MACH_5500: | 
|  | return bfd_mach_mips5500; | 
|  |  | 
|  | case E_MIPS_MACH_5900: | 
|  | return bfd_mach_mips5900; | 
|  |  | 
|  | case E_MIPS_MACH_9000: | 
|  | return bfd_mach_mips9000; | 
|  |  | 
|  | case E_MIPS_MACH_SB1: | 
|  | return bfd_mach_mips_sb1; | 
|  |  | 
|  | case E_MIPS_MACH_LS2E: | 
|  | return bfd_mach_mips_loongson_2e; | 
|  |  | 
|  | case E_MIPS_MACH_LS2F: | 
|  | return bfd_mach_mips_loongson_2f; | 
|  |  | 
|  | case E_MIPS_MACH_GS464: | 
|  | return bfd_mach_mips_gs464; | 
|  |  | 
|  | case E_MIPS_MACH_GS464E: | 
|  | return bfd_mach_mips_gs464e; | 
|  |  | 
|  | case E_MIPS_MACH_GS264E: | 
|  | return bfd_mach_mips_gs264e; | 
|  |  | 
|  | case E_MIPS_MACH_OCTEON3: | 
|  | return bfd_mach_mips_octeon3; | 
|  |  | 
|  | case E_MIPS_MACH_OCTEON2: | 
|  | return bfd_mach_mips_octeon2; | 
|  |  | 
|  | case E_MIPS_MACH_OCTEON: | 
|  | return bfd_mach_mips_octeon; | 
|  |  | 
|  | case E_MIPS_MACH_XLR: | 
|  | return bfd_mach_mips_xlr; | 
|  |  | 
|  | case E_MIPS_MACH_IAMR2: | 
|  | return bfd_mach_mips_interaptiv_mr2; | 
|  |  | 
|  | default: | 
|  | switch (flags & EF_MIPS_ARCH) | 
|  | { | 
|  | default: | 
|  | case E_MIPS_ARCH_1: | 
|  | return bfd_mach_mips3000; | 
|  |  | 
|  | case E_MIPS_ARCH_2: | 
|  | return bfd_mach_mips6000; | 
|  |  | 
|  | case E_MIPS_ARCH_3: | 
|  | return bfd_mach_mips4000; | 
|  |  | 
|  | case E_MIPS_ARCH_4: | 
|  | return bfd_mach_mips8000; | 
|  |  | 
|  | case E_MIPS_ARCH_5: | 
|  | return bfd_mach_mips5; | 
|  |  | 
|  | case E_MIPS_ARCH_32: | 
|  | return bfd_mach_mipsisa32; | 
|  |  | 
|  | case E_MIPS_ARCH_64: | 
|  | return bfd_mach_mipsisa64; | 
|  |  | 
|  | case E_MIPS_ARCH_32R2: | 
|  | return bfd_mach_mipsisa32r2; | 
|  |  | 
|  | case E_MIPS_ARCH_64R2: | 
|  | return bfd_mach_mipsisa64r2; | 
|  |  | 
|  | case E_MIPS_ARCH_32R6: | 
|  | return bfd_mach_mipsisa32r6; | 
|  |  | 
|  | case E_MIPS_ARCH_64R6: | 
|  | return bfd_mach_mipsisa64r6; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return printable name for ABI.  */ | 
|  |  | 
|  | static inline char * | 
|  | elf_mips_abi_name (bfd *abfd) | 
|  | { | 
|  | flagword flags; | 
|  |  | 
|  | flags = elf_elfheader (abfd)->e_flags; | 
|  | switch (flags & EF_MIPS_ABI) | 
|  | { | 
|  | case 0: | 
|  | if (ABI_N32_P (abfd)) | 
|  | return "N32"; | 
|  | else if (ABI_64_P (abfd)) | 
|  | return "64"; | 
|  | else | 
|  | return "none"; | 
|  | case E_MIPS_ABI_O32: | 
|  | return "O32"; | 
|  | case E_MIPS_ABI_O64: | 
|  | return "O64"; | 
|  | case E_MIPS_ABI_EABI32: | 
|  | return "EABI32"; | 
|  | case E_MIPS_ABI_EABI64: | 
|  | return "EABI64"; | 
|  | default: | 
|  | return "unknown abi"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* MIPS ELF uses two common sections.  One is the usual one, and the | 
|  | other is for small objects.  All the small objects are kept | 
|  | together, and then referenced via the gp pointer, which yields | 
|  | faster assembler code.  This is what we use for the small common | 
|  | section.  This approach is copied from ecoff.c.  */ | 
|  | static asection mips_elf_scom_section; | 
|  | static const asymbol mips_elf_scom_symbol = | 
|  | GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section); | 
|  | static asection mips_elf_scom_section = | 
|  | BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol, | 
|  | ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA); | 
|  |  | 
|  | /* MIPS ELF also uses an acommon section, which represents an | 
|  | allocated common symbol which may be overridden by a | 
|  | definition in a shared library.  */ | 
|  | static asection mips_elf_acom_section; | 
|  | static const asymbol mips_elf_acom_symbol = | 
|  | GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section); | 
|  | static asection mips_elf_acom_section = | 
|  | BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol, | 
|  | ".acommon", 0, SEC_ALLOC); | 
|  |  | 
|  | /* This is used for both the 32-bit and the 64-bit ABI.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) | 
|  | { | 
|  | elf_symbol_type *elfsym; | 
|  |  | 
|  | /* Handle the special MIPS section numbers that a symbol may use.  */ | 
|  | elfsym = (elf_symbol_type *) asym; | 
|  | switch (elfsym->internal_elf_sym.st_shndx) | 
|  | { | 
|  | case SHN_MIPS_ACOMMON: | 
|  | /* This section is used in a dynamically linked executable file. | 
|  | It is an allocated common section.  The dynamic linker can | 
|  | either resolve these symbols to something in a shared | 
|  | library, or it can just leave them here.  For our purposes, | 
|  | we can consider these symbols to be in a new section.  */ | 
|  | asym->section = &mips_elf_acom_section; | 
|  | break; | 
|  |  | 
|  | case SHN_COMMON: | 
|  | /* Common symbols less than the GP size are automatically | 
|  | treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */ | 
|  | if (asym->value > elf_gp_size (abfd) | 
|  | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS | 
|  | || IRIX_COMPAT (abfd) == ict_irix6) | 
|  | break; | 
|  | /* Fall through.  */ | 
|  | case SHN_MIPS_SCOMMON: | 
|  | asym->section = &mips_elf_scom_section; | 
|  | asym->value = elfsym->internal_elf_sym.st_size; | 
|  | break; | 
|  |  | 
|  | case SHN_MIPS_SUNDEFINED: | 
|  | asym->section = bfd_und_section_ptr; | 
|  | break; | 
|  |  | 
|  | case SHN_MIPS_TEXT: | 
|  | { | 
|  | asection *section = bfd_get_section_by_name (abfd, ".text"); | 
|  |  | 
|  | if (section != NULL) | 
|  | { | 
|  | asym->section = section; | 
|  | /* MIPS_TEXT is a bit special, the address is not an offset | 
|  | to the base of the .text section.  So subtract the section | 
|  | base address to make it an offset.  */ | 
|  | asym->value -= section->vma; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SHN_MIPS_DATA: | 
|  | { | 
|  | asection *section = bfd_get_section_by_name (abfd, ".data"); | 
|  |  | 
|  | if (section != NULL) | 
|  | { | 
|  | asym->section = section; | 
|  | /* MIPS_DATA is a bit special, the address is not an offset | 
|  | to the base of the .data section.  So subtract the section | 
|  | base address to make it an offset.  */ | 
|  | asym->value -= section->vma; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If this is an odd-valued function symbol, assume it's a MIPS16 | 
|  | or microMIPS one.  */ | 
|  | if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC | 
|  | && (asym->value & 1) != 0) | 
|  | { | 
|  | asym->value--; | 
|  | if (MICROMIPS_P (abfd)) | 
|  | elfsym->internal_elf_sym.st_other | 
|  | = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); | 
|  | else | 
|  | elfsym->internal_elf_sym.st_other | 
|  | = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement elf_backend_eh_frame_address_size.  This differs from | 
|  | the default in the way it handles EABI64. | 
|  |  | 
|  | EABI64 was originally specified as an LP64 ABI, and that is what | 
|  | -mabi=eabi normally gives on a 64-bit target.  However, gcc has | 
|  | historically accepted the combination of -mabi=eabi and -mlong32, | 
|  | and this ILP32 variation has become semi-official over time. | 
|  | Both forms use elf32 and have pointer-sized FDE addresses. | 
|  |  | 
|  | If an EABI object was generated by GCC 4.0 or above, it will have | 
|  | an empty .gcc_compiled_longXX section, where XX is the size of longs | 
|  | in bits.  Unfortunately, ILP32 objects generated by earlier compilers | 
|  | have no special marking to distinguish them from LP64 objects. | 
|  |  | 
|  | We don't want users of the official LP64 ABI to be punished for the | 
|  | existence of the ILP32 variant, but at the same time, we don't want | 
|  | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | 
|  | We therefore take the following approach: | 
|  |  | 
|  | - If ABFD contains a .gcc_compiled_longXX section, use it to | 
|  | determine the pointer size. | 
|  |  | 
|  | - Otherwise check the type of the first relocation.  Assume that | 
|  | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | 
|  |  | 
|  | - Otherwise punt. | 
|  |  | 
|  | The second check is enough to detect LP64 objects generated by pre-4.0 | 
|  | compilers because, in the kind of output generated by those compilers, | 
|  | the first relocation will be associated with either a CIE personality | 
|  | routine or an FDE start address.  Furthermore, the compilers never | 
|  | used a special (non-pointer) encoding for this ABI. | 
|  |  | 
|  | Checking the relocation type should also be safe because there is no | 
|  | reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never | 
|  | did so.  */ | 
|  |  | 
|  | unsigned int | 
|  | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec) | 
|  | { | 
|  | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | 
|  | return 8; | 
|  | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | 
|  | { | 
|  | bool long32_p, long64_p; | 
|  |  | 
|  | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | 
|  | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | 
|  | if (long32_p && long64_p) | 
|  | return 0; | 
|  | if (long32_p) | 
|  | return 4; | 
|  | if (long64_p) | 
|  | return 8; | 
|  |  | 
|  | if (sec->reloc_count > 0 | 
|  | && elf_section_data (sec)->relocs != NULL | 
|  | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | 
|  | == R_MIPS_64)) | 
|  | return 8; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP | 
|  | relocations against two unnamed section symbols to resolve to the | 
|  | same address.  For example, if we have code like: | 
|  |  | 
|  | lw	$4,%got_disp(.data)($gp) | 
|  | lw	$25,%got_disp(.text)($gp) | 
|  | jalr	$25 | 
|  |  | 
|  | then the linker will resolve both relocations to .data and the program | 
|  | will jump there rather than to .text. | 
|  |  | 
|  | We can work around this problem by giving names to local section symbols. | 
|  | This is also what the MIPSpro tools do.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | 
|  | { | 
|  | return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd); | 
|  | } | 
|  |  | 
|  | /* Work over a section just before writing it out.  This routine is | 
|  | used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize | 
|  | sections that need the SHF_MIPS_GPREL flag by name; there has to be | 
|  | a better way.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) | 
|  | { | 
|  | if (hdr->sh_type == SHT_MIPS_REGINFO | 
|  | && hdr->sh_size > 0) | 
|  | { | 
|  | bfd_byte buf[4]; | 
|  |  | 
|  | BFD_ASSERT (hdr->contents == NULL); | 
|  |  | 
|  | if (hdr->sh_size != sizeof (Elf32_External_RegInfo)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: incorrect `.reginfo' section size; " | 
|  | "expected %" PRIu64 ", got %" PRIu64), | 
|  | abfd, (uint64_t) sizeof (Elf32_External_RegInfo), | 
|  | (uint64_t) hdr->sh_size); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (bfd_seek (abfd, | 
|  | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | 
|  | SEEK_SET) != 0) | 
|  | return false; | 
|  | H_PUT_32 (abfd, elf_gp (abfd), buf); | 
|  | if (bfd_bwrite (buf, 4, abfd) != 4) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (hdr->sh_type == SHT_MIPS_OPTIONS | 
|  | && hdr->bfd_section != NULL | 
|  | && mips_elf_section_data (hdr->bfd_section) != NULL | 
|  | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | 
|  | { | 
|  | bfd_byte *contents, *l, *lend; | 
|  |  | 
|  | /* We stored the section contents in the tdata field in the | 
|  | set_section_contents routine.  We save the section contents | 
|  | so that we don't have to read them again. | 
|  | At this point we know that elf_gp is set, so we can look | 
|  | through the section contents to see if there is an | 
|  | ODK_REGINFO structure.  */ | 
|  |  | 
|  | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; | 
|  | l = contents; | 
|  | lend = contents + hdr->sh_size; | 
|  | while (l + sizeof (Elf_External_Options) <= lend) | 
|  | { | 
|  | Elf_Internal_Options intopt; | 
|  |  | 
|  | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | 
|  | &intopt); | 
|  | if (intopt.size < sizeof (Elf_External_Options)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: bad `%s' option size %u smaller than" | 
|  | " its header"), | 
|  | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | 
|  | break; | 
|  | } | 
|  | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | 
|  | { | 
|  | bfd_byte buf[8]; | 
|  |  | 
|  | if (bfd_seek (abfd, | 
|  | (hdr->sh_offset | 
|  | + (l - contents) | 
|  | + sizeof (Elf_External_Options) | 
|  | + (sizeof (Elf64_External_RegInfo) - 8)), | 
|  | SEEK_SET) != 0) | 
|  | return false; | 
|  | H_PUT_64 (abfd, elf_gp (abfd), buf); | 
|  | if (bfd_bwrite (buf, 8, abfd) != 8) | 
|  | return false; | 
|  | } | 
|  | else if (intopt.kind == ODK_REGINFO) | 
|  | { | 
|  | bfd_byte buf[4]; | 
|  |  | 
|  | if (bfd_seek (abfd, | 
|  | (hdr->sh_offset | 
|  | + (l - contents) | 
|  | + sizeof (Elf_External_Options) | 
|  | + (sizeof (Elf32_External_RegInfo) - 4)), | 
|  | SEEK_SET) != 0) | 
|  | return false; | 
|  | H_PUT_32 (abfd, elf_gp (abfd), buf); | 
|  | if (bfd_bwrite (buf, 4, abfd) != 4) | 
|  | return false; | 
|  | } | 
|  | l += intopt.size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hdr->bfd_section != NULL) | 
|  | { | 
|  | const char *name = bfd_section_name (hdr->bfd_section); | 
|  |  | 
|  | /* .sbss is not handled specially here because the GNU/Linux | 
|  | prelinker can convert .sbss from NOBITS to PROGBITS and | 
|  | changing it back to NOBITS breaks the binary.  The entry in | 
|  | _bfd_mips_elf_special_sections will ensure the correct flags | 
|  | are set on .sbss if BFD creates it without reading it from an | 
|  | input file, and without special handling here the flags set | 
|  | on it in an input file will be followed.  */ | 
|  | if (strcmp (name, ".sdata") == 0 | 
|  | || strcmp (name, ".lit8") == 0 | 
|  | || strcmp (name, ".lit4") == 0) | 
|  | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | 
|  | else if (strcmp (name, ".srdata") == 0) | 
|  | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | 
|  | else if (strcmp (name, ".compact_rel") == 0) | 
|  | hdr->sh_flags = 0; | 
|  | else if (strcmp (name, ".rtproc") == 0) | 
|  | { | 
|  | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | 
|  | { | 
|  | unsigned int adjust; | 
|  |  | 
|  | adjust = hdr->sh_size % hdr->sh_addralign; | 
|  | if (adjust != 0) | 
|  | hdr->sh_size += hdr->sh_addralign - adjust; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Handle a MIPS specific section when reading an object file.  This | 
|  | is called when elfcode.h finds a section with an unknown type. | 
|  | This routine supports both the 32-bit and 64-bit ELF ABI.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_section_from_shdr (bfd *abfd, | 
|  | Elf_Internal_Shdr *hdr, | 
|  | const char *name, | 
|  | int shindex) | 
|  | { | 
|  | flagword flags = 0; | 
|  |  | 
|  | /* There ought to be a place to keep ELF backend specific flags, but | 
|  | at the moment there isn't one.  We just keep track of the | 
|  | sections by their name, instead.  Fortunately, the ABI gives | 
|  | suggested names for all the MIPS specific sections, so we will | 
|  | probably get away with this.  */ | 
|  | switch (hdr->sh_type) | 
|  | { | 
|  | case SHT_MIPS_LIBLIST: | 
|  | if (strcmp (name, ".liblist") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_MSYM: | 
|  | if (strcmp (name, ".msym") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_CONFLICT: | 
|  | if (strcmp (name, ".conflict") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_GPTAB: | 
|  | if (! startswith (name, ".gptab.")) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_UCODE: | 
|  | if (strcmp (name, ".ucode") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_DEBUG: | 
|  | if (strcmp (name, ".mdebug") != 0) | 
|  | return false; | 
|  | flags = SEC_DEBUGGING; | 
|  | break; | 
|  | case SHT_MIPS_REGINFO: | 
|  | if (strcmp (name, ".reginfo") != 0 | 
|  | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | 
|  | return false; | 
|  | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); | 
|  | break; | 
|  | case SHT_MIPS_IFACE: | 
|  | if (strcmp (name, ".MIPS.interfaces") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_CONTENT: | 
|  | if (! startswith (name, ".MIPS.content")) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_OPTIONS: | 
|  | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_ABIFLAGS: | 
|  | if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) | 
|  | return false; | 
|  | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); | 
|  | break; | 
|  | case SHT_MIPS_DWARF: | 
|  | if (! startswith (name, ".debug_") | 
|  | && ! startswith (name, ".gnu.debuglto_.debug_") | 
|  | && ! startswith (name, ".zdebug_") | 
|  | && ! startswith (name, ".gnu.debuglto_.zdebug_")) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_SYMBOL_LIB: | 
|  | if (strcmp (name, ".MIPS.symlib") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_EVENTS: | 
|  | if (! startswith (name, ".MIPS.events") | 
|  | && ! startswith (name, ".MIPS.post_rel")) | 
|  | return false; | 
|  | break; | 
|  | case SHT_MIPS_XHASH: | 
|  | if (strcmp (name, ".MIPS.xhash") != 0) | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) | 
|  | return false; | 
|  |  | 
|  | if (hdr->sh_flags & SHF_MIPS_GPREL) | 
|  | flags |= SEC_SMALL_DATA; | 
|  |  | 
|  | if (flags) | 
|  | { | 
|  | if (!bfd_set_section_flags (hdr->bfd_section, | 
|  | (bfd_section_flags (hdr->bfd_section) | 
|  | | flags))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (hdr->sh_type == SHT_MIPS_ABIFLAGS) | 
|  | { | 
|  | Elf_External_ABIFlags_v0 ext; | 
|  |  | 
|  | if (! bfd_get_section_contents (abfd, hdr->bfd_section, | 
|  | &ext, 0, sizeof ext)) | 
|  | return false; | 
|  | bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, | 
|  | &mips_elf_tdata (abfd)->abiflags); | 
|  | if (mips_elf_tdata (abfd)->abiflags.version != 0) | 
|  | return false; | 
|  | mips_elf_tdata (abfd)->abiflags_valid = true; | 
|  | } | 
|  |  | 
|  | /* FIXME: We should record sh_info for a .gptab section.  */ | 
|  |  | 
|  | /* For a .reginfo section, set the gp value in the tdata information | 
|  | from the contents of this section.  We need the gp value while | 
|  | processing relocs, so we just get it now.  The .reginfo section | 
|  | is not used in the 64-bit MIPS ELF ABI.  */ | 
|  | if (hdr->sh_type == SHT_MIPS_REGINFO) | 
|  | { | 
|  | Elf32_External_RegInfo ext; | 
|  | Elf32_RegInfo s; | 
|  |  | 
|  | if (! bfd_get_section_contents (abfd, hdr->bfd_section, | 
|  | &ext, 0, sizeof ext)) | 
|  | return false; | 
|  | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); | 
|  | elf_gp (abfd) = s.ri_gp_value; | 
|  | } | 
|  |  | 
|  | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | 
|  | set the gp value based on what we find.  We may see both | 
|  | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | 
|  | they should agree.  */ | 
|  | if (hdr->sh_type == SHT_MIPS_OPTIONS) | 
|  | { | 
|  | bfd_byte *contents, *l, *lend; | 
|  |  | 
|  | contents = bfd_malloc (hdr->sh_size); | 
|  | if (contents == NULL) | 
|  | return false; | 
|  | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, | 
|  | 0, hdr->sh_size)) | 
|  | { | 
|  | free (contents); | 
|  | return false; | 
|  | } | 
|  | l = contents; | 
|  | lend = contents + hdr->sh_size; | 
|  | while (l + sizeof (Elf_External_Options) <= lend) | 
|  | { | 
|  | Elf_Internal_Options intopt; | 
|  |  | 
|  | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | 
|  | &intopt); | 
|  | if (intopt.size < sizeof (Elf_External_Options)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: bad `%s' option size %u smaller than" | 
|  | " its header"), | 
|  | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | 
|  | break; | 
|  | } | 
|  | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | 
|  | { | 
|  | Elf64_Internal_RegInfo intreg; | 
|  |  | 
|  | bfd_mips_elf64_swap_reginfo_in | 
|  | (abfd, | 
|  | ((Elf64_External_RegInfo *) | 
|  | (l + sizeof (Elf_External_Options))), | 
|  | &intreg); | 
|  | elf_gp (abfd) = intreg.ri_gp_value; | 
|  | } | 
|  | else if (intopt.kind == ODK_REGINFO) | 
|  | { | 
|  | Elf32_RegInfo intreg; | 
|  |  | 
|  | bfd_mips_elf32_swap_reginfo_in | 
|  | (abfd, | 
|  | ((Elf32_External_RegInfo *) | 
|  | (l + sizeof (Elf_External_Options))), | 
|  | &intreg); | 
|  | elf_gp (abfd) = intreg.ri_gp_value; | 
|  | } | 
|  | l += intopt.size; | 
|  | } | 
|  | free (contents); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Set the correct type for a MIPS ELF section.  We do this by the | 
|  | section name, which is a hack, but ought to work.  This routine is | 
|  | used by both the 32-bit and the 64-bit ABI.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) | 
|  | { | 
|  | const char *name = bfd_section_name (sec); | 
|  |  | 
|  | if (strcmp (name, ".liblist") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_LIBLIST; | 
|  | hdr->sh_info = sec->size / sizeof (Elf32_Lib); | 
|  | /* The sh_link field is set in final_write_processing.  */ | 
|  | } | 
|  | else if (strcmp (name, ".conflict") == 0) | 
|  | hdr->sh_type = SHT_MIPS_CONFLICT; | 
|  | else if (startswith (name, ".gptab.")) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_GPTAB; | 
|  | hdr->sh_entsize = sizeof (Elf32_External_gptab); | 
|  | /* The sh_info field is set in final_write_processing.  */ | 
|  | } | 
|  | else if (strcmp (name, ".ucode") == 0) | 
|  | hdr->sh_type = SHT_MIPS_UCODE; | 
|  | else if (strcmp (name, ".mdebug") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_DEBUG; | 
|  | /* In a shared object on IRIX 5.3, the .mdebug section has an | 
|  | entsize of 0.  FIXME: Does this matter?  */ | 
|  | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | 
|  | hdr->sh_entsize = 0; | 
|  | else | 
|  | hdr->sh_entsize = 1; | 
|  | } | 
|  | else if (strcmp (name, ".reginfo") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_REGINFO; | 
|  | /* In a shared object on IRIX 5.3, the .reginfo section has an | 
|  | entsize of 0x18.  FIXME: Does this matter?  */ | 
|  | if (SGI_COMPAT (abfd)) | 
|  | { | 
|  | if ((abfd->flags & DYNAMIC) != 0) | 
|  | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | 
|  | else | 
|  | hdr->sh_entsize = 1; | 
|  | } | 
|  | else | 
|  | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | 
|  | } | 
|  | else if (SGI_COMPAT (abfd) | 
|  | && (strcmp (name, ".hash") == 0 | 
|  | || strcmp (name, ".dynamic") == 0 | 
|  | || strcmp (name, ".dynstr") == 0)) | 
|  | { | 
|  | if (SGI_COMPAT (abfd)) | 
|  | hdr->sh_entsize = 0; | 
|  | #if 0 | 
|  | /* This isn't how the IRIX6 linker behaves.  */ | 
|  | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; | 
|  | #endif | 
|  | } | 
|  | else if (strcmp (name, ".got") == 0 | 
|  | || strcmp (name, ".srdata") == 0 | 
|  | || strcmp (name, ".sdata") == 0 | 
|  | || strcmp (name, ".sbss") == 0 | 
|  | || strcmp (name, ".lit4") == 0 | 
|  | || strcmp (name, ".lit8") == 0) | 
|  | hdr->sh_flags |= SHF_MIPS_GPREL; | 
|  | else if (strcmp (name, ".MIPS.interfaces") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_IFACE; | 
|  | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | 
|  | } | 
|  | else if (startswith (name, ".MIPS.content")) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_CONTENT; | 
|  | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | 
|  | /* The sh_info field is set in final_write_processing.  */ | 
|  | } | 
|  | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_OPTIONS; | 
|  | hdr->sh_entsize = 1; | 
|  | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | 
|  | } | 
|  | else if (startswith (name, ".MIPS.abiflags")) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_ABIFLAGS; | 
|  | hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); | 
|  | } | 
|  | else if (startswith (name, ".debug_") | 
|  | || startswith (name, ".gnu.debuglto_.debug_") | 
|  | || startswith (name, ".zdebug_") | 
|  | || startswith (name, ".gnu.debuglto_.zdebug_")) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_DWARF; | 
|  |  | 
|  | /* Irix facilities such as libexc expect a single .debug_frame | 
|  | per executable, the system ones have NOSTRIP set and the linker | 
|  | doesn't merge sections with different flags so ...  */ | 
|  | if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame")) | 
|  | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | 
|  | } | 
|  | else if (strcmp (name, ".MIPS.symlib") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | 
|  | /* The sh_link and sh_info fields are set in | 
|  | final_write_processing.  */ | 
|  | } | 
|  | else if (startswith (name, ".MIPS.events") | 
|  | || startswith (name, ".MIPS.post_rel")) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_EVENTS; | 
|  | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | 
|  | /* The sh_link field is set in final_write_processing.  */ | 
|  | } | 
|  | else if (strcmp (name, ".msym") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_MSYM; | 
|  | hdr->sh_flags |= SHF_ALLOC; | 
|  | hdr->sh_entsize = 8; | 
|  | } | 
|  | else if (strcmp (name, ".MIPS.xhash") == 0) | 
|  | { | 
|  | hdr->sh_type = SHT_MIPS_XHASH; | 
|  | hdr->sh_flags |= SHF_ALLOC; | 
|  | hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4; | 
|  | } | 
|  |  | 
|  | /* The generic elf_fake_sections will set up REL_HDR using the default | 
|  | kind of relocations.  We used to set up a second header for the | 
|  | non-default kind of relocations here, but only NewABI would use | 
|  | these, and the IRIX ld doesn't like resulting empty RELA sections. | 
|  | Thus we create those header only on demand now.  */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Given a BFD section, try to locate the corresponding ELF section | 
|  | index.  This is used by both the 32-bit and the 64-bit ABI. | 
|  | Actually, it's not clear to me that the 64-bit ABI supports these, | 
|  | but for non-PIC objects we will certainly want support for at least | 
|  | the .scommon section.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | asection *sec, int *retval) | 
|  | { | 
|  | if (strcmp (bfd_section_name (sec), ".scommon") == 0) | 
|  | { | 
|  | *retval = SHN_MIPS_SCOMMON; | 
|  | return true; | 
|  | } | 
|  | if (strcmp (bfd_section_name (sec), ".acommon") == 0) | 
|  | { | 
|  | *retval = SHN_MIPS_ACOMMON; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Hook called by the linker routine which adds symbols from an object | 
|  | file.  We must handle the special MIPS section numbers here.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, | 
|  | Elf_Internal_Sym *sym, const char **namep, | 
|  | flagword *flagsp ATTRIBUTE_UNUSED, | 
|  | asection **secp, bfd_vma *valp) | 
|  | { | 
|  | if (SGI_COMPAT (abfd) | 
|  | && (abfd->flags & DYNAMIC) != 0 | 
|  | && strcmp (*namep, "_rld_new_interface") == 0) | 
|  | { | 
|  | /* Skip IRIX5 rld entry name.  */ | 
|  | *namep = NULL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Shared objects may have a dynamic symbol '_gp_disp' defined as | 
|  | a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp | 
|  | by setting a DT_NEEDED for the shared object.  Since _gp_disp is | 
|  | a magic symbol resolved by the linker, we ignore this bogus definition | 
|  | of _gp_disp.  New ABI objects do not suffer from this problem so this | 
|  | is not done for them. */ | 
|  | if (!NEWABI_P(abfd) | 
|  | && (sym->st_shndx == SHN_ABS) | 
|  | && (strcmp (*namep, "_gp_disp") == 0)) | 
|  | { | 
|  | *namep = NULL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (sym->st_shndx) | 
|  | { | 
|  | case SHN_COMMON: | 
|  | /* Common symbols less than the GP size are automatically | 
|  | treated as SHN_MIPS_SCOMMON symbols.  */ | 
|  | if (sym->st_size > elf_gp_size (abfd) | 
|  | || ELF_ST_TYPE (sym->st_info) == STT_TLS | 
|  | || IRIX_COMPAT (abfd) == ict_irix6) | 
|  | break; | 
|  | /* Fall through.  */ | 
|  | case SHN_MIPS_SCOMMON: | 
|  | *secp = bfd_make_section_old_way (abfd, ".scommon"); | 
|  | (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA; | 
|  | *valp = sym->st_size; | 
|  | break; | 
|  |  | 
|  | case SHN_MIPS_TEXT: | 
|  | /* This section is used in a shared object.  */ | 
|  | if (mips_elf_tdata (abfd)->elf_text_section == NULL) | 
|  | { | 
|  | asymbol *elf_text_symbol; | 
|  | asection *elf_text_section; | 
|  | size_t amt = sizeof (asection); | 
|  |  | 
|  | elf_text_section = bfd_zalloc (abfd, amt); | 
|  | if (elf_text_section == NULL) | 
|  | return false; | 
|  |  | 
|  | amt = sizeof (asymbol); | 
|  | elf_text_symbol = bfd_zalloc (abfd, amt); | 
|  | if (elf_text_symbol == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Initialize the section.  */ | 
|  |  | 
|  | mips_elf_tdata (abfd)->elf_text_section = elf_text_section; | 
|  | mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | 
|  |  | 
|  | elf_text_section->symbol = elf_text_symbol; | 
|  | elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; | 
|  |  | 
|  | elf_text_section->name = ".text"; | 
|  | elf_text_section->flags = SEC_NO_FLAGS; | 
|  | elf_text_section->output_section = NULL; | 
|  | elf_text_section->owner = abfd; | 
|  | elf_text_symbol->name = ".text"; | 
|  | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | 
|  | elf_text_symbol->section = elf_text_section; | 
|  | } | 
|  | /* This code used to do *secp = bfd_und_section_ptr if | 
|  | bfd_link_pic (info).  I don't know why, and that doesn't make sense, | 
|  | so I took it out.  */ | 
|  | *secp = mips_elf_tdata (abfd)->elf_text_section; | 
|  | break; | 
|  |  | 
|  | case SHN_MIPS_ACOMMON: | 
|  | /* Fall through. XXX Can we treat this as allocated data?  */ | 
|  | case SHN_MIPS_DATA: | 
|  | /* This section is used in a shared object.  */ | 
|  | if (mips_elf_tdata (abfd)->elf_data_section == NULL) | 
|  | { | 
|  | asymbol *elf_data_symbol; | 
|  | asection *elf_data_section; | 
|  | size_t amt = sizeof (asection); | 
|  |  | 
|  | elf_data_section = bfd_zalloc (abfd, amt); | 
|  | if (elf_data_section == NULL) | 
|  | return false; | 
|  |  | 
|  | amt = sizeof (asymbol); | 
|  | elf_data_symbol = bfd_zalloc (abfd, amt); | 
|  | if (elf_data_symbol == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Initialize the section.  */ | 
|  |  | 
|  | mips_elf_tdata (abfd)->elf_data_section = elf_data_section; | 
|  | mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | 
|  |  | 
|  | elf_data_section->symbol = elf_data_symbol; | 
|  | elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; | 
|  |  | 
|  | elf_data_section->name = ".data"; | 
|  | elf_data_section->flags = SEC_NO_FLAGS; | 
|  | elf_data_section->output_section = NULL; | 
|  | elf_data_section->owner = abfd; | 
|  | elf_data_symbol->name = ".data"; | 
|  | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | 
|  | elf_data_symbol->section = elf_data_section; | 
|  | } | 
|  | /* This code used to do *secp = bfd_und_section_ptr if | 
|  | bfd_link_pic (info).  I don't know why, and that doesn't make sense, | 
|  | so I took it out.  */ | 
|  | *secp = mips_elf_tdata (abfd)->elf_data_section; | 
|  | break; | 
|  |  | 
|  | case SHN_MIPS_SUNDEFINED: | 
|  | *secp = bfd_und_section_ptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SGI_COMPAT (abfd) | 
|  | && ! bfd_link_pic (info) | 
|  | && info->output_bfd->xvec == abfd->xvec | 
|  | && strcmp (*namep, "__rld_obj_head") == 0) | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  | struct bfd_link_hash_entry *bh; | 
|  |  | 
|  | /* Mark __rld_obj_head as dynamic.  */ | 
|  | bh = NULL; | 
|  | if (! (_bfd_generic_link_add_one_symbol | 
|  | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false, | 
|  | get_elf_backend_data (abfd)->collect, &bh))) | 
|  | return false; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) bh; | 
|  | h->non_elf = 0; | 
|  | h->def_regular = 1; | 
|  | h->type = STT_OBJECT; | 
|  |  | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  |  | 
|  | mips_elf_hash_table (info)->use_rld_obj_head = true; | 
|  | mips_elf_hash_table (info)->rld_symbol = h; | 
|  | } | 
|  |  | 
|  | /* If this is a mips16 text symbol, add 1 to the value to make it | 
|  | odd.  This will cause something like .word SYM to come up with | 
|  | the right value when it is loaded into the PC.  */ | 
|  | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | 
|  | ++*valp; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This hook function is called before the linker writes out a global | 
|  | symbol.  We mark symbols as small common if appropriate.  This is | 
|  | also where we undo the increment of the value for a mips16 symbol.  */ | 
|  |  | 
|  | int | 
|  | _bfd_mips_elf_link_output_symbol_hook | 
|  | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | 
|  | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | 
|  | { | 
|  | /* If we see a common symbol, which implies a relocatable link, then | 
|  | if a symbol was small common in an input file, mark it as small | 
|  | common in the output file.  */ | 
|  | if (sym->st_shndx == SHN_COMMON | 
|  | && strcmp (input_sec->name, ".scommon") == 0) | 
|  | sym->st_shndx = SHN_MIPS_SCOMMON; | 
|  |  | 
|  | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | 
|  | sym->st_value &= ~1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Functions for the dynamic linker.  */ | 
|  |  | 
|  | /* Create dynamic sections when linking against a dynamic object.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  | struct bfd_link_hash_entry *bh; | 
|  | flagword flags; | 
|  | register asection *s; | 
|  | const char * const *namep; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED | SEC_READONLY); | 
|  |  | 
|  | /* The psABI requires a read-only .dynamic section, but the VxWorks | 
|  | EABI doesn't.  */ | 
|  | if (htab->root.target_os != is_vxworks) | 
|  | { | 
|  | s = bfd_get_linker_section (abfd, ".dynamic"); | 
|  | if (s != NULL) | 
|  | { | 
|  | if (!bfd_set_section_flags (s, flags)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We need to create .got section.  */ | 
|  | if (!mips_elf_create_got_section (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | if (! mips_elf_rel_dyn_section (info, true)) | 
|  | return false; | 
|  |  | 
|  | /* Create .stub section.  */ | 
|  | s = bfd_make_section_anyway_with_flags (abfd, | 
|  | MIPS_ELF_STUB_SECTION_NAME (abfd), | 
|  | flags | SEC_CODE); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) | 
|  | return false; | 
|  | htab->sstubs = s; | 
|  |  | 
|  | if (!mips_elf_hash_table (info)->use_rld_obj_head | 
|  | && bfd_link_executable (info) | 
|  | && bfd_get_linker_section (abfd, ".rld_map") == NULL) | 
|  | { | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", | 
|  | flags &~ (flagword) SEC_READONLY); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Create .MIPS.xhash section.  */ | 
|  | if (info->emit_gnu_hash) | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash", | 
|  | flags | SEC_READONLY); | 
|  |  | 
|  | /* On IRIX5, we adjust add some additional symbols and change the | 
|  | alignments of several sections.  There is no ABI documentation | 
|  | indicating that this is necessary on IRIX6, nor any evidence that | 
|  | the linker takes such action.  */ | 
|  | if (IRIX_COMPAT (abfd) == ict_irix5) | 
|  | { | 
|  | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | 
|  | { | 
|  | bh = NULL; | 
|  | if (! (_bfd_generic_link_add_one_symbol | 
|  | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, | 
|  | NULL, false, get_elf_backend_data (abfd)->collect, &bh))) | 
|  | return false; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) bh; | 
|  | h->mark = 1; | 
|  | h->non_elf = 0; | 
|  | h->def_regular = 1; | 
|  | h->type = STT_SECTION; | 
|  |  | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We need to create a .compact_rel section.  */ | 
|  | if (SGI_COMPAT (abfd)) | 
|  | { | 
|  | if (!mips_elf_create_compact_rel_section (abfd, info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Change alignments of some sections.  */ | 
|  | s = bfd_get_linker_section (abfd, ".hash"); | 
|  | if (s != NULL) | 
|  | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); | 
|  |  | 
|  | s = bfd_get_linker_section (abfd, ".dynsym"); | 
|  | if (s != NULL) | 
|  | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); | 
|  |  | 
|  | s = bfd_get_linker_section (abfd, ".dynstr"); | 
|  | if (s != NULL) | 
|  | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); | 
|  |  | 
|  | /* ??? */ | 
|  | s = bfd_get_section_by_name (abfd, ".reginfo"); | 
|  | if (s != NULL) | 
|  | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); | 
|  |  | 
|  | s = bfd_get_linker_section (abfd, ".dynamic"); | 
|  | if (s != NULL) | 
|  | bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); | 
|  | } | 
|  |  | 
|  | if (bfd_link_executable (info)) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | 
|  | bh = NULL; | 
|  | if (!(_bfd_generic_link_add_one_symbol | 
|  | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, | 
|  | NULL, false, get_elf_backend_data (abfd)->collect, &bh))) | 
|  | return false; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) bh; | 
|  | h->non_elf = 0; | 
|  | h->def_regular = 1; | 
|  | h->type = STT_SECTION; | 
|  |  | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  |  | 
|  | if (! mips_elf_hash_table (info)->use_rld_obj_head) | 
|  | { | 
|  | /* __rld_map is a four byte word located in the .data section | 
|  | and is filled in by the rtld to contain a pointer to | 
|  | the _r_debug structure. Its symbol value will be set in | 
|  | _bfd_mips_elf_finish_dynamic_symbol.  */ | 
|  | s = bfd_get_linker_section (abfd, ".rld_map"); | 
|  | BFD_ASSERT (s != NULL); | 
|  |  | 
|  | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; | 
|  | bh = NULL; | 
|  | if (!(_bfd_generic_link_add_one_symbol | 
|  | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false, | 
|  | get_elf_backend_data (abfd)->collect, &bh))) | 
|  | return false; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) bh; | 
|  | h->non_elf = 0; | 
|  | h->def_regular = 1; | 
|  | h->type = STT_OBJECT; | 
|  |  | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | mips_elf_hash_table (info)->rld_symbol = h; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. | 
|  | Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */ | 
|  | if (!_bfd_elf_create_dynamic_sections (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* Do the usual VxWorks handling.  */ | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if relocation REL against section SEC is a REL rather than | 
|  | RELA relocation.  RELOCS is the first relocation in the section and | 
|  | ABFD is the bfd that contains SEC.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_rel_relocation_p (bfd *abfd, asection *sec, | 
|  | const Elf_Internal_Rela *relocs, | 
|  | const Elf_Internal_Rela *rel) | 
|  | { | 
|  | Elf_Internal_Shdr *rel_hdr; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | /* To determine which flavor of relocation this is, we depend on the | 
|  | fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */ | 
|  | rel_hdr = elf_section_data (sec)->rel.hdr; | 
|  | if (rel_hdr == NULL) | 
|  | return false; | 
|  | bed = get_elf_backend_data (abfd); | 
|  | return ((size_t) (rel - relocs) | 
|  | < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); | 
|  | } | 
|  |  | 
|  | /* Read the addend for REL relocation REL, which belongs to bfd ABFD. | 
|  | HOWTO is the relocation's howto and CONTENTS points to the contents | 
|  | of the section that REL is against.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, | 
|  | reloc_howto_type *howto, bfd_byte *contents) | 
|  | { | 
|  | bfd_byte *location; | 
|  | unsigned int r_type; | 
|  | bfd_vma addend; | 
|  | bfd_vma bytes; | 
|  |  | 
|  | r_type = ELF_R_TYPE (abfd, rel->r_info); | 
|  | location = contents + rel->r_offset; | 
|  |  | 
|  | /* Get the addend, which is stored in the input file.  */ | 
|  | _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location); | 
|  | bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); | 
|  | _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location); | 
|  |  | 
|  | addend = bytes & howto->src_mask; | 
|  |  | 
|  | /* Shift is 2, unusually, for microMIPS JALX.  Adjust the addend | 
|  | accordingly.  */ | 
|  | if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) | 
|  | addend <<= 1; | 
|  |  | 
|  | return addend; | 
|  | } | 
|  |  | 
|  | /* REL is a relocation in ABFD that needs a partnering LO16 relocation | 
|  | and *ADDEND is the addend for REL itself.  Look for the LO16 relocation | 
|  | and update *ADDEND with the final addend.  Return true on success | 
|  | or false if the LO16 could not be found.  RELEND is the exclusive | 
|  | upper bound on the relocations for REL's section.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_add_lo16_rel_addend (bfd *abfd, | 
|  | const Elf_Internal_Rela *rel, | 
|  | const Elf_Internal_Rela *relend, | 
|  | bfd_byte *contents, bfd_vma *addend) | 
|  | { | 
|  | unsigned int r_type, lo16_type; | 
|  | const Elf_Internal_Rela *lo16_relocation; | 
|  | reloc_howto_type *lo16_howto; | 
|  | bfd_vma l; | 
|  |  | 
|  | r_type = ELF_R_TYPE (abfd, rel->r_info); | 
|  | if (mips16_reloc_p (r_type)) | 
|  | lo16_type = R_MIPS16_LO16; | 
|  | else if (micromips_reloc_p (r_type)) | 
|  | lo16_type = R_MICROMIPS_LO16; | 
|  | else if (r_type == R_MIPS_PCHI16) | 
|  | lo16_type = R_MIPS_PCLO16; | 
|  | else | 
|  | lo16_type = R_MIPS_LO16; | 
|  |  | 
|  | /* The combined value is the sum of the HI16 addend, left-shifted by | 
|  | sixteen bits, and the LO16 addend, sign extended.  (Usually, the | 
|  | code does a `lui' of the HI16 value, and then an `addiu' of the | 
|  | LO16 value.) | 
|  |  | 
|  | Scan ahead to find a matching LO16 relocation. | 
|  |  | 
|  | According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must | 
|  | be immediately following.  However, for the IRIX6 ABI, the next | 
|  | relocation may be a composed relocation consisting of several | 
|  | relocations for the same address.  In that case, the R_MIPS_LO16 | 
|  | relocation may occur as one of these.  We permit a similar | 
|  | extension in general, as that is useful for GCC. | 
|  |  | 
|  | In some cases GCC dead code elimination removes the LO16 but keeps | 
|  | the corresponding HI16.  This is strictly speaking a violation of | 
|  | the ABI but not immediately harmful.  */ | 
|  | lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); | 
|  | if (lo16_relocation == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Obtain the addend kept there.  */ | 
|  | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false); | 
|  | l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); | 
|  |  | 
|  | l <<= lo16_howto->rightshift; | 
|  | l = _bfd_mips_elf_sign_extend (l, 16); | 
|  |  | 
|  | *addend <<= 16; | 
|  | *addend += l; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Try to read the contents of section SEC in bfd ABFD.  Return true and | 
|  | store the contents in *CONTENTS on success.  Assume that *CONTENTS | 
|  | already holds the contents if it is nonull on entry.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) | 
|  | { | 
|  | if (*contents) | 
|  | return true; | 
|  |  | 
|  | /* Get cached copy if it exists.  */ | 
|  | if (elf_section_data (sec)->this_hdr.contents != NULL) | 
|  | { | 
|  | *contents = elf_section_data (sec)->this_hdr.contents; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return bfd_malloc_and_get_section (abfd, sec, contents); | 
|  | } | 
|  |  | 
|  | /* Make a new PLT record to keep internal data.  */ | 
|  |  | 
|  | static struct plt_entry * | 
|  | mips_elf_make_plt_record (bfd *abfd) | 
|  | { | 
|  | struct plt_entry *entry; | 
|  |  | 
|  | entry = bfd_zalloc (abfd, sizeof (*entry)); | 
|  | if (entry == NULL) | 
|  | return NULL; | 
|  |  | 
|  | entry->stub_offset = MINUS_ONE; | 
|  | entry->mips_offset = MINUS_ONE; | 
|  | entry->comp_offset = MINUS_ONE; | 
|  | entry->gotplt_index = MINUS_ONE; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Define the special `__gnu_absolute_zero' symbol.  We only need this | 
|  | for PIC code, as otherwise there is no load-time relocation involved | 
|  | and local GOT entries whose value is zero at static link time will | 
|  | retain their value at load time.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info, | 
|  | struct mips_elf_link_hash_table *htab, | 
|  | unsigned int r_type) | 
|  | { | 
|  | union | 
|  | { | 
|  | struct elf_link_hash_entry *eh; | 
|  | struct bfd_link_hash_entry *bh; | 
|  | } | 
|  | hzero; | 
|  |  | 
|  | BFD_ASSERT (!htab->use_absolute_zero); | 
|  | BFD_ASSERT (bfd_link_pic (info)); | 
|  |  | 
|  | hzero.bh = NULL; | 
|  | if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero", | 
|  | BSF_GLOBAL, bfd_abs_section_ptr, 0, | 
|  | NULL, false, false, &hzero.bh)) | 
|  | return false; | 
|  |  | 
|  | BFD_ASSERT (hzero.bh != NULL); | 
|  | hzero.eh->size = 0; | 
|  | hzero.eh->type = STT_NOTYPE; | 
|  | hzero.eh->other = STV_PROTECTED; | 
|  | hzero.eh->def_regular = 1; | 
|  | hzero.eh->non_elf = 0; | 
|  |  | 
|  | if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type)) | 
|  | return false; | 
|  |  | 
|  | htab->use_absolute_zero = true; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Look through the relocs for a section during the first phase, and | 
|  | allocate space in the global offset table and record the need for | 
|  | standard MIPS and compressed procedure linkage table entries.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, | 
|  | asection *sec, const Elf_Internal_Rela *relocs) | 
|  | { | 
|  | const char *name; | 
|  | bfd *dynobj; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | size_t extsymoff; | 
|  | const Elf_Internal_Rela *rel; | 
|  | const Elf_Internal_Rela *rel_end; | 
|  | asection *sreloc; | 
|  | const struct elf_backend_data *bed; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | bfd_byte *contents; | 
|  | bfd_vma addend; | 
|  | reloc_howto_type *howto; | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | sym_hashes = elf_sym_hashes (abfd); | 
|  | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | rel_end = relocs + sec->reloc_count; | 
|  |  | 
|  | /* Check for the mips16 stub sections.  */ | 
|  |  | 
|  | name = bfd_section_name (sec); | 
|  | if (FN_STUB_P (name)) | 
|  | { | 
|  | unsigned long r_symndx; | 
|  |  | 
|  | /* Look at the relocation information to figure out which symbol | 
|  | this is for.  */ | 
|  |  | 
|  | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); | 
|  | if (r_symndx == 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: cannot determine the target function for" | 
|  | " stub section `%s'"), | 
|  | abfd, name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (r_symndx < extsymoff | 
|  | || sym_hashes[r_symndx - extsymoff] == NULL) | 
|  | { | 
|  | asection *o; | 
|  |  | 
|  | /* This stub is for a local symbol.  This stub will only be | 
|  | needed if there is some relocation in this BFD, other | 
|  | than a 16 bit function call, which refers to this symbol.  */ | 
|  | for (o = abfd->sections; o != NULL; o = o->next) | 
|  | { | 
|  | Elf_Internal_Rela *sec_relocs; | 
|  | const Elf_Internal_Rela *r, *rend; | 
|  |  | 
|  | /* We can ignore stub sections when looking for relocs.  */ | 
|  | if ((o->flags & SEC_RELOC) == 0 | 
|  | || o->reloc_count == 0 | 
|  | || section_allows_mips16_refs_p (o)) | 
|  | continue; | 
|  |  | 
|  | sec_relocs | 
|  | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | 
|  | info->keep_memory); | 
|  | if (sec_relocs == NULL) | 
|  | return false; | 
|  |  | 
|  | rend = sec_relocs + o->reloc_count; | 
|  | for (r = sec_relocs; r < rend; r++) | 
|  | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | 
|  | && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) | 
|  | break; | 
|  |  | 
|  | if (elf_section_data (o)->relocs != sec_relocs) | 
|  | free (sec_relocs); | 
|  |  | 
|  | if (r < rend) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (o == NULL) | 
|  | { | 
|  | /* There is no non-call reloc for this stub, so we do | 
|  | not need it.  Since this function is called before | 
|  | the linker maps input sections to output sections, we | 
|  | can easily discard it by setting the SEC_EXCLUDE | 
|  | flag.  */ | 
|  | sec->flags |= SEC_EXCLUDE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Record this stub in an array of local symbol stubs for | 
|  | this BFD.  */ | 
|  | if (mips_elf_tdata (abfd)->local_stubs == NULL) | 
|  | { | 
|  | unsigned long symcount; | 
|  | asection **n; | 
|  | bfd_size_type amt; | 
|  |  | 
|  | if (elf_bad_symtab (abfd)) | 
|  | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | 
|  | else | 
|  | symcount = symtab_hdr->sh_info; | 
|  | amt = symcount * sizeof (asection *); | 
|  | n = bfd_zalloc (abfd, amt); | 
|  | if (n == NULL) | 
|  | return false; | 
|  | mips_elf_tdata (abfd)->local_stubs = n; | 
|  | } | 
|  |  | 
|  | sec->flags |= SEC_KEEP; | 
|  | mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; | 
|  |  | 
|  | /* We don't need to set mips16_stubs_seen in this case. | 
|  | That flag is used to see whether we need to look through | 
|  | the global symbol table for stubs.  We don't need to set | 
|  | it here, because we just have a local stub.  */ | 
|  | } | 
|  | else | 
|  | { | 
|  | struct mips_elf_link_hash_entry *h; | 
|  |  | 
|  | h = ((struct mips_elf_link_hash_entry *) | 
|  | sym_hashes[r_symndx - extsymoff]); | 
|  |  | 
|  | while (h->root.root.type == bfd_link_hash_indirect | 
|  | || h->root.root.type == bfd_link_hash_warning) | 
|  | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | 
|  |  | 
|  | /* H is the symbol this stub is for.  */ | 
|  |  | 
|  | /* If we already have an appropriate stub for this function, we | 
|  | don't need another one, so we can discard this one.  Since | 
|  | this function is called before the linker maps input sections | 
|  | to output sections, we can easily discard it by setting the | 
|  | SEC_EXCLUDE flag.  */ | 
|  | if (h->fn_stub != NULL) | 
|  | { | 
|  | sec->flags |= SEC_EXCLUDE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | sec->flags |= SEC_KEEP; | 
|  | h->fn_stub = sec; | 
|  | mips_elf_hash_table (info)->mips16_stubs_seen = true; | 
|  | } | 
|  | } | 
|  | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) | 
|  | { | 
|  | unsigned long r_symndx; | 
|  | struct mips_elf_link_hash_entry *h; | 
|  | asection **loc; | 
|  |  | 
|  | /* Look at the relocation information to figure out which symbol | 
|  | this is for.  */ | 
|  |  | 
|  | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); | 
|  | if (r_symndx == 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: cannot determine the target function for" | 
|  | " stub section `%s'"), | 
|  | abfd, name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (r_symndx < extsymoff | 
|  | || sym_hashes[r_symndx - extsymoff] == NULL) | 
|  | { | 
|  | asection *o; | 
|  |  | 
|  | /* This stub is for a local symbol.  This stub will only be | 
|  | needed if there is some relocation (R_MIPS16_26) in this BFD | 
|  | that refers to this symbol.  */ | 
|  | for (o = abfd->sections; o != NULL; o = o->next) | 
|  | { | 
|  | Elf_Internal_Rela *sec_relocs; | 
|  | const Elf_Internal_Rela *r, *rend; | 
|  |  | 
|  | /* We can ignore stub sections when looking for relocs.  */ | 
|  | if ((o->flags & SEC_RELOC) == 0 | 
|  | || o->reloc_count == 0 | 
|  | || section_allows_mips16_refs_p (o)) | 
|  | continue; | 
|  |  | 
|  | sec_relocs | 
|  | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | 
|  | info->keep_memory); | 
|  | if (sec_relocs == NULL) | 
|  | return false; | 
|  |  | 
|  | rend = sec_relocs + o->reloc_count; | 
|  | for (r = sec_relocs; r < rend; r++) | 
|  | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | 
|  | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) | 
|  | break; | 
|  |  | 
|  | if (elf_section_data (o)->relocs != sec_relocs) | 
|  | free (sec_relocs); | 
|  |  | 
|  | if (r < rend) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (o == NULL) | 
|  | { | 
|  | /* There is no non-call reloc for this stub, so we do | 
|  | not need it.  Since this function is called before | 
|  | the linker maps input sections to output sections, we | 
|  | can easily discard it by setting the SEC_EXCLUDE | 
|  | flag.  */ | 
|  | sec->flags |= SEC_EXCLUDE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Record this stub in an array of local symbol call_stubs for | 
|  | this BFD.  */ | 
|  | if (mips_elf_tdata (abfd)->local_call_stubs == NULL) | 
|  | { | 
|  | unsigned long symcount; | 
|  | asection **n; | 
|  | bfd_size_type amt; | 
|  |  | 
|  | if (elf_bad_symtab (abfd)) | 
|  | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | 
|  | else | 
|  | symcount = symtab_hdr->sh_info; | 
|  | amt = symcount * sizeof (asection *); | 
|  | n = bfd_zalloc (abfd, amt); | 
|  | if (n == NULL) | 
|  | return false; | 
|  | mips_elf_tdata (abfd)->local_call_stubs = n; | 
|  | } | 
|  |  | 
|  | sec->flags |= SEC_KEEP; | 
|  | mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; | 
|  |  | 
|  | /* We don't need to set mips16_stubs_seen in this case. | 
|  | That flag is used to see whether we need to look through | 
|  | the global symbol table for stubs.  We don't need to set | 
|  | it here, because we just have a local stub.  */ | 
|  | } | 
|  | else | 
|  | { | 
|  | h = ((struct mips_elf_link_hash_entry *) | 
|  | sym_hashes[r_symndx - extsymoff]); | 
|  |  | 
|  | /* H is the symbol this stub is for.  */ | 
|  |  | 
|  | if (CALL_FP_STUB_P (name)) | 
|  | loc = &h->call_fp_stub; | 
|  | else | 
|  | loc = &h->call_stub; | 
|  |  | 
|  | /* If we already have an appropriate stub for this function, we | 
|  | don't need another one, so we can discard this one.  Since | 
|  | this function is called before the linker maps input sections | 
|  | to output sections, we can easily discard it by setting the | 
|  | SEC_EXCLUDE flag.  */ | 
|  | if (*loc != NULL) | 
|  | { | 
|  | sec->flags |= SEC_EXCLUDE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | sec->flags |= SEC_KEEP; | 
|  | *loc = sec; | 
|  | mips_elf_hash_table (info)->mips16_stubs_seen = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | sreloc = NULL; | 
|  | contents = NULL; | 
|  | for (rel = relocs; rel < rel_end; ++rel) | 
|  | { | 
|  | unsigned long r_symndx; | 
|  | unsigned int r_type; | 
|  | struct elf_link_hash_entry *h; | 
|  | bool can_make_dynamic_p; | 
|  | bool call_reloc_p; | 
|  | bool constrain_symbol_p; | 
|  |  | 
|  | r_symndx = ELF_R_SYM (abfd, rel->r_info); | 
|  | r_type = ELF_R_TYPE (abfd, rel->r_info); | 
|  |  | 
|  | if (r_symndx < extsymoff) | 
|  | h = NULL; | 
|  | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: malformed reloc detected for section %s"), | 
|  | abfd, name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | h = sym_hashes[r_symndx - extsymoff]; | 
|  | if (h != NULL) | 
|  | { | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this | 
|  | relocation into a dynamic one.  */ | 
|  | can_make_dynamic_p = false; | 
|  |  | 
|  | /* Set CALL_RELOC_P to true if the relocation is for a call, | 
|  | and if pointer equality therefore doesn't matter.  */ | 
|  | call_reloc_p = false; | 
|  |  | 
|  | /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation | 
|  | into account when deciding how to define the symbol.  */ | 
|  | constrain_symbol_p = true; | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS_CALL16: | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MIPS16_CALL16: | 
|  | case R_MICROMIPS_CALL16: | 
|  | case R_MICROMIPS_CALL_HI16: | 
|  | case R_MICROMIPS_CALL_LO16: | 
|  | call_reloc_p = true; | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_MIPS_GOT16: | 
|  | case R_MIPS_GOT_LO16: | 
|  | case R_MIPS_GOT_PAGE: | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MIPS16_GOT16: | 
|  | case R_MICROMIPS_GOT16: | 
|  | case R_MICROMIPS_GOT_LO16: | 
|  | case R_MICROMIPS_GOT_PAGE: | 
|  | case R_MICROMIPS_GOT_DISP: | 
|  | /* If we have a symbol that will resolve to zero at static link | 
|  | time and it is used by a GOT relocation applied to code we | 
|  | cannot relax to an immediate zero load, then we will be using | 
|  | the special `__gnu_absolute_zero' symbol whose value is zero | 
|  | at dynamic load time.  We ignore HI16-type GOT relocations at | 
|  | this stage, because their handling will depend entirely on | 
|  | the corresponding LO16-type GOT relocation.  */ | 
|  | if (!call_hi16_reloc_p (r_type) | 
|  | && h != NULL | 
|  | && bfd_link_pic (info) | 
|  | && !htab->use_absolute_zero | 
|  | && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | 
|  | { | 
|  | bool rel_reloc; | 
|  |  | 
|  | if (!mips_elf_get_section_contents (abfd, sec, &contents)) | 
|  | return false; | 
|  |  | 
|  | rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel); | 
|  | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc); | 
|  |  | 
|  | if (!mips_elf_nullify_got_load (abfd, contents, rel, howto, | 
|  | false)) | 
|  | if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Fall through.  */ | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_GOT_OFST: | 
|  | case R_MIPS_TLS_GOTTPREL: | 
|  | case R_MIPS_TLS_GD: | 
|  | case R_MIPS_TLS_LDM: | 
|  | case R_MIPS16_TLS_GOTTPREL: | 
|  | case R_MIPS16_TLS_GD: | 
|  | case R_MIPS16_TLS_LDM: | 
|  | case R_MICROMIPS_GOT_HI16: | 
|  | case R_MICROMIPS_GOT_OFST: | 
|  | case R_MICROMIPS_TLS_GOTTPREL: | 
|  | case R_MICROMIPS_TLS_GD: | 
|  | case R_MICROMIPS_TLS_LDM: | 
|  | if (dynobj == NULL) | 
|  | elf_hash_table (info)->dynobj = dynobj = abfd; | 
|  | if (!mips_elf_create_got_section (dynobj, info)) | 
|  | return false; | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && !bfd_link_pic (info)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"), | 
|  | abfd, (uint64_t) rel->r_offset); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | can_make_dynamic_p = true; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_NONE: | 
|  | case R_MIPS_JALR: | 
|  | case R_MICROMIPS_JALR: | 
|  | /* These relocations have empty fields and are purely there to | 
|  | provide link information.  The symbol value doesn't matter.  */ | 
|  | constrain_symbol_p = false; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GPREL16: | 
|  | case R_MIPS_GPREL32: | 
|  | case R_MIPS16_GPREL: | 
|  | case R_MICROMIPS_GPREL16: | 
|  | /* GP-relative relocations always resolve to a definition in a | 
|  | regular input file, ignoring the one-definition rule.  This is | 
|  | important for the GP setup sequence in NewABI code, which | 
|  | always resolves to a local function even if other relocations | 
|  | against the symbol wouldn't.  */ | 
|  | constrain_symbol_p = false; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_32: | 
|  | case R_MIPS_REL32: | 
|  | case R_MIPS_64: | 
|  | /* In VxWorks executables, references to external symbols | 
|  | must be handled using copy relocs or PLT entries; it is not | 
|  | possible to convert this relocation into a dynamic one. | 
|  |  | 
|  | For executables that use PLTs and copy-relocs, we have a | 
|  | choice between converting the relocation into a dynamic | 
|  | one or using copy relocations or PLT entries.  It is | 
|  | usually better to do the former, unless the relocation is | 
|  | against a read-only section.  */ | 
|  | if ((bfd_link_pic (info) | 
|  | || (h != NULL | 
|  | && htab->root.target_os != is_vxworks | 
|  | && strcmp (h->root.root.string, "__gnu_local_gp") != 0 | 
|  | && !(!info->nocopyreloc | 
|  | && !PIC_OBJECT_P (abfd) | 
|  | && MIPS_ELF_READONLY_SECTION (sec)))) | 
|  | && (sec->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | can_make_dynamic_p = true; | 
|  | if (dynobj == NULL) | 
|  | elf_hash_table (info)->dynobj = dynobj = abfd; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_MIPS_26: | 
|  | case R_MIPS_PC16: | 
|  | case R_MIPS_PC21_S2: | 
|  | case R_MIPS_PC26_S2: | 
|  | case R_MIPS16_26: | 
|  | case R_MIPS16_PC16_S1: | 
|  | case R_MICROMIPS_26_S1: | 
|  | case R_MICROMIPS_PC7_S1: | 
|  | case R_MICROMIPS_PC10_S1: | 
|  | case R_MICROMIPS_PC16_S1: | 
|  | case R_MICROMIPS_PC23_S2: | 
|  | call_reloc_p = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (h) | 
|  | { | 
|  | if (constrain_symbol_p) | 
|  | { | 
|  | if (!can_make_dynamic_p) | 
|  | ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; | 
|  |  | 
|  | if (!call_reloc_p) | 
|  | h->pointer_equality_needed = 1; | 
|  |  | 
|  | /* We must not create a stub for a symbol that has | 
|  | relocations related to taking the function's address. | 
|  | This doesn't apply to VxWorks, where CALL relocs refer | 
|  | to a .got.plt entry instead of a normal .got entry.  */ | 
|  | if (htab->root.target_os != is_vxworks | 
|  | && (!can_make_dynamic_p || !call_reloc_p)) | 
|  | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true; | 
|  | } | 
|  |  | 
|  | /* Relocations against the special VxWorks __GOTT_BASE__ and | 
|  | __GOTT_INDEX__ symbols must be left to the loader.  Allocate | 
|  | room for them in .rela.dyn.  */ | 
|  | if (is_gott_symbol (info, h)) | 
|  | { | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | sreloc = mips_elf_rel_dyn_section (info, true); | 
|  | if (sreloc == NULL) | 
|  | return false; | 
|  | } | 
|  | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | 
|  | if (MIPS_ELF_READONLY_SECTION (sec)) | 
|  | /* We tell the dynamic linker that there are | 
|  | relocations against the text segment.  */ | 
|  | info->flags |= DF_TEXTREL; | 
|  | } | 
|  | } | 
|  | else if (call_lo16_reloc_p (r_type) | 
|  | || got_lo16_reloc_p (r_type) | 
|  | || got_disp_reloc_p (r_type) | 
|  | || (got16_reloc_p (r_type) | 
|  | && htab->root.target_os == is_vxworks)) | 
|  | { | 
|  | /* We may need a local GOT entry for this relocation.  We | 
|  | don't count R_MIPS_GOT_PAGE because we can estimate the | 
|  | maximum number of pages needed by looking at the size of | 
|  | the segment.  Similar comments apply to R_MIPS*_GOT16 and | 
|  | R_MIPS*_CALL16, except on VxWorks, where GOT relocations | 
|  | always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or | 
|  | R_MIPS_CALL_HI16 because these are always followed by an | 
|  | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */ | 
|  | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, | 
|  | rel->r_addend, info, r_type)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (h != NULL | 
|  | && mips_elf_relocation_needs_la25_stub (abfd, r_type, | 
|  | ELF_ST_IS_MIPS16 (h->other))) | 
|  | ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true; | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS_CALL16: | 
|  | case R_MIPS16_CALL16: | 
|  | case R_MICROMIPS_CALL16: | 
|  | if (h == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"), | 
|  | abfd, (uint64_t) rel->r_offset); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MICROMIPS_CALL_HI16: | 
|  | case R_MICROMIPS_CALL_LO16: | 
|  | if (h != NULL) | 
|  | { | 
|  | /* Make sure there is room in the regular GOT to hold the | 
|  | function's address.  We may eliminate it in favour of | 
|  | a .got.plt entry later; see mips_elf_count_got_symbols.  */ | 
|  | if (!mips_elf_record_global_got_symbol (h, abfd, info, true, | 
|  | r_type)) | 
|  | return false; | 
|  |  | 
|  | /* We need a stub, not a plt entry for the undefined | 
|  | function.  But we record it as if it needs plt.  See | 
|  | _bfd_elf_adjust_dynamic_symbol.  */ | 
|  | h->needs_plt = 1; | 
|  | h->type = STT_FUNC; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_MIPS_GOT_PAGE: | 
|  | case R_MICROMIPS_GOT_PAGE: | 
|  | case R_MIPS16_GOT16: | 
|  | case R_MIPS_GOT16: | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_GOT_LO16: | 
|  | case R_MICROMIPS_GOT16: | 
|  | case R_MICROMIPS_GOT_HI16: | 
|  | case R_MICROMIPS_GOT_LO16: | 
|  | if (!h || got_page_reloc_p (r_type)) | 
|  | { | 
|  | /* This relocation needs (or may need, if h != NULL) a | 
|  | page entry in the GOT.  For R_MIPS_GOT_PAGE we do not | 
|  | know for sure until we know whether the symbol is | 
|  | preemptible.  */ | 
|  | if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) | 
|  | { | 
|  | if (!mips_elf_get_section_contents (abfd, sec, &contents)) | 
|  | return false; | 
|  | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false); | 
|  | addend = mips_elf_read_rel_addend (abfd, rel, | 
|  | howto, contents); | 
|  | if (got16_reloc_p (r_type)) | 
|  | mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, | 
|  | contents, &addend); | 
|  | else | 
|  | addend <<= howto->rightshift; | 
|  | } | 
|  | else | 
|  | addend = rel->r_addend; | 
|  | if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, | 
|  | h, addend)) | 
|  | return false; | 
|  |  | 
|  | if (h) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *hmips = | 
|  | (struct mips_elf_link_hash_entry *) h; | 
|  |  | 
|  | /* This symbol is definitely not overridable.  */ | 
|  | if (hmips->root.def_regular | 
|  | && ! (bfd_link_pic (info) && ! info->symbolic | 
|  | && ! hmips->root.forced_local)) | 
|  | h = NULL; | 
|  | } | 
|  | } | 
|  | /* If this is a global, overridable symbol, GOT_PAGE will | 
|  | decay to GOT_DISP, so we'll need a GOT entry for it.  */ | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MICROMIPS_GOT_DISP: | 
|  | if (h && !mips_elf_record_global_got_symbol (h, abfd, info, | 
|  | false, r_type)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case R_MIPS_TLS_GOTTPREL: | 
|  | case R_MIPS16_TLS_GOTTPREL: | 
|  | case R_MICROMIPS_TLS_GOTTPREL: | 
|  | if (bfd_link_pic (info)) | 
|  | info->flags |= DF_STATIC_TLS; | 
|  | /* Fall through */ | 
|  |  | 
|  | case R_MIPS_TLS_LDM: | 
|  | case R_MIPS16_TLS_LDM: | 
|  | case R_MICROMIPS_TLS_LDM: | 
|  | if (tls_ldm_reloc_p (r_type)) | 
|  | { | 
|  | r_symndx = STN_UNDEF; | 
|  | h = NULL; | 
|  | } | 
|  | /* Fall through */ | 
|  |  | 
|  | case R_MIPS_TLS_GD: | 
|  | case R_MIPS16_TLS_GD: | 
|  | case R_MICROMIPS_TLS_GD: | 
|  | /* This symbol requires a global offset table entry, or two | 
|  | for TLS GD relocations.  */ | 
|  | if (h != NULL) | 
|  | { | 
|  | if (!mips_elf_record_global_got_symbol (h, abfd, info, | 
|  | false, r_type)) | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, | 
|  | rel->r_addend, | 
|  | info, r_type)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_MIPS_32: | 
|  | case R_MIPS_REL32: | 
|  | case R_MIPS_64: | 
|  | /* In VxWorks executables, references to external symbols | 
|  | are handled using copy relocs or PLT stubs, so there's | 
|  | no need to add a .rela.dyn entry for this relocation.  */ | 
|  | if (can_make_dynamic_p) | 
|  | { | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | sreloc = mips_elf_rel_dyn_section (info, true); | 
|  | if (sreloc == NULL) | 
|  | return false; | 
|  | } | 
|  | if (bfd_link_pic (info) && h == NULL) | 
|  | { | 
|  | /* When creating a shared object, we must copy these | 
|  | reloc types into the output file as R_MIPS_REL32 | 
|  | relocs.  Make room for this reloc in .rel(a).dyn.  */ | 
|  | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | 
|  | if (MIPS_ELF_READONLY_SECTION (sec)) | 
|  | /* We tell the dynamic linker that there are | 
|  | relocations against the text segment.  */ | 
|  | info->flags |= DF_TEXTREL; | 
|  | } | 
|  | else | 
|  | { | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  |  | 
|  | /* For a shared object, we must copy this relocation | 
|  | unless the symbol turns out to be undefined and | 
|  | weak with non-default visibility, in which case | 
|  | it will be left as zero. | 
|  |  | 
|  | We could elide R_MIPS_REL32 for locally binding symbols | 
|  | in shared libraries, but do not yet do so. | 
|  |  | 
|  | For an executable, we only need to copy this | 
|  | reloc if the symbol is defined in a dynamic | 
|  | object.  */ | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  | ++hmips->possibly_dynamic_relocs; | 
|  | if (MIPS_ELF_READONLY_SECTION (sec)) | 
|  | /* We need it to tell the dynamic linker if there | 
|  | are relocations against the text segment.  */ | 
|  | hmips->readonly_reloc = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SGI_COMPAT (abfd)) | 
|  | mips_elf_hash_table (info)->compact_rel_size += | 
|  | sizeof (Elf32_External_crinfo); | 
|  | break; | 
|  |  | 
|  | case R_MIPS_26: | 
|  | case R_MIPS_GPREL16: | 
|  | case R_MIPS_LITERAL: | 
|  | case R_MIPS_GPREL32: | 
|  | case R_MICROMIPS_26_S1: | 
|  | case R_MICROMIPS_GPREL16: | 
|  | case R_MICROMIPS_LITERAL: | 
|  | case R_MICROMIPS_GPREL7_S2: | 
|  | if (SGI_COMPAT (abfd)) | 
|  | mips_elf_hash_table (info)->compact_rel_size += | 
|  | sizeof (Elf32_External_crinfo); | 
|  | break; | 
|  |  | 
|  | /* This relocation describes the C++ object vtable hierarchy. | 
|  | Reconstruct it for later use during GC.  */ | 
|  | case R_MIPS_GNU_VTINHERIT: | 
|  | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | /* This relocation describes which C++ vtable entries are actually | 
|  | used.  Record for later use during GC.  */ | 
|  | case R_MIPS_GNU_VTENTRY: | 
|  | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Record the need for a PLT entry.  At this point we don't know | 
|  | yet if we are going to create a PLT in the first place, but | 
|  | we only record whether the relocation requires a standard MIPS | 
|  | or a compressed code entry anyway.  If we don't make a PLT after | 
|  | all, then we'll just ignore these arrangements.  Likewise if | 
|  | a PLT entry is not created because the symbol is satisfied | 
|  | locally.  */ | 
|  | if (h != NULL | 
|  | && (branch_reloc_p (r_type) | 
|  | || mips16_branch_reloc_p (r_type) | 
|  | || micromips_branch_reloc_p (r_type)) | 
|  | && !SYMBOL_CALLS_LOCAL (info, h)) | 
|  | { | 
|  | if (h->plt.plist == NULL) | 
|  | h->plt.plist = mips_elf_make_plt_record (abfd); | 
|  | if (h->plt.plist == NULL) | 
|  | return false; | 
|  |  | 
|  | if (branch_reloc_p (r_type)) | 
|  | h->plt.plist->need_mips = true; | 
|  | else | 
|  | h->plt.plist->need_comp = true; | 
|  | } | 
|  |  | 
|  | /* See if this reloc would need to refer to a MIPS16 hard-float stub, | 
|  | if there is one.  We only need to handle global symbols here; | 
|  | we decide whether to keep or delete stubs for local symbols | 
|  | when processing the stub's relocations.  */ | 
|  | if (h != NULL | 
|  | && !mips16_call_reloc_p (r_type) | 
|  | && !section_allows_mips16_refs_p (sec)) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *mh; | 
|  |  | 
|  | mh = (struct mips_elf_link_hash_entry *) h; | 
|  | mh->need_fn_stub = true; | 
|  | } | 
|  |  | 
|  | /* Refuse some position-dependent relocations when creating a | 
|  | shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're | 
|  | not PIC, but we can create dynamic relocations and the result | 
|  | will be fine.  Also do not refuse R_MIPS_LO16, which can be | 
|  | combined with R_MIPS_GOT16.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | case R_MIPS_TLS_TPREL_HI16: | 
|  | case R_MIPS16_TLS_TPREL_HI16: | 
|  | case R_MICROMIPS_TLS_TPREL_HI16: | 
|  | case R_MIPS_TLS_TPREL_LO16: | 
|  | case R_MIPS16_TLS_TPREL_LO16: | 
|  | case R_MICROMIPS_TLS_TPREL_LO16: | 
|  | /* These are okay in PIE, but not in a shared library.  */ | 
|  | if (bfd_link_executable (info)) | 
|  | break; | 
|  |  | 
|  | /* FALLTHROUGH */ | 
|  |  | 
|  | case R_MIPS16_HI16: | 
|  | case R_MIPS_HI16: | 
|  | case R_MIPS_HIGHER: | 
|  | case R_MIPS_HIGHEST: | 
|  | case R_MICROMIPS_HI16: | 
|  | case R_MICROMIPS_HIGHER: | 
|  | case R_MICROMIPS_HIGHEST: | 
|  | /* Don't refuse a high part relocation if it's against | 
|  | no symbol (e.g. part of a compound relocation).  */ | 
|  | if (r_symndx == STN_UNDEF) | 
|  | break; | 
|  |  | 
|  | /* Likewise an absolute symbol.  */ | 
|  | if (h != NULL && bfd_is_abs_symbol (&h->root)) | 
|  | break; | 
|  |  | 
|  | /* R_MIPS_HI16 against _gp_disp is used for $gp setup, | 
|  | and has a special meaning.  */ | 
|  | if (!NEWABI_P (abfd) && h != NULL | 
|  | && strcmp (h->root.root.string, "_gp_disp") == 0) | 
|  | break; | 
|  |  | 
|  | /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */ | 
|  | if (is_gott_symbol (info, h)) | 
|  | break; | 
|  |  | 
|  | /* FALLTHROUGH */ | 
|  |  | 
|  | case R_MIPS16_26: | 
|  | case R_MIPS_26: | 
|  | case R_MICROMIPS_26_S1: | 
|  | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd)); | 
|  | /* An error for unsupported relocations is raised as part | 
|  | of the above search, so we can skip the following.  */ | 
|  | if (howto != NULL) | 
|  | info->callbacks->einfo | 
|  | /* xgettext:c-format */ | 
|  | (_("%X%H: relocation %s against `%s' cannot be used" | 
|  | " when making a shared object; recompile with -fPIC\n"), | 
|  | abfd, sec, rel->r_offset, howto->name, | 
|  | (h) ? h->root.root.string : "a local symbol"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space for global sym dynamic relocs.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | 
|  | { | 
|  | struct bfd_link_info *info = inf; | 
|  | bfd *dynobj; | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  |  | 
|  | /* VxWorks executables are handled elsewhere; we only need to | 
|  | allocate relocations in shared objects.  */ | 
|  | if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) | 
|  | return true; | 
|  |  | 
|  | /* Ignore indirect symbols.  All relocations against such symbols | 
|  | will be redirected to the target symbol.  */ | 
|  | if (h->root.type == bfd_link_hash_indirect) | 
|  | return true; | 
|  |  | 
|  | /* If this symbol is defined in a dynamic object, or we are creating | 
|  | a shared library, we will need to copy any R_MIPS_32 or | 
|  | R_MIPS_REL32 relocs against it into the output file.  */ | 
|  | if (! bfd_link_relocatable (info) | 
|  | && hmips->possibly_dynamic_relocs != 0 | 
|  | && (h->root.type == bfd_link_hash_defweak | 
|  | || (!h->def_regular && !ELF_COMMON_DEF_P (h)) | 
|  | || bfd_link_pic (info))) | 
|  | { | 
|  | bool do_copy = true; | 
|  |  | 
|  | if (h->root.type == bfd_link_hash_undefweak) | 
|  | { | 
|  | /* Do not copy relocations for undefined weak symbols that | 
|  | we are not going to export.  */ | 
|  | if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | 
|  | do_copy = false; | 
|  |  | 
|  | /* Make sure undefined weak symbols are output as a dynamic | 
|  | symbol in PIEs.  */ | 
|  | else if (h->dynindx == -1 && !h->forced_local) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (do_copy) | 
|  | { | 
|  | /* Even though we don't directly need a GOT entry for this symbol, | 
|  | the SVR4 psABI requires it to have a dynamic symbol table | 
|  | index greater that DT_MIPS_GOTSYM if there are dynamic | 
|  | relocations against it. | 
|  |  | 
|  | VxWorks does not enforce the same mapping between the GOT | 
|  | and the symbol table, so the same requirement does not | 
|  | apply there.  */ | 
|  | if (htab->root.target_os != is_vxworks) | 
|  | { | 
|  | if (hmips->global_got_area > GGA_RELOC_ONLY) | 
|  | hmips->global_got_area = GGA_RELOC_ONLY; | 
|  | hmips->got_only_for_calls = false; | 
|  | } | 
|  |  | 
|  | mips_elf_allocate_dynamic_relocations | 
|  | (dynobj, info, hmips->possibly_dynamic_relocs); | 
|  | if (hmips->readonly_reloc) | 
|  | /* We tell the dynamic linker that there are relocations | 
|  | against the text segment.  */ | 
|  | info->flags |= DF_TEXTREL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Adjust a symbol defined by a dynamic object and referenced by a | 
|  | regular object.  The current definition is in some section of the | 
|  | dynamic object, but we're not including those sections.  We have to | 
|  | change the definition to something the rest of the link can | 
|  | understand.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h) | 
|  | { | 
|  | bfd *dynobj; | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | asection *s, *srel; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  |  | 
|  | /* Make sure we know what is going on here.  */ | 
|  | if (dynobj == NULL | 
|  | || (! h->needs_plt | 
|  | && ! h->is_weakalias | 
|  | && (! h->def_dynamic | 
|  | || ! h->ref_regular | 
|  | || h->def_regular))) | 
|  | { | 
|  | if (h->type == STT_GNU_IFUNC) | 
|  | _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"), | 
|  | h->root.root.string); | 
|  | else | 
|  | _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"), | 
|  | h->root.root.string); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  |  | 
|  | /* If there are call relocations against an externally-defined symbol, | 
|  | see whether we can create a MIPS lazy-binding stub for it.  We can | 
|  | only do this if all references to the function are through call | 
|  | relocations, and in that case, the traditional lazy-binding stubs | 
|  | are much more efficient than PLT entries. | 
|  |  | 
|  | Traditional stubs are only available on SVR4 psABI-based systems; | 
|  | VxWorks always uses PLTs instead.  */ | 
|  | if (htab->root.target_os != is_vxworks | 
|  | && h->needs_plt | 
|  | && !hmips->no_fn_stub) | 
|  | { | 
|  | if (! elf_hash_table (info)->dynamic_sections_created) | 
|  | return true; | 
|  |  | 
|  | /* If this symbol is not defined in a regular file, then set | 
|  | the symbol to the stub location.  This is required to make | 
|  | function pointers compare as equal between the normal | 
|  | executable and the shared library.  */ | 
|  | if (!h->def_regular | 
|  | && !bfd_is_abs_section (htab->sstubs->output_section)) | 
|  | { | 
|  | hmips->needs_lazy_stub = true; | 
|  | htab->lazy_stub_count++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | /* As above, VxWorks requires PLT entries for externally-defined | 
|  | functions that are only accessed through call relocations. | 
|  |  | 
|  | Both VxWorks and non-VxWorks targets also need PLT entries if there | 
|  | are static-only relocations against an externally-defined function. | 
|  | This can technically occur for shared libraries if there are | 
|  | branches to the symbol, although it is unlikely that this will be | 
|  | used in practice due to the short ranges involved.  It can occur | 
|  | for any relative or absolute relocation in executables; in that | 
|  | case, the PLT entry becomes the function's canonical address.  */ | 
|  | else if (((h->needs_plt && !hmips->no_fn_stub) | 
|  | || (h->type == STT_FUNC && hmips->has_static_relocs)) | 
|  | && htab->use_plts_and_copy_relocs | 
|  | && !SYMBOL_CALLS_LOCAL (info, h) | 
|  | && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
|  | && h->root.type == bfd_link_hash_undefweak)) | 
|  | { | 
|  | bool micromips_p = MICROMIPS_P (info->output_bfd); | 
|  | bool newabi_p = NEWABI_P (info->output_bfd); | 
|  |  | 
|  | /* If this is the first symbol to need a PLT entry, then make some | 
|  | basic setup.  Also work out PLT entry sizes.  We'll need them | 
|  | for PLT offset calculations.  */ | 
|  | if (htab->plt_mips_offset + htab->plt_comp_offset == 0) | 
|  | { | 
|  | BFD_ASSERT (htab->root.sgotplt->size == 0); | 
|  | BFD_ASSERT (htab->plt_got_index == 0); | 
|  |  | 
|  | /* If we're using the PLT additions to the psABI, each PLT | 
|  | entry is 16 bytes and the PLT0 entry is 32 bytes. | 
|  | Encourage better cache usage by aligning.  We do this | 
|  | lazily to avoid pessimizing traditional objects.  */ | 
|  | if (htab->root.target_os != is_vxworks | 
|  | && !bfd_set_section_alignment (htab->root.splt, 5)) | 
|  | return false; | 
|  |  | 
|  | /* Make sure that .got.plt is word-aligned.  We do this lazily | 
|  | for the same reason as above.  */ | 
|  | if (!bfd_set_section_alignment (htab->root.sgotplt, | 
|  | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) | 
|  | return false; | 
|  |  | 
|  | /* On non-VxWorks targets, the first two entries in .got.plt | 
|  | are reserved.  */ | 
|  | if (htab->root.target_os != is_vxworks) | 
|  | htab->plt_got_index | 
|  | += (get_elf_backend_data (dynobj)->got_header_size | 
|  | / MIPS_ELF_GOT_SIZE (dynobj)); | 
|  |  | 
|  | /* On VxWorks, also allocate room for the header's | 
|  | .rela.plt.unloaded entries.  */ | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && !bfd_link_pic (info)) | 
|  | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); | 
|  |  | 
|  | /* Now work out the sizes of individual PLT entries.  */ | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && bfd_link_pic (info)) | 
|  | htab->plt_mips_entry_size | 
|  | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | 
|  | else if (htab->root.target_os == is_vxworks) | 
|  | htab->plt_mips_entry_size | 
|  | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | 
|  | else if (newabi_p) | 
|  | htab->plt_mips_entry_size | 
|  | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | 
|  | else if (!micromips_p) | 
|  | { | 
|  | htab->plt_mips_entry_size | 
|  | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | 
|  | htab->plt_comp_entry_size | 
|  | = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); | 
|  | } | 
|  | else if (htab->insn32) | 
|  | { | 
|  | htab->plt_mips_entry_size | 
|  | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | 
|  | htab->plt_comp_entry_size | 
|  | = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); | 
|  | } | 
|  | else | 
|  | { | 
|  | htab->plt_mips_entry_size | 
|  | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | 
|  | htab->plt_comp_entry_size | 
|  | = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h->plt.plist == NULL) | 
|  | h->plt.plist = mips_elf_make_plt_record (dynobj); | 
|  | if (h->plt.plist == NULL) | 
|  | return false; | 
|  |  | 
|  | /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, | 
|  | n32 or n64, so always use a standard entry there. | 
|  |  | 
|  | If the symbol has a MIPS16 call stub and gets a PLT entry, then | 
|  | all MIPS16 calls will go via that stub, and there is no benefit | 
|  | to having a MIPS16 entry.  And in the case of call_stub a | 
|  | standard entry actually has to be used as the stub ends with a J | 
|  | instruction.  */ | 
|  | if (newabi_p | 
|  | || htab->root.target_os == is_vxworks | 
|  | || hmips->call_stub | 
|  | || hmips->call_fp_stub) | 
|  | { | 
|  | h->plt.plist->need_mips = true; | 
|  | h->plt.plist->need_comp = false; | 
|  | } | 
|  |  | 
|  | /* Otherwise, if there are no direct calls to the function, we | 
|  | have a free choice of whether to use standard or compressed | 
|  | entries.  Prefer microMIPS entries if the object is known to | 
|  | contain microMIPS code, so that it becomes possible to create | 
|  | pure microMIPS binaries.  Prefer standard entries otherwise, | 
|  | because MIPS16 ones are no smaller and are usually slower.  */ | 
|  | if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) | 
|  | { | 
|  | if (micromips_p) | 
|  | h->plt.plist->need_comp = true; | 
|  | else | 
|  | h->plt.plist->need_mips = true; | 
|  | } | 
|  |  | 
|  | if (h->plt.plist->need_mips) | 
|  | { | 
|  | h->plt.plist->mips_offset = htab->plt_mips_offset; | 
|  | htab->plt_mips_offset += htab->plt_mips_entry_size; | 
|  | } | 
|  | if (h->plt.plist->need_comp) | 
|  | { | 
|  | h->plt.plist->comp_offset = htab->plt_comp_offset; | 
|  | htab->plt_comp_offset += htab->plt_comp_entry_size; | 
|  | } | 
|  |  | 
|  | /* Reserve the corresponding .got.plt entry now too.  */ | 
|  | h->plt.plist->gotplt_index = htab->plt_got_index++; | 
|  |  | 
|  | /* If the output file has no definition of the symbol, set the | 
|  | symbol's value to the address of the stub.  */ | 
|  | if (!bfd_link_pic (info) && !h->def_regular) | 
|  | hmips->use_plt_entry = true; | 
|  |  | 
|  | /* Make room for the R_MIPS_JUMP_SLOT relocation.  */ | 
|  | htab->root.srelplt->size += (htab->root.target_os == is_vxworks | 
|  | ? MIPS_ELF_RELA_SIZE (dynobj) | 
|  | : MIPS_ELF_REL_SIZE (dynobj)); | 
|  |  | 
|  | /* Make room for the .rela.plt.unloaded relocations.  */ | 
|  | if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) | 
|  | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); | 
|  |  | 
|  | /* All relocations against this symbol that could have been made | 
|  | dynamic will now refer to the PLT entry instead.  */ | 
|  | hmips->possibly_dynamic_relocs = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If this is a weak symbol, and there is a real definition, the | 
|  | processor independent code will have arranged for us to see the | 
|  | real definition first, and we can just use the same value.  */ | 
|  | if (h->is_weakalias) | 
|  | { | 
|  | struct elf_link_hash_entry *def = weakdef (h); | 
|  | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | 
|  | h->root.u.def.section = def->root.u.def.section; | 
|  | h->root.u.def.value = def->root.u.def.value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Otherwise, there is nothing further to do for symbols defined | 
|  | in regular objects.  */ | 
|  | if (h->def_regular) | 
|  | return true; | 
|  |  | 
|  | /* There's also nothing more to do if we'll convert all relocations | 
|  | against this symbol into dynamic relocations.  */ | 
|  | if (!hmips->has_static_relocs) | 
|  | return true; | 
|  |  | 
|  | /* We're now relying on copy relocations.  Complain if we have | 
|  | some that we can't convert.  */ | 
|  | if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) | 
|  | { | 
|  | _bfd_error_handler (_("non-dynamic relocations refer to " | 
|  | "dynamic symbol %s"), | 
|  | h->root.root.string); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We must allocate the symbol in our .dynbss section, which will | 
|  | become part of the .bss section of the executable.  There will be | 
|  | an entry for this symbol in the .dynsym section.  The dynamic | 
|  | object will contain position independent code, so all references | 
|  | from the dynamic object to this symbol will go through the global | 
|  | offset table.  The dynamic linker will use the .dynsym entry to | 
|  | determine the address it must put in the global offset table, so | 
|  | both the dynamic object and the regular object will refer to the | 
|  | same memory location for the variable.  */ | 
|  |  | 
|  | if ((h->root.u.def.section->flags & SEC_READONLY) != 0) | 
|  | { | 
|  | s = htab->root.sdynrelro; | 
|  | srel = htab->root.sreldynrelro; | 
|  | } | 
|  | else | 
|  | { | 
|  | s = htab->root.sdynbss; | 
|  | srel = htab->root.srelbss; | 
|  | } | 
|  | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | srel->size += sizeof (Elf32_External_Rela); | 
|  | else | 
|  | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | 
|  | h->needs_copy = 1; | 
|  | } | 
|  |  | 
|  | /* All relocations against this symbol that could have been made | 
|  | dynamic will now refer to the local copy instead.  */ | 
|  | hmips->possibly_dynamic_relocs = 0; | 
|  |  | 
|  | return _bfd_elf_adjust_dynamic_copy (info, h, s); | 
|  | } | 
|  |  | 
|  | /* This function is called after all the input files have been read, | 
|  | and the input sections have been assigned to output sections.  We | 
|  | check for any mips16 stub sections that we can discard.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_always_size_sections (bfd *output_bfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | asection *sect; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_htab_traverse_info hti; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* The .reginfo section has a fixed size.  */ | 
|  | sect = bfd_get_section_by_name (output_bfd, ".reginfo"); | 
|  | if (sect != NULL) | 
|  | { | 
|  | bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo)); | 
|  | sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | /* The .MIPS.abiflags section has a fixed size.  */ | 
|  | sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); | 
|  | if (sect != NULL) | 
|  | { | 
|  | bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0)); | 
|  | sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | hti.info = info; | 
|  | hti.output_bfd = output_bfd; | 
|  | hti.error = false; | 
|  | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | 
|  | mips_elf_check_symbols, &hti); | 
|  | if (hti.error) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If the link uses a GOT, lay it out and work out its size.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *s; | 
|  | struct mips_got_info *g; | 
|  | bfd_size_type loadable_size = 0; | 
|  | bfd_size_type page_gotno; | 
|  | bfd *ibfd; | 
|  | struct mips_elf_traverse_got_arg tga; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | s = htab->root.sgot; | 
|  | if (s == NULL) | 
|  | return true; | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | g = htab->got_info; | 
|  |  | 
|  | /* Allocate room for the reserved entries.  VxWorks always reserves | 
|  | 3 entries; other objects only reserve 2 entries.  */ | 
|  | BFD_ASSERT (g->assigned_low_gotno == 0); | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | htab->reserved_gotno = 3; | 
|  | else | 
|  | htab->reserved_gotno = 2; | 
|  | g->local_gotno += htab->reserved_gotno; | 
|  | g->assigned_low_gotno = htab->reserved_gotno; | 
|  |  | 
|  | /* Decide which symbols need to go in the global part of the GOT and | 
|  | count the number of reloc-only GOT symbols.  */ | 
|  | mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); | 
|  |  | 
|  | if (!mips_elf_resolve_final_got_entries (info, g)) | 
|  | return false; | 
|  |  | 
|  | /* Calculate the total loadable size of the output.  That | 
|  | will give us the maximum number of GOT_PAGE entries | 
|  | required.  */ | 
|  | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) | 
|  | { | 
|  | asection *subsection; | 
|  |  | 
|  | for (subsection = ibfd->sections; | 
|  | subsection; | 
|  | subsection = subsection->next) | 
|  | { | 
|  | if ((subsection->flags & SEC_ALLOC) == 0) | 
|  | continue; | 
|  | loadable_size += ((subsection->size + 0xf) | 
|  | &~ (bfd_size_type) 0xf); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 | 
|  | relocations against local symbols evaluate to "G", and the EABI does | 
|  | not include R_MIPS_GOT_PAGE.  */ | 
|  | page_gotno = 0; | 
|  | else | 
|  | /* Assume there are two loadable segments consisting of contiguous | 
|  | sections.  Is 5 enough?  */ | 
|  | page_gotno = (loadable_size >> 16) + 5; | 
|  |  | 
|  | /* Choose the smaller of the two page estimates; both are intended to be | 
|  | conservative.  */ | 
|  | if (page_gotno > g->page_gotno) | 
|  | page_gotno = g->page_gotno; | 
|  |  | 
|  | g->local_gotno += page_gotno; | 
|  | g->assigned_high_gotno = g->local_gotno - 1; | 
|  |  | 
|  | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | 
|  | s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | 
|  | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | 
|  |  | 
|  | /* VxWorks does not support multiple GOTs.  It initializes $gp to | 
|  | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | 
|  | dynamic loader.  */ | 
|  | if (htab->root.target_os != is_vxworks | 
|  | && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) | 
|  | { | 
|  | if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Record that all bfds use G.  This also has the effect of freeing | 
|  | the per-bfd GOTs, which we no longer need.  */ | 
|  | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) | 
|  | if (mips_elf_bfd_got (ibfd, false)) | 
|  | mips_elf_replace_bfd_got (ibfd, g); | 
|  | mips_elf_replace_bfd_got (output_bfd, g); | 
|  |  | 
|  | /* Set up TLS entries.  */ | 
|  | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; | 
|  | tga.info = info; | 
|  | tga.g = g; | 
|  | tga.value = MIPS_ELF_GOT_SIZE (output_bfd); | 
|  | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); | 
|  | if (!tga.g) | 
|  | return false; | 
|  | BFD_ASSERT (g->tls_assigned_gotno | 
|  | == g->global_gotno + g->local_gotno + g->tls_gotno); | 
|  |  | 
|  | /* Each VxWorks GOT entry needs an explicit relocation.  */ | 
|  | if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) | 
|  | g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; | 
|  |  | 
|  | /* Allocate room for the TLS relocations.  */ | 
|  | if (g->relocs) | 
|  | mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Estimate the size of the .MIPS.stubs section.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | bfd_size_type dynsymcount; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (htab->lazy_stub_count == 0) | 
|  | return; | 
|  |  | 
|  | /* IRIX rld assumes that a function stub isn't at the end of the .text | 
|  | section, so add a dummy entry to the end.  */ | 
|  | htab->lazy_stub_count++; | 
|  |  | 
|  | /* Get a worst-case estimate of the number of dynamic symbols needed. | 
|  | At this point, dynsymcount does not account for section symbols | 
|  | and count_section_dynsyms may overestimate the number that will | 
|  | be needed.  */ | 
|  | dynsymcount = (elf_hash_table (info)->dynsymcount | 
|  | + count_section_dynsyms (output_bfd, info)); | 
|  |  | 
|  | /* Determine the size of one stub entry.  There's no disadvantage | 
|  | from using microMIPS code here, so for the sake of pure-microMIPS | 
|  | binaries we prefer it whenever there's any microMIPS code in | 
|  | output produced at all.  This has a benefit of stubs being | 
|  | shorter by 4 bytes each too, unless in the insn32 mode.  */ | 
|  | if (!MICROMIPS_P (output_bfd)) | 
|  | htab->function_stub_size = (dynsymcount > 0x10000 | 
|  | ? MIPS_FUNCTION_STUB_BIG_SIZE | 
|  | : MIPS_FUNCTION_STUB_NORMAL_SIZE); | 
|  | else if (htab->insn32) | 
|  | htab->function_stub_size = (dynsymcount > 0x10000 | 
|  | ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE | 
|  | : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); | 
|  | else | 
|  | htab->function_stub_size = (dynsymcount > 0x10000 | 
|  | ? MICROMIPS_FUNCTION_STUB_BIG_SIZE | 
|  | : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); | 
|  |  | 
|  | htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; | 
|  | } | 
|  |  | 
|  | /* A mips_elf_link_hash_traverse callback for which DATA points to a | 
|  | mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding | 
|  | stub, allocate an entry in the stubs section.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) | 
|  | { | 
|  | struct mips_htab_traverse_info *hti = data; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct bfd_link_info *info; | 
|  | bfd *output_bfd; | 
|  |  | 
|  | info = hti->info; | 
|  | output_bfd = hti->output_bfd; | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (h->needs_lazy_stub) | 
|  | { | 
|  | bool micromips_p = MICROMIPS_P (output_bfd); | 
|  | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | 
|  | bfd_vma isa_bit = micromips_p; | 
|  |  | 
|  | BFD_ASSERT (htab->root.dynobj != NULL); | 
|  | if (h->root.plt.plist == NULL) | 
|  | h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); | 
|  | if (h->root.plt.plist == NULL) | 
|  | { | 
|  | hti->error = true; | 
|  | return false; | 
|  | } | 
|  | h->root.root.u.def.section = htab->sstubs; | 
|  | h->root.root.u.def.value = htab->sstubs->size + isa_bit; | 
|  | h->root.plt.plist->stub_offset = htab->sstubs->size; | 
|  | h->root.other = other; | 
|  | htab->sstubs->size += htab->function_stub_size; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate offsets in the stubs section to each symbol that needs one. | 
|  | Set the final size of the .MIPS.stub section.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) | 
|  | { | 
|  | bfd *output_bfd = info->output_bfd; | 
|  | bool micromips_p = MICROMIPS_P (output_bfd); | 
|  | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | 
|  | bfd_vma isa_bit = micromips_p; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_htab_traverse_info hti; | 
|  | struct elf_link_hash_entry *h; | 
|  | bfd *dynobj; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (htab->lazy_stub_count == 0) | 
|  | return true; | 
|  |  | 
|  | htab->sstubs->size = 0; | 
|  | hti.info = info; | 
|  | hti.output_bfd = output_bfd; | 
|  | hti.error = false; | 
|  | mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); | 
|  | if (hti.error) | 
|  | return false; | 
|  | htab->sstubs->size += htab->function_stub_size; | 
|  | BFD_ASSERT (htab->sstubs->size | 
|  | == htab->lazy_stub_count * htab->function_stub_size); | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | BFD_ASSERT (dynobj != NULL); | 
|  | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); | 
|  | if (h == NULL) | 
|  | return false; | 
|  | h->root.u.def.value = isa_bit; | 
|  | h->other = other; | 
|  | h->type = STT_FUNC; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* A mips_elf_link_hash_traverse callback for which DATA points to a | 
|  | bfd_link_info.  If H uses the address of a PLT entry as the value | 
|  | of the symbol, then set the entry in the symbol table now.  Prefer | 
|  | a standard MIPS PLT entry.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) | 
|  | { | 
|  | struct bfd_link_info *info = data; | 
|  | bool micromips_p = MICROMIPS_P (info->output_bfd); | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | unsigned int other; | 
|  | bfd_vma isa_bit; | 
|  | bfd_vma val; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (h->use_plt_entry) | 
|  | { | 
|  | BFD_ASSERT (h->root.plt.plist != NULL); | 
|  | BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE | 
|  | || h->root.plt.plist->comp_offset != MINUS_ONE); | 
|  |  | 
|  | val = htab->plt_header_size; | 
|  | if (h->root.plt.plist->mips_offset != MINUS_ONE) | 
|  | { | 
|  | isa_bit = 0; | 
|  | val += h->root.plt.plist->mips_offset; | 
|  | other = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | isa_bit = 1; | 
|  | val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; | 
|  | other = micromips_p ? STO_MICROMIPS : STO_MIPS16; | 
|  | } | 
|  | val += isa_bit; | 
|  | /* For VxWorks, point at the PLT load stub rather than the lazy | 
|  | resolution stub; this stub will become the canonical function | 
|  | address.  */ | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | val += 8; | 
|  |  | 
|  | h->root.root.u.def.section = htab->root.splt; | 
|  | h->root.root.u.def.value = val; | 
|  | h->root.other = other; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Set the sizes of the dynamic sections.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *s, *sreldyn; | 
|  | bool reltext; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | BFD_ASSERT (dynobj != NULL); | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | /* Set the contents of the .interp section to the interpreter.  */ | 
|  | if (bfd_link_executable (info) && !info->nointerp) | 
|  | { | 
|  | s = bfd_get_linker_section (dynobj, ".interp"); | 
|  | BFD_ASSERT (s != NULL); | 
|  | s->size | 
|  | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; | 
|  | s->contents | 
|  | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | 
|  | } | 
|  |  | 
|  | /* Figure out the size of the PLT header if we know that we | 
|  | are using it.  For the sake of cache alignment always use | 
|  | a standard header whenever any standard entries are present | 
|  | even if microMIPS entries are present as well.  This also | 
|  | lets the microMIPS header rely on the value of $v0 only set | 
|  | by microMIPS entries, for a small size reduction. | 
|  |  | 
|  | Set symbol table entry values for symbols that use the | 
|  | address of their PLT entry now that we can calculate it. | 
|  |  | 
|  | Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we | 
|  | haven't already in _bfd_elf_create_dynamic_sections.  */ | 
|  | if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) | 
|  | { | 
|  | bool micromips_p = (MICROMIPS_P (output_bfd) | 
|  | && !htab->plt_mips_offset); | 
|  | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | 
|  | bfd_vma isa_bit = micromips_p; | 
|  | struct elf_link_hash_entry *h; | 
|  | bfd_vma size; | 
|  |  | 
|  | BFD_ASSERT (htab->use_plts_and_copy_relocs); | 
|  | BFD_ASSERT (htab->root.sgotplt->size == 0); | 
|  | BFD_ASSERT (htab->root.splt->size == 0); | 
|  |  | 
|  | if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) | 
|  | size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | 
|  | else if (htab->root.target_os == is_vxworks) | 
|  | size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | 
|  | else if (ABI_64_P (output_bfd)) | 
|  | size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); | 
|  | else if (ABI_N32_P (output_bfd)) | 
|  | size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); | 
|  | else if (!micromips_p) | 
|  | size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | 
|  | else if (htab->insn32) | 
|  | size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); | 
|  | else | 
|  | size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); | 
|  |  | 
|  | htab->plt_header_is_comp = micromips_p; | 
|  | htab->plt_header_size = size; | 
|  | htab->root.splt->size = (size | 
|  | + htab->plt_mips_offset | 
|  | + htab->plt_comp_offset); | 
|  | htab->root.sgotplt->size = (htab->plt_got_index | 
|  | * MIPS_ELF_GOT_SIZE (dynobj)); | 
|  |  | 
|  | mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); | 
|  |  | 
|  | if (htab->root.hplt == NULL) | 
|  | { | 
|  | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt, | 
|  | "_PROCEDURE_LINKAGE_TABLE_"); | 
|  | htab->root.hplt = h; | 
|  | if (h == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | h = htab->root.hplt; | 
|  | h->root.u.def.value = isa_bit; | 
|  | h->other = other; | 
|  | h->type = STT_FUNC; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate space for global sym dynamic relocs.  */ | 
|  | elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); | 
|  |  | 
|  | mips_elf_estimate_stub_size (output_bfd, info); | 
|  |  | 
|  | if (!mips_elf_lay_out_got (output_bfd, info)) | 
|  | return false; | 
|  |  | 
|  | mips_elf_lay_out_lazy_stubs (info); | 
|  |  | 
|  | /* The check_relocs and adjust_dynamic_symbol entry points have | 
|  | determined the sizes of the various dynamic sections.  Allocate | 
|  | memory for them.  */ | 
|  | reltext = false; | 
|  | for (s = dynobj->sections; s != NULL; s = s->next) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | /* It's OK to base decisions on the section name, because none | 
|  | of the dynobj section names depend upon the input files.  */ | 
|  | name = bfd_section_name (s); | 
|  |  | 
|  | if ((s->flags & SEC_LINKER_CREATED) == 0) | 
|  | continue; | 
|  |  | 
|  | if (startswith (name, ".rel")) | 
|  | { | 
|  | if (s->size != 0) | 
|  | { | 
|  | const char *outname; | 
|  | asection *target; | 
|  |  | 
|  | /* If this relocation section applies to a read only | 
|  | section, then we probably need a DT_TEXTREL entry. | 
|  | If the relocation section is .rel(a).dyn, we always | 
|  | assert a DT_TEXTREL entry rather than testing whether | 
|  | there exists a relocation to a read only section or | 
|  | not.  */ | 
|  | outname = bfd_section_name (s->output_section); | 
|  | target = bfd_get_section_by_name (output_bfd, outname + 4); | 
|  | if ((target != NULL | 
|  | && (target->flags & SEC_READONLY) != 0 | 
|  | && (target->flags & SEC_ALLOC) != 0) | 
|  | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) | 
|  | reltext = true; | 
|  |  | 
|  | /* We use the reloc_count field as a counter if we need | 
|  | to copy relocs into the output file.  */ | 
|  | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) | 
|  | s->reloc_count = 0; | 
|  |  | 
|  | /* If combreloc is enabled, elf_link_sort_relocs() will | 
|  | sort relocations, but in a different way than we do, | 
|  | and before we're done creating relocations.  Also, it | 
|  | will move them around between input sections' | 
|  | relocation's contents, so our sorting would be | 
|  | broken, so don't let it run.  */ | 
|  | info->combreloc = 0; | 
|  | } | 
|  | } | 
|  | else if (bfd_link_executable (info) | 
|  | && ! mips_elf_hash_table (info)->use_rld_obj_head | 
|  | && startswith (name, ".rld_map")) | 
|  | { | 
|  | /* We add a room for __rld_map.  It will be filled in by the | 
|  | rtld to contain a pointer to the _r_debug structure.  */ | 
|  | s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); | 
|  | } | 
|  | else if (SGI_COMPAT (output_bfd) | 
|  | && startswith (name, ".compact_rel")) | 
|  | s->size += mips_elf_hash_table (info)->compact_rel_size; | 
|  | else if (s == htab->root.splt) | 
|  | { | 
|  | /* If the last PLT entry has a branch delay slot, allocate | 
|  | room for an extra nop to fill the delay slot.  This is | 
|  | for CPUs without load interlocking.  */ | 
|  | if (! LOAD_INTERLOCKS_P (output_bfd) | 
|  | && htab->root.target_os != is_vxworks | 
|  | && s->size > 0) | 
|  | s->size += 4; | 
|  | } | 
|  | else if (! startswith (name, ".init") | 
|  | && s != htab->root.sgot | 
|  | && s != htab->root.sgotplt | 
|  | && s != htab->sstubs | 
|  | && s != htab->root.sdynbss | 
|  | && s != htab->root.sdynrelro) | 
|  | { | 
|  | /* It's not one of our sections, so don't allocate space.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (s->size == 0) | 
|  | { | 
|  | s->flags |= SEC_EXCLUDE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((s->flags & SEC_HAS_CONTENTS) == 0) | 
|  | continue; | 
|  |  | 
|  | /* Allocate memory for the section contents.  */ | 
|  | s->contents = bfd_zalloc (dynobj, s->size); | 
|  | if (s->contents == NULL) | 
|  | { | 
|  | bfd_set_error (bfd_error_no_memory); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | /* Add some entries to the .dynamic section.  We fill in the | 
|  | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | 
|  | must add the entries now so that we get the correct size for | 
|  | the .dynamic section.  */ | 
|  |  | 
|  | /* SGI object has the equivalence of DT_DEBUG in the | 
|  | DT_MIPS_RLD_MAP entry.  This must come first because glibc | 
|  | only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools | 
|  | may only look at the first one they see.  */ | 
|  | if (!bfd_link_pic (info) | 
|  | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | 
|  | return false; | 
|  |  | 
|  | if (bfd_link_executable (info) | 
|  | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) | 
|  | return false; | 
|  |  | 
|  | /* The DT_DEBUG entry may be filled in by the dynamic linker and | 
|  | used by the debugger.  */ | 
|  | if (bfd_link_executable (info) | 
|  | && !SGI_COMPAT (output_bfd) | 
|  | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | 
|  | return false; | 
|  |  | 
|  | if (reltext | 
|  | && (SGI_COMPAT (output_bfd) | 
|  | || htab->root.target_os == is_vxworks)) | 
|  | info->flags |= DF_TEXTREL; | 
|  |  | 
|  | if ((info->flags & DF_TEXTREL) != 0) | 
|  | { | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | 
|  | return false; | 
|  |  | 
|  | /* Clear the DF_TEXTREL flag.  It will be set again if we | 
|  | write out an actual text relocation; we may not, because | 
|  | at this point we do not know whether e.g. any .eh_frame | 
|  | absolute relocations have been converted to PC-relative.  */ | 
|  | info->flags &= ~DF_TEXTREL; | 
|  | } | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | 
|  | return false; | 
|  |  | 
|  | sreldyn = mips_elf_rel_dyn_section (info, false); | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | { | 
|  | /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not | 
|  | use any of the DT_MIPS_* tags.  */ | 
|  | if (sreldyn && sreldyn->size > 0) | 
|  | { | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (sreldyn && sreldyn->size > 0 | 
|  | && !bfd_is_abs_section (sreldyn->output_section)) | 
|  | { | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) | 
|  | return false; | 
|  |  | 
|  | if (info->emit_gnu_hash | 
|  | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0)) | 
|  | return false; | 
|  |  | 
|  | if (IRIX_COMPAT (dynobj) == ict_irix5 | 
|  | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | 
|  | return false; | 
|  |  | 
|  | if (IRIX_COMPAT (dynobj) == ict_irix6 | 
|  | && (bfd_get_section_by_name | 
|  | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | 
|  | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | 
|  | return false; | 
|  | } | 
|  | if (htab->root.splt->size > 0) | 
|  | { | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | 
|  | return false; | 
|  |  | 
|  | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) | 
|  | return false; | 
|  | } | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && !elf_vxworks_add_dynamic_entries (output_bfd, info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. | 
|  | Adjust its R_ADDEND field so that it is correct for the output file. | 
|  | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | 
|  | and sections respectively; both use symbol indexes.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | 
|  | bfd *input_bfd, Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections, Elf_Internal_Rela *rel) | 
|  | { | 
|  | unsigned int r_type, r_symndx; | 
|  | Elf_Internal_Sym *sym; | 
|  | asection *sec; | 
|  |  | 
|  | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) | 
|  | { | 
|  | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | 
|  | if (gprel16_reloc_p (r_type) | 
|  | || r_type == R_MIPS_GPREL32 | 
|  | || literal_reloc_p (r_type)) | 
|  | { | 
|  | rel->r_addend += _bfd_get_gp_value (input_bfd); | 
|  | rel->r_addend -= _bfd_get_gp_value (output_bfd); | 
|  | } | 
|  |  | 
|  | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | 
|  | sym = local_syms + r_symndx; | 
|  |  | 
|  | /* Adjust REL's addend to account for section merging.  */ | 
|  | if (!bfd_link_relocatable (info)) | 
|  | { | 
|  | sec = local_sections[r_symndx]; | 
|  | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | 
|  | } | 
|  |  | 
|  | /* This would normally be done by the rela_normal code in elflink.c.  */ | 
|  | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | 
|  | rel->r_addend += local_sections[r_symndx]->output_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle relocations against symbols from removed linkonce sections, | 
|  | or sections discarded by a linker script.  We use this wrapper around | 
|  | RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs | 
|  | on 64-bit ELF targets.  In this case for any relocation handled, which | 
|  | always be the first in a triplet, the remaining two have to be processed | 
|  | together with the first, even if they are R_MIPS_NONE.  It is the symbol | 
|  | index referred by the first reloc that applies to all the three and the | 
|  | remaining two never refer to an object symbol.  And it is the final | 
|  | relocation (the last non-null one) that determines the output field of | 
|  | the whole relocation so retrieve the corresponding howto structure for | 
|  | the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. | 
|  |  | 
|  | Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" | 
|  | and therefore requires to be pasted in a loop.  It also defines a block | 
|  | and does not protect any of its arguments, hence the extra brackets.  */ | 
|  |  | 
|  | static void | 
|  | mips_reloc_against_discarded_section (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | bfd *input_bfd, asection *input_section, | 
|  | Elf_Internal_Rela **rel, | 
|  | const Elf_Internal_Rela **relend, | 
|  | bool rel_reloc, | 
|  | reloc_howto_type *howto, | 
|  | bfd_byte *contents) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | 
|  | int count = bed->s->int_rels_per_ext_rel; | 
|  | unsigned int r_type; | 
|  | int i; | 
|  |  | 
|  | for (i = count - 1; i > 0; i--) | 
|  | { | 
|  | r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); | 
|  | if (r_type != R_MIPS_NONE) | 
|  | { | 
|  | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); | 
|  | break; | 
|  | } | 
|  | } | 
|  | do | 
|  | { | 
|  | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | 
|  | (*rel), count, (*relend), | 
|  | howto, i, contents); | 
|  | } | 
|  | while (0); | 
|  | } | 
|  |  | 
|  | /* Relocate a MIPS ELF section.  */ | 
|  |  | 
|  | int | 
|  | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, | 
|  | bfd *input_bfd, asection *input_section, | 
|  | bfd_byte *contents, Elf_Internal_Rela *relocs, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections) | 
|  | { | 
|  | Elf_Internal_Rela *rel; | 
|  | const Elf_Internal_Rela *relend; | 
|  | bfd_vma addend = 0; | 
|  | bool use_saved_addend_p = false; | 
|  |  | 
|  | relend = relocs + input_section->reloc_count; | 
|  | for (rel = relocs; rel < relend; ++rel) | 
|  | { | 
|  | const char *name; | 
|  | bfd_vma value = 0; | 
|  | reloc_howto_type *howto; | 
|  | bool cross_mode_jump_p = false; | 
|  | /* TRUE if the relocation is a RELA relocation, rather than a | 
|  | REL relocation.  */ | 
|  | bool rela_relocation_p = true; | 
|  | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); | 
|  | const char *msg; | 
|  | unsigned long r_symndx; | 
|  | asection *sec; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry *h; | 
|  | bool rel_reloc; | 
|  |  | 
|  | rel_reloc = (NEWABI_P (input_bfd) | 
|  | && mips_elf_rel_relocation_p (input_bfd, input_section, | 
|  | relocs, rel)); | 
|  | /* Find the relocation howto for this relocation.  */ | 
|  | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); | 
|  |  | 
|  | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) | 
|  | { | 
|  | sec = local_sections[r_symndx]; | 
|  | h = NULL; | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned long extsymoff; | 
|  |  | 
|  | extsymoff = 0; | 
|  | if (!elf_bad_symtab (input_bfd)) | 
|  | extsymoff = symtab_hdr->sh_info; | 
|  | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  |  | 
|  | sec = NULL; | 
|  | if (h->root.type == bfd_link_hash_defined | 
|  | || h->root.type == bfd_link_hash_defweak) | 
|  | sec = h->root.u.def.section; | 
|  | } | 
|  |  | 
|  | if (sec != NULL && discarded_section (sec)) | 
|  | { | 
|  | mips_reloc_against_discarded_section (output_bfd, info, input_bfd, | 
|  | input_section, &rel, &relend, | 
|  | rel_reloc, howto, contents); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) | 
|  | { | 
|  | /* Some 32-bit code uses R_MIPS_64.  In particular, people use | 
|  | 64-bit code, but make sure all their addresses are in the | 
|  | lowermost or uppermost 32-bit section of the 64-bit address | 
|  | space.  Thus, when they use an R_MIPS_64 they mean what is | 
|  | usually meant by R_MIPS_32, with the exception that the | 
|  | stored value is sign-extended to 64 bits.  */ | 
|  | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false); | 
|  |  | 
|  | /* On big-endian systems, we need to lie about the position | 
|  | of the reloc.  */ | 
|  | if (bfd_big_endian (input_bfd)) | 
|  | rel->r_offset += 4; | 
|  | } | 
|  |  | 
|  | if (!use_saved_addend_p) | 
|  | { | 
|  | /* If these relocations were originally of the REL variety, | 
|  | we must pull the addend out of the field that will be | 
|  | relocated.  Otherwise, we simply use the contents of the | 
|  | RELA relocation.  */ | 
|  | if (mips_elf_rel_relocation_p (input_bfd, input_section, | 
|  | relocs, rel)) | 
|  | { | 
|  | rela_relocation_p = false; | 
|  | addend = mips_elf_read_rel_addend (input_bfd, rel, | 
|  | howto, contents); | 
|  | if (hi16_reloc_p (r_type) | 
|  | || (got16_reloc_p (r_type) | 
|  | && mips_elf_local_relocation_p (input_bfd, rel, | 
|  | local_sections))) | 
|  | { | 
|  | if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, | 
|  | contents, &addend)) | 
|  | { | 
|  | if (h) | 
|  | name = h->root.root.string; | 
|  | else | 
|  | name = bfd_elf_sym_name (input_bfd, symtab_hdr, | 
|  | local_syms + r_symndx, | 
|  | sec); | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: can't find matching LO16 reloc against `%s'" | 
|  | " for %s at %#" PRIx64 " in section `%pA'"), | 
|  | input_bfd, name, | 
|  | howto->name, (uint64_t) rel->r_offset, input_section); | 
|  | } | 
|  | } | 
|  | else | 
|  | addend <<= howto->rightshift; | 
|  | } | 
|  | else | 
|  | addend = rel->r_addend; | 
|  | mips_elf_adjust_addend (output_bfd, info, input_bfd, | 
|  | local_syms, local_sections, rel); | 
|  | } | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | { | 
|  | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) | 
|  | && bfd_big_endian (input_bfd)) | 
|  | rel->r_offset -= 4; | 
|  |  | 
|  | if (!rela_relocation_p && rel->r_addend) | 
|  | { | 
|  | addend += rel->r_addend; | 
|  | if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) | 
|  | addend = mips_elf_high (addend); | 
|  | else if (r_type == R_MIPS_HIGHER) | 
|  | addend = mips_elf_higher (addend); | 
|  | else if (r_type == R_MIPS_HIGHEST) | 
|  | addend = mips_elf_highest (addend); | 
|  | else | 
|  | addend >>= howto->rightshift; | 
|  |  | 
|  | /* We use the source mask, rather than the destination | 
|  | mask because the place to which we are writing will be | 
|  | source of the addend in the final link.  */ | 
|  | addend &= howto->src_mask; | 
|  |  | 
|  | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) | 
|  | /* See the comment above about using R_MIPS_64 in the 32-bit | 
|  | ABI.  Here, we need to update the addend.  It would be | 
|  | possible to get away with just using the R_MIPS_32 reloc | 
|  | but for endianness.  */ | 
|  | { | 
|  | bfd_vma sign_bits; | 
|  | bfd_vma low_bits; | 
|  | bfd_vma high_bits; | 
|  |  | 
|  | if (addend & ((bfd_vma) 1 << 31)) | 
|  | #ifdef BFD64 | 
|  | sign_bits = ((bfd_vma) 1 << 32) - 1; | 
|  | #else | 
|  | sign_bits = -1; | 
|  | #endif | 
|  | else | 
|  | sign_bits = 0; | 
|  |  | 
|  | /* If we don't know that we have a 64-bit type, | 
|  | do two separate stores.  */ | 
|  | if (bfd_big_endian (input_bfd)) | 
|  | { | 
|  | /* Store the sign-bits (which are most significant) | 
|  | first.  */ | 
|  | low_bits = sign_bits; | 
|  | high_bits = addend; | 
|  | } | 
|  | else | 
|  | { | 
|  | low_bits = addend; | 
|  | high_bits = sign_bits; | 
|  | } | 
|  | bfd_put_32 (input_bfd, low_bits, | 
|  | contents + rel->r_offset); | 
|  | bfd_put_32 (input_bfd, high_bits, | 
|  | contents + rel->r_offset + 4); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (! mips_elf_perform_relocation (info, howto, rel, addend, | 
|  | input_bfd, input_section, | 
|  | contents, false)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Go on to the next relocation.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* In the N32 and 64-bit ABIs there may be multiple consecutive | 
|  | relocations for the same offset.  In that case we are | 
|  | supposed to treat the output of each relocation as the addend | 
|  | for the next.  */ | 
|  | if (rel + 1 < relend | 
|  | && rel->r_offset == rel[1].r_offset | 
|  | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | 
|  | use_saved_addend_p = true; | 
|  | else | 
|  | use_saved_addend_p = false; | 
|  |  | 
|  | /* Figure out what value we are supposed to relocate.  */ | 
|  | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | 
|  | input_section, contents, | 
|  | info, rel, addend, howto, | 
|  | local_syms, local_sections, | 
|  | &value, &name, &cross_mode_jump_p, | 
|  | use_saved_addend_p)) | 
|  | { | 
|  | case bfd_reloc_continue: | 
|  | /* There's nothing to do.  */ | 
|  | continue; | 
|  |  | 
|  | case bfd_reloc_undefined: | 
|  | /* mips_elf_calculate_relocation already called the | 
|  | undefined_symbol callback.  There's no real point in | 
|  | trying to perform the relocation at this point, so we | 
|  | just skip ahead to the next relocation.  */ | 
|  | continue; | 
|  |  | 
|  | case bfd_reloc_notsupported: | 
|  | msg = _("internal error: unsupported relocation error"); | 
|  | info->callbacks->warning | 
|  | (info, msg, name, input_bfd, input_section, rel->r_offset); | 
|  | return false; | 
|  |  | 
|  | case bfd_reloc_overflow: | 
|  | if (use_saved_addend_p) | 
|  | /* Ignore overflow until we reach the last relocation for | 
|  | a given location.  */ | 
|  | ; | 
|  | else | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | BFD_ASSERT (name != NULL); | 
|  | if (!htab->small_data_overflow_reported | 
|  | && (gprel16_reloc_p (howto->type) | 
|  | || literal_reloc_p (howto->type))) | 
|  | { | 
|  | msg = _("small-data section exceeds 64KB;" | 
|  | " lower small-data size limit (see option -G)"); | 
|  |  | 
|  | htab->small_data_overflow_reported = true; | 
|  | (*info->callbacks->einfo) ("%P: %s\n", msg); | 
|  | } | 
|  | (*info->callbacks->reloc_overflow) | 
|  | (info, NULL, name, howto->name, (bfd_vma) 0, | 
|  | input_bfd, input_section, rel->r_offset); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_ok: | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_outofrange: | 
|  | msg = NULL; | 
|  | if (jal_reloc_p (howto->type)) | 
|  | msg = (cross_mode_jump_p | 
|  | ? _("cannot convert a jump to JALX " | 
|  | "for a non-word-aligned address") | 
|  | : (howto->type == R_MIPS16_26 | 
|  | ? _("jump to a non-word-aligned address") | 
|  | : _("jump to a non-instruction-aligned address"))); | 
|  | else if (b_reloc_p (howto->type)) | 
|  | msg = (cross_mode_jump_p | 
|  | ? _("cannot convert a branch to JALX " | 
|  | "for a non-word-aligned address") | 
|  | : _("branch to a non-instruction-aligned address")); | 
|  | else if (aligned_pcrel_reloc_p (howto->type)) | 
|  | msg = _("PC-relative load from unaligned address"); | 
|  | if (msg) | 
|  | { | 
|  | info->callbacks->einfo | 
|  | ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); | 
|  | break; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If we've got another relocation for the address, keep going | 
|  | until we reach the last one.  */ | 
|  | if (use_saved_addend_p) | 
|  | { | 
|  | addend = value; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) | 
|  | /* See the comment above about using R_MIPS_64 in the 32-bit | 
|  | ABI.  Until now, we've been using the HOWTO for R_MIPS_32; | 
|  | that calculated the right value.  Now, however, we | 
|  | sign-extend the 32-bit result to 64-bits, and store it as a | 
|  | 64-bit value.  We are especially generous here in that we | 
|  | go to extreme lengths to support this usage on systems with | 
|  | only a 32-bit VMA.  */ | 
|  | { | 
|  | bfd_vma sign_bits; | 
|  | bfd_vma low_bits; | 
|  | bfd_vma high_bits; | 
|  |  | 
|  | if (value & ((bfd_vma) 1 << 31)) | 
|  | #ifdef BFD64 | 
|  | sign_bits = ((bfd_vma) 1 << 32) - 1; | 
|  | #else | 
|  | sign_bits = -1; | 
|  | #endif | 
|  | else | 
|  | sign_bits = 0; | 
|  |  | 
|  | /* If we don't know that we have a 64-bit type, | 
|  | do two separate stores.  */ | 
|  | if (bfd_big_endian (input_bfd)) | 
|  | { | 
|  | /* Undo what we did above.  */ | 
|  | rel->r_offset -= 4; | 
|  | /* Store the sign-bits (which are most significant) | 
|  | first.  */ | 
|  | low_bits = sign_bits; | 
|  | high_bits = value; | 
|  | } | 
|  | else | 
|  | { | 
|  | low_bits = value; | 
|  | high_bits = sign_bits; | 
|  | } | 
|  | bfd_put_32 (input_bfd, low_bits, | 
|  | contents + rel->r_offset); | 
|  | bfd_put_32 (input_bfd, high_bits, | 
|  | contents + rel->r_offset + 4); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Actually perform the relocation.  */ | 
|  | if (! mips_elf_perform_relocation (info, howto, rel, value, | 
|  | input_bfd, input_section, | 
|  | contents, cross_mode_jump_p)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* A function that iterates over each entry in la25_stubs and fills | 
|  | in the code for each one.  DATA points to a mips_htab_traverse_info.  */ | 
|  |  | 
|  | static int | 
|  | mips_elf_create_la25_stub (void **slot, void *data) | 
|  | { | 
|  | struct mips_htab_traverse_info *hti; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_la25_stub *stub; | 
|  | asection *s; | 
|  | bfd_byte *loc; | 
|  | bfd_vma offset, target, target_high, target_low; | 
|  | bfd_vma branch_pc; | 
|  | bfd_signed_vma pcrel_offset = 0; | 
|  |  | 
|  | stub = (struct mips_elf_la25_stub *) *slot; | 
|  | hti = (struct mips_htab_traverse_info *) data; | 
|  | htab = mips_elf_hash_table (hti->info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* Create the section contents, if we haven't already.  */ | 
|  | s = stub->stub_section; | 
|  | loc = s->contents; | 
|  | if (loc == NULL) | 
|  | { | 
|  | loc = bfd_malloc (s->size); | 
|  | if (loc == NULL) | 
|  | { | 
|  | hti->error = true; | 
|  | return false; | 
|  | } | 
|  | s->contents = loc; | 
|  | } | 
|  |  | 
|  | /* Work out where in the section this stub should go.  */ | 
|  | offset = stub->offset; | 
|  |  | 
|  | /* We add 8 here to account for the LUI/ADDIU instructions | 
|  | before the branch instruction.  This cannot be moved down to | 
|  | where pcrel_offset is calculated as 's' is updated in | 
|  | mips_elf_get_la25_target.  */ | 
|  | branch_pc = s->output_section->vma + s->output_offset + offset + 8; | 
|  |  | 
|  | /* Work out the target address.  */ | 
|  | target = mips_elf_get_la25_target (stub, &s); | 
|  | target += s->output_section->vma + s->output_offset; | 
|  |  | 
|  | target_high = ((target + 0x8000) >> 16) & 0xffff; | 
|  | target_low = (target & 0xffff); | 
|  |  | 
|  | /* Calculate the PC of the compact branch instruction (for the case where | 
|  | compact branches are used for either microMIPSR6 or MIPSR6 with | 
|  | compact branches.  Add 4-bytes to account for BC using the PC of the | 
|  | next instruction as the base.  */ | 
|  | pcrel_offset = target - (branch_pc + 4); | 
|  |  | 
|  | if (stub->stub_section != htab->strampoline) | 
|  | { | 
|  | /* This is a simple LUI/ADDIU stub.  Zero out the beginning | 
|  | of the section and write the two instructions at the end.  */ | 
|  | memset (loc, 0, offset); | 
|  | loc += offset; | 
|  | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) | 
|  | { | 
|  | bfd_put_micromips_32 (hti->output_bfd, | 
|  | LA25_LUI_MICROMIPS (target_high), | 
|  | loc); | 
|  | bfd_put_micromips_32 (hti->output_bfd, | 
|  | LA25_ADDIU_MICROMIPS (target_low), | 
|  | loc + 4); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | 
|  | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This is trampoline.  */ | 
|  | loc += offset; | 
|  | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) | 
|  | { | 
|  | bfd_put_micromips_32 (hti->output_bfd, | 
|  | LA25_LUI_MICROMIPS (target_high), loc); | 
|  | bfd_put_micromips_32 (hti->output_bfd, | 
|  | LA25_J_MICROMIPS (target), loc + 4); | 
|  | bfd_put_micromips_32 (hti->output_bfd, | 
|  | LA25_ADDIU_MICROMIPS (target_low), loc + 8); | 
|  | bfd_put_32 (hti->output_bfd, 0, loc + 12); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | 
|  | if (MIPSR6_P (hti->output_bfd) && htab->compact_branches) | 
|  | { | 
|  | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); | 
|  | bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); | 
|  | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); | 
|  | } | 
|  | bfd_put_32 (hti->output_bfd, 0, loc + 12); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If NAME is one of the special IRIX6 symbols defined by the linker, | 
|  | adjust it appropriately now.  */ | 
|  |  | 
|  | static void | 
|  | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | const char *name, Elf_Internal_Sym *sym) | 
|  | { | 
|  | /* The linker script takes care of providing names and values for | 
|  | these, but we must place them into the right sections.  */ | 
|  | static const char* const text_section_symbols[] = { | 
|  | "_ftext", | 
|  | "_etext", | 
|  | "__dso_displacement", | 
|  | "__elf_header", | 
|  | "__program_header_table", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const char* const data_section_symbols[] = { | 
|  | "_fdata", | 
|  | "_edata", | 
|  | "_end", | 
|  | "_fbss", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | const char* const *p; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 2; ++i) | 
|  | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | 
|  | *p; | 
|  | ++p) | 
|  | if (strcmp (*p, name) == 0) | 
|  | { | 
|  | /* All of these symbols are given type STT_SECTION by the | 
|  | IRIX6 linker.  */ | 
|  | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | 
|  | sym->st_other = STO_PROTECTED; | 
|  |  | 
|  | /* The IRIX linker puts these symbols in special sections.  */ | 
|  | if (i == 0) | 
|  | sym->st_shndx = SHN_MIPS_TEXT; | 
|  | else | 
|  | sym->st_shndx = SHN_MIPS_DATA; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Finish up dynamic symbol handling.  We set the contents of various | 
|  | dynamic sections here.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *sgot; | 
|  | struct mips_got_info *g, *gg; | 
|  | const char *name; | 
|  | int idx; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  |  | 
|  | BFD_ASSERT (htab->root.target_os != is_vxworks); | 
|  |  | 
|  | if (h->plt.plist != NULL | 
|  | && (h->plt.plist->mips_offset != MINUS_ONE | 
|  | || h->plt.plist->comp_offset != MINUS_ONE)) | 
|  | { | 
|  | /* We've decided to create a PLT entry for this symbol.  */ | 
|  | bfd_byte *loc; | 
|  | bfd_vma header_address, got_address; | 
|  | bfd_vma got_address_high, got_address_low, load; | 
|  | bfd_vma got_index; | 
|  | bfd_vma isa_bit; | 
|  |  | 
|  | got_index = h->plt.plist->gotplt_index; | 
|  |  | 
|  | BFD_ASSERT (htab->use_plts_and_copy_relocs); | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | BFD_ASSERT (htab->root.splt != NULL); | 
|  | BFD_ASSERT (got_index != MINUS_ONE); | 
|  | BFD_ASSERT (!h->def_regular); | 
|  |  | 
|  | /* Calculate the address of the PLT header.  */ | 
|  | isa_bit = htab->plt_header_is_comp; | 
|  | header_address = (htab->root.splt->output_section->vma | 
|  | + htab->root.splt->output_offset + isa_bit); | 
|  |  | 
|  | /* Calculate the address of the .got.plt entry.  */ | 
|  | got_address = (htab->root.sgotplt->output_section->vma | 
|  | + htab->root.sgotplt->output_offset | 
|  | + got_index * MIPS_ELF_GOT_SIZE (dynobj)); | 
|  |  | 
|  | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | 
|  | got_address_low = got_address & 0xffff; | 
|  |  | 
|  | /* The PLT sequence is not safe for N64 if .got.plt entry's address | 
|  | cannot be loaded in two instructions.  */ | 
|  | if (ABI_64_P (output_bfd) | 
|  | && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range " | 
|  | "supported; consider using `-Ttext-segment=...'"), | 
|  | output_bfd, | 
|  | htab->root.sgotplt->output_section, | 
|  | (int64_t) got_address); | 
|  | bfd_set_error (bfd_error_no_error); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Initially point the .got.plt entry at the PLT header.  */ | 
|  | loc = (htab->root.sgotplt->contents | 
|  | + got_index * MIPS_ELF_GOT_SIZE (dynobj)); | 
|  | if (ABI_64_P (output_bfd)) | 
|  | bfd_put_64 (output_bfd, header_address, loc); | 
|  | else | 
|  | bfd_put_32 (output_bfd, header_address, loc); | 
|  |  | 
|  | /* Now handle the PLT itself.  First the standard entry (the order | 
|  | does not matter, we just have to pick one).  */ | 
|  | if (h->plt.plist->mips_offset != MINUS_ONE) | 
|  | { | 
|  | const bfd_vma *plt_entry; | 
|  | bfd_vma plt_offset; | 
|  |  | 
|  | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; | 
|  |  | 
|  | BFD_ASSERT (plt_offset <= htab->root.splt->size); | 
|  |  | 
|  | /* Find out where the .plt entry should go.  */ | 
|  | loc = htab->root.splt->contents + plt_offset; | 
|  |  | 
|  | /* Pick the load opcode.  */ | 
|  | load = MIPS_ELF_LOAD_WORD (output_bfd); | 
|  |  | 
|  | /* Fill in the PLT entry itself.  */ | 
|  |  | 
|  | if (MIPSR6_P (output_bfd)) | 
|  | plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact | 
|  | : mipsr6_exec_plt_entry; | 
|  | else | 
|  | plt_entry = mips_exec_plt_entry; | 
|  | bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); | 
|  | bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, | 
|  | loc + 4); | 
|  |  | 
|  | if (! LOAD_INTERLOCKS_P (output_bfd) | 
|  | || (MIPSR6_P (output_bfd) && htab->compact_branches)) | 
|  | { | 
|  | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); | 
|  | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (output_bfd, plt_entry[3], loc + 8); | 
|  | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, | 
|  | loc + 12); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now the compressed entry.  They come after any standard ones.  */ | 
|  | if (h->plt.plist->comp_offset != MINUS_ONE) | 
|  | { | 
|  | bfd_vma plt_offset; | 
|  |  | 
|  | plt_offset = (htab->plt_header_size + htab->plt_mips_offset | 
|  | + h->plt.plist->comp_offset); | 
|  |  | 
|  | BFD_ASSERT (plt_offset <= htab->root.splt->size); | 
|  |  | 
|  | /* Find out where the .plt entry should go.  */ | 
|  | loc = htab->root.splt->contents + plt_offset; | 
|  |  | 
|  | /* Fill in the PLT entry itself.  */ | 
|  | if (!MICROMIPS_P (output_bfd)) | 
|  | { | 
|  | const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; | 
|  |  | 
|  | bfd_put_16 (output_bfd, plt_entry[0], loc); | 
|  | bfd_put_16 (output_bfd, plt_entry[1], loc + 2); | 
|  | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | 
|  | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); | 
|  | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | 
|  | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | 
|  | bfd_put_32 (output_bfd, got_address, loc + 12); | 
|  | } | 
|  | else if (htab->insn32) | 
|  | { | 
|  | const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; | 
|  |  | 
|  | bfd_put_16 (output_bfd, plt_entry[0], loc); | 
|  | bfd_put_16 (output_bfd, got_address_high, loc + 2); | 
|  | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | 
|  | bfd_put_16 (output_bfd, got_address_low, loc + 6); | 
|  | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | 
|  | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | 
|  | bfd_put_16 (output_bfd, plt_entry[6], loc + 12); | 
|  | bfd_put_16 (output_bfd, got_address_low, loc + 14); | 
|  | } | 
|  | else | 
|  | { | 
|  | const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; | 
|  | bfd_signed_vma gotpc_offset; | 
|  | bfd_vma loc_address; | 
|  |  | 
|  | BFD_ASSERT (got_address % 4 == 0); | 
|  |  | 
|  | loc_address = (htab->root.splt->output_section->vma | 
|  | + htab->root.splt->output_offset + plt_offset); | 
|  | gotpc_offset = got_address - ((loc_address | 3) ^ 3); | 
|  |  | 
|  | /* ADDIUPC has a span of +/-16MB, check we're in range.  */ | 
|  | if (gotpc_offset + 0x1000000 >= 0x2000000) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " | 
|  | "beyond the range of ADDIUPC"), | 
|  | output_bfd, | 
|  | htab->root.sgotplt->output_section, | 
|  | (int64_t) gotpc_offset, | 
|  | htab->root.splt->output_section); | 
|  | bfd_set_error (bfd_error_no_error); | 
|  | return false; | 
|  | } | 
|  | bfd_put_16 (output_bfd, | 
|  | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); | 
|  | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); | 
|  | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | 
|  | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); | 
|  | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | 
|  | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */ | 
|  | mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt, | 
|  | got_index - 2, h->dynindx, | 
|  | R_MIPS_JUMP_SLOT, got_address); | 
|  |  | 
|  | /* We distinguish between PLT entries and lazy-binding stubs by | 
|  | giving the former an st_other value of STO_MIPS_PLT.  Set the | 
|  | flag and leave the value if there are any relocations in the | 
|  | binary where pointer equality matters.  */ | 
|  | sym->st_shndx = SHN_UNDEF; | 
|  | if (h->pointer_equality_needed) | 
|  | sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); | 
|  | else | 
|  | { | 
|  | sym->st_value = 0; | 
|  | sym->st_other = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) | 
|  | { | 
|  | /* We've decided to create a lazy-binding stub.  */ | 
|  | bool micromips_p = MICROMIPS_P (output_bfd); | 
|  | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | 
|  | bfd_vma stub_size = htab->function_stub_size; | 
|  | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; | 
|  | bfd_vma isa_bit = micromips_p; | 
|  | bfd_vma stub_big_size; | 
|  |  | 
|  | if (!micromips_p) | 
|  | stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; | 
|  | else if (htab->insn32) | 
|  | stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; | 
|  | else | 
|  | stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; | 
|  |  | 
|  | /* This symbol has a stub.  Set it up.  */ | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  |  | 
|  | BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); | 
|  |  | 
|  | /* Values up to 2^31 - 1 are allowed.  Larger values would cause | 
|  | sign extension at runtime in the stub, resulting in a negative | 
|  | index value.  */ | 
|  | if (h->dynindx & ~0x7fffffff) | 
|  | return false; | 
|  |  | 
|  | /* Fill the stub.  */ | 
|  | if (micromips_p) | 
|  | { | 
|  | idx = 0; | 
|  | bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), | 
|  | stub + idx); | 
|  | idx += 4; | 
|  | if (htab->insn32) | 
|  | { | 
|  | bfd_put_micromips_32 (output_bfd, | 
|  | STUB_MOVE32_MICROMIPS, stub + idx); | 
|  | idx += 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); | 
|  | idx += 2; | 
|  | } | 
|  | if (stub_size == stub_big_size) | 
|  | { | 
|  | long dynindx_hi = (h->dynindx >> 16) & 0x7fff; | 
|  |  | 
|  | bfd_put_micromips_32 (output_bfd, | 
|  | STUB_LUI_MICROMIPS (dynindx_hi), | 
|  | stub + idx); | 
|  | idx += 4; | 
|  | } | 
|  | if (htab->insn32) | 
|  | { | 
|  | bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, | 
|  | stub + idx); | 
|  | idx += 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); | 
|  | idx += 2; | 
|  | } | 
|  |  | 
|  | /* If a large stub is not required and sign extension is not a | 
|  | problem, then use legacy code in the stub.  */ | 
|  | if (stub_size == stub_big_size) | 
|  | bfd_put_micromips_32 (output_bfd, | 
|  | STUB_ORI_MICROMIPS (h->dynindx & 0xffff), | 
|  | stub + idx); | 
|  | else if (h->dynindx & ~0x7fff) | 
|  | bfd_put_micromips_32 (output_bfd, | 
|  | STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), | 
|  | stub + idx); | 
|  | else | 
|  | bfd_put_micromips_32 (output_bfd, | 
|  | STUB_LI16S_MICROMIPS (output_bfd, | 
|  | h->dynindx), | 
|  | stub + idx); | 
|  | } | 
|  | else | 
|  | { | 
|  | idx = 0; | 
|  | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); | 
|  | idx += 4; | 
|  | bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); | 
|  | idx += 4; | 
|  | if (stub_size == stub_big_size) | 
|  | { | 
|  | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), | 
|  | stub + idx); | 
|  | idx += 4; | 
|  | } | 
|  |  | 
|  | if (!(MIPSR6_P (output_bfd) && htab->compact_branches)) | 
|  | { | 
|  | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); | 
|  | idx += 4; | 
|  | } | 
|  |  | 
|  | /* If a large stub is not required and sign extension is not a | 
|  | problem, then use legacy code in the stub.  */ | 
|  | if (stub_size == stub_big_size) | 
|  | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), | 
|  | stub + idx); | 
|  | else if (h->dynindx & ~0x7fff) | 
|  | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), | 
|  | stub + idx); | 
|  | else | 
|  | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), | 
|  | stub + idx); | 
|  | idx += 4; | 
|  |  | 
|  | if (MIPSR6_P (output_bfd) && htab->compact_branches) | 
|  | bfd_put_32 (output_bfd, STUB_JALRC, stub + idx); | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); | 
|  | memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, | 
|  | stub, stub_size); | 
|  |  | 
|  | /* Mark the symbol as undefined.  stub_offset != -1 occurs | 
|  | only for the referenced symbol.  */ | 
|  | sym->st_shndx = SHN_UNDEF; | 
|  |  | 
|  | /* The run-time linker uses the st_value field of the symbol | 
|  | to reset the global offset table entry for this external | 
|  | to its stub address when unlinking a shared object.  */ | 
|  | sym->st_value = (htab->sstubs->output_section->vma | 
|  | + htab->sstubs->output_offset | 
|  | + h->plt.plist->stub_offset | 
|  | + isa_bit); | 
|  | sym->st_other = other; | 
|  | } | 
|  |  | 
|  | /* If we have a MIPS16 function with a stub, the dynamic symbol must | 
|  | refer to the stub, since only the stub uses the standard calling | 
|  | conventions.  */ | 
|  | if (h->dynindx != -1 && hmips->fn_stub != NULL) | 
|  | { | 
|  | BFD_ASSERT (hmips->need_fn_stub); | 
|  | sym->st_value = (hmips->fn_stub->output_section->vma | 
|  | + hmips->fn_stub->output_offset); | 
|  | sym->st_size = hmips->fn_stub->size; | 
|  | sym->st_other = ELF_ST_VISIBILITY (sym->st_other); | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1 | 
|  | || h->forced_local); | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | g = htab->got_info; | 
|  | BFD_ASSERT (g != NULL); | 
|  |  | 
|  | /* Run through the global symbol table, creating GOT entries for all | 
|  | the symbols that need them.  */ | 
|  | if (hmips->global_got_area != GGA_NONE) | 
|  | { | 
|  | bfd_vma offset; | 
|  | bfd_vma value; | 
|  |  | 
|  | value = sym->st_value; | 
|  | offset = mips_elf_primary_global_got_index (output_bfd, info, h); | 
|  | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); | 
|  | } | 
|  |  | 
|  | if (hmips->global_got_area != GGA_NONE && g->next) | 
|  | { | 
|  | struct mips_got_entry e, *p; | 
|  | bfd_vma entry; | 
|  | bfd_vma offset; | 
|  |  | 
|  | gg = g; | 
|  |  | 
|  | e.abfd = output_bfd; | 
|  | e.symndx = -1; | 
|  | e.d.h = hmips; | 
|  | e.tls_type = GOT_TLS_NONE; | 
|  |  | 
|  | for (g = g->next; g->next != gg; g = g->next) | 
|  | { | 
|  | if (g->got_entries | 
|  | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | 
|  | &e))) | 
|  | { | 
|  | offset = p->gotidx; | 
|  | BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size); | 
|  | if (bfd_link_pic (info) | 
|  | || (elf_hash_table (info)->dynamic_sections_created | 
|  | && p->d.h != NULL | 
|  | && p->d.h->root.def_dynamic | 
|  | && !p->d.h->root.def_regular)) | 
|  | { | 
|  | /* Create an R_MIPS_REL32 relocation for this entry.  Due to | 
|  | the various compatibility problems, it's easier to mock | 
|  | up an R_MIPS_32 or R_MIPS_64 relocation and leave | 
|  | mips_elf_create_dynamic_relocation to calculate the | 
|  | appropriate addend.  */ | 
|  | Elf_Internal_Rela rel[3]; | 
|  |  | 
|  | memset (rel, 0, sizeof (rel)); | 
|  | if (ABI_64_P (output_bfd)) | 
|  | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | 
|  | else | 
|  | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | 
|  | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | 
|  |  | 
|  | entry = 0; | 
|  | if (! (mips_elf_create_dynamic_relocation | 
|  | (output_bfd, info, rel, | 
|  | e.d.h, NULL, sym->st_value, &entry, sgot))) | 
|  | return false; | 
|  | } | 
|  | else | 
|  | entry = sym->st_value; | 
|  | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */ | 
|  | name = h->root.root.string; | 
|  | if (h == elf_hash_table (info)->hdynamic | 
|  | || h == elf_hash_table (info)->hgot) | 
|  | sym->st_shndx = SHN_ABS; | 
|  | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | 
|  | || strcmp (name, "_DYNAMIC_LINKING") == 0) | 
|  | { | 
|  | sym->st_shndx = SHN_ABS; | 
|  | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | 
|  | sym->st_value = 1; | 
|  | } | 
|  | else if (SGI_COMPAT (output_bfd)) | 
|  | { | 
|  | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | 
|  | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | 
|  | { | 
|  | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | 
|  | sym->st_other = STO_PROTECTED; | 
|  | sym->st_value = 0; | 
|  | sym->st_shndx = SHN_MIPS_DATA; | 
|  | } | 
|  | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | 
|  | { | 
|  | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | 
|  | sym->st_other = STO_PROTECTED; | 
|  | sym->st_value = mips_elf_hash_table (info)->procedure_count; | 
|  | sym->st_shndx = SHN_ABS; | 
|  | } | 
|  | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | 
|  | { | 
|  | if (h->type == STT_FUNC) | 
|  | sym->st_shndx = SHN_MIPS_TEXT; | 
|  | else if (h->type == STT_OBJECT) | 
|  | sym->st_shndx = SHN_MIPS_DATA; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Emit a copy reloc, if needed.  */ | 
|  | if (h->needs_copy) | 
|  | { | 
|  | asection *s; | 
|  | bfd_vma symval; | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | BFD_ASSERT (htab->use_plts_and_copy_relocs); | 
|  |  | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | symval = (h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset | 
|  | + h->root.u.def.value); | 
|  | mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, | 
|  | h->dynindx, R_MIPS_COPY, symval); | 
|  | } | 
|  |  | 
|  | /* Handle the IRIX6-specific symbols.  */ | 
|  | if (IRIX_COMPAT (output_bfd) == ict_irix6) | 
|  | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | 
|  |  | 
|  | /* Keep dynamic compressed symbols odd.  This allows the dynamic linker | 
|  | to treat compressed symbols like any other.  */ | 
|  | if (ELF_ST_IS_MIPS16 (sym->st_other)) | 
|  | { | 
|  | BFD_ASSERT (sym->st_value & 1); | 
|  | sym->st_other -= STO_MIPS16; | 
|  | } | 
|  | else if (ELF_ST_IS_MICROMIPS (sym->st_other)) | 
|  | { | 
|  | BFD_ASSERT (sym->st_value & 1); | 
|  | sym->st_other -= STO_MICROMIPS; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Likewise, for VxWorks.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *sgot; | 
|  | struct mips_got_info *g; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  |  | 
|  | if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) | 
|  | { | 
|  | bfd_byte *loc; | 
|  | bfd_vma plt_address, got_address, got_offset, branch_offset; | 
|  | Elf_Internal_Rela rel; | 
|  | static const bfd_vma *plt_entry; | 
|  | bfd_vma gotplt_index; | 
|  | bfd_vma plt_offset; | 
|  |  | 
|  | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; | 
|  | gotplt_index = h->plt.plist->gotplt_index; | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | BFD_ASSERT (htab->root.splt != NULL); | 
|  | BFD_ASSERT (gotplt_index != MINUS_ONE); | 
|  | BFD_ASSERT (plt_offset <= htab->root.splt->size); | 
|  |  | 
|  | /* Calculate the address of the .plt entry.  */ | 
|  | plt_address = (htab->root.splt->output_section->vma | 
|  | + htab->root.splt->output_offset | 
|  | + plt_offset); | 
|  |  | 
|  | /* Calculate the address of the .got.plt entry.  */ | 
|  | got_address = (htab->root.sgotplt->output_section->vma | 
|  | + htab->root.sgotplt->output_offset | 
|  | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); | 
|  |  | 
|  | /* Calculate the offset of the .got.plt entry from | 
|  | _GLOBAL_OFFSET_TABLE_.  */ | 
|  | got_offset = mips_elf_gotplt_index (info, h); | 
|  |  | 
|  | /* Calculate the offset for the branch at the start of the PLT | 
|  | entry.  The branch jumps to the beginning of .plt.  */ | 
|  | branch_offset = -(plt_offset / 4 + 1) & 0xffff; | 
|  |  | 
|  | /* Fill in the initial value of the .got.plt entry.  */ | 
|  | bfd_put_32 (output_bfd, plt_address, | 
|  | (htab->root.sgotplt->contents | 
|  | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); | 
|  |  | 
|  | /* Find out where the .plt entry should go.  */ | 
|  | loc = htab->root.splt->contents + plt_offset; | 
|  |  | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | plt_entry = mips_vxworks_shared_plt_entry; | 
|  | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | 
|  | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_vma got_address_high, got_address_low; | 
|  |  | 
|  | plt_entry = mips_vxworks_exec_plt_entry; | 
|  | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | 
|  | got_address_low = got_address & 0xffff; | 
|  |  | 
|  | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | 
|  | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); | 
|  | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); | 
|  | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | 
|  | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | 
|  | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | 
|  | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | 
|  | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | 
|  |  | 
|  | loc = (htab->srelplt2->contents | 
|  | + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); | 
|  |  | 
|  | /* Emit a relocation for the .got.plt entry.  */ | 
|  | rel.r_offset = got_address; | 
|  | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | 
|  | rel.r_addend = plt_offset; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  |  | 
|  | /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */ | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  | rel.r_offset = plt_address + 8; | 
|  | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | 
|  | rel.r_addend = got_offset; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  |  | 
|  | /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */ | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  | rel.r_offset += 4; | 
|  | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  | } | 
|  |  | 
|  | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */ | 
|  | loc = (htab->root.srelplt->contents | 
|  | + gotplt_index * sizeof (Elf32_External_Rela)); | 
|  | rel.r_offset = got_address; | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | 
|  | rel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  |  | 
|  | if (!h->def_regular) | 
|  | sym->st_shndx = SHN_UNDEF; | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | g = htab->got_info; | 
|  | BFD_ASSERT (g != NULL); | 
|  |  | 
|  | /* See if this symbol has an entry in the GOT.  */ | 
|  | if (hmips->global_got_area != GGA_NONE) | 
|  | { | 
|  | bfd_vma offset; | 
|  | Elf_Internal_Rela outrel; | 
|  | bfd_byte *loc; | 
|  | asection *s; | 
|  |  | 
|  | /* Install the symbol value in the GOT.   */ | 
|  | offset = mips_elf_primary_global_got_index (output_bfd, info, h); | 
|  | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); | 
|  |  | 
|  | /* Add a dynamic relocation for it.  */ | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | 
|  | outrel.r_offset = (sgot->output_section->vma | 
|  | + sgot->output_offset | 
|  | + offset); | 
|  | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | 
|  | outrel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | 
|  | } | 
|  |  | 
|  | /* Emit a copy reloc, if needed.  */ | 
|  | if (h->needs_copy) | 
|  | { | 
|  | Elf_Internal_Rela rel; | 
|  | asection *srel; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  |  | 
|  | rel.r_offset = (h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset | 
|  | + h->root.u.def.value); | 
|  | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | 
|  | rel.r_addend = 0; | 
|  | if (h->root.u.def.section == htab->root.sdynrelro) | 
|  | srel = htab->root.sreldynrelro; | 
|  | else | 
|  | srel = htab->root.srelbss; | 
|  | loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  | ++srel->reloc_count; | 
|  | } | 
|  |  | 
|  | /* If this is a mips16/microMIPS symbol, force the value to be even.  */ | 
|  | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | 
|  | sym->st_value &= ~1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Write out a plt0 entry to the beginning of .plt.  */ | 
|  |  | 
|  | static bool | 
|  | mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd_byte *loc; | 
|  | bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; | 
|  | static const bfd_vma *plt_entry; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (ABI_64_P (output_bfd)) | 
|  | plt_entry = (htab->compact_branches | 
|  | ? mipsr6_n64_exec_plt0_entry_compact | 
|  | : mips_n64_exec_plt0_entry); | 
|  | else if (ABI_N32_P (output_bfd)) | 
|  | plt_entry = (htab->compact_branches | 
|  | ? mipsr6_n32_exec_plt0_entry_compact | 
|  | : mips_n32_exec_plt0_entry); | 
|  | else if (!htab->plt_header_is_comp) | 
|  | plt_entry = (htab->compact_branches | 
|  | ? mipsr6_o32_exec_plt0_entry_compact | 
|  | : mips_o32_exec_plt0_entry); | 
|  | else if (htab->insn32) | 
|  | plt_entry = micromips_insn32_o32_exec_plt0_entry; | 
|  | else | 
|  | plt_entry = micromips_o32_exec_plt0_entry; | 
|  |  | 
|  | /* Calculate the value of .got.plt.  */ | 
|  | gotplt_value = (htab->root.sgotplt->output_section->vma | 
|  | + htab->root.sgotplt->output_offset); | 
|  | gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; | 
|  | gotplt_value_low = gotplt_value & 0xffff; | 
|  |  | 
|  | /* The PLT sequence is not safe for N64 if .got.plt's address can | 
|  | not be loaded in two instructions.  */ | 
|  | if (ABI_64_P (output_bfd) | 
|  | && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range " | 
|  | "supported; consider using `-Ttext-segment=...'"), | 
|  | output_bfd, | 
|  | htab->root.sgotplt->output_section, | 
|  | (int64_t) gotplt_value); | 
|  | bfd_set_error (bfd_error_no_error); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Install the PLT header.  */ | 
|  | loc = htab->root.splt->contents; | 
|  | if (plt_entry == micromips_o32_exec_plt0_entry) | 
|  | { | 
|  | bfd_vma gotpc_offset; | 
|  | bfd_vma loc_address; | 
|  | size_t i; | 
|  |  | 
|  | BFD_ASSERT (gotplt_value % 4 == 0); | 
|  |  | 
|  | loc_address = (htab->root.splt->output_section->vma | 
|  | + htab->root.splt->output_offset); | 
|  | gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); | 
|  |  | 
|  | /* ADDIUPC has a span of +/-16MB, check we're in range.  */ | 
|  | if (gotpc_offset + 0x1000000 >= 0x2000000) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " | 
|  | "beyond the range of ADDIUPC"), | 
|  | output_bfd, | 
|  | htab->root.sgotplt->output_section, | 
|  | (int64_t) gotpc_offset, | 
|  | htab->root.splt->output_section); | 
|  | bfd_set_error (bfd_error_no_error); | 
|  | return false; | 
|  | } | 
|  | bfd_put_16 (output_bfd, | 
|  | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); | 
|  | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); | 
|  | for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) | 
|  | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); | 
|  | } | 
|  | else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | bfd_put_16 (output_bfd, plt_entry[0], loc); | 
|  | bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); | 
|  | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | 
|  | bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); | 
|  | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | 
|  | bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); | 
|  | for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) | 
|  | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); | 
|  | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); | 
|  | bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); | 
|  | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | 
|  | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | 
|  | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | 
|  | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | 
|  | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Install the PLT header for a VxWorks executable and finalize the | 
|  | contents of .rela.plt.unloaded.  */ | 
|  |  | 
|  | static void | 
|  | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | Elf_Internal_Rela rela; | 
|  | bfd_byte *loc; | 
|  | bfd_vma got_value, got_value_high, got_value_low, plt_address; | 
|  | static const bfd_vma *plt_entry; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | plt_entry = mips_vxworks_exec_plt0_entry; | 
|  |  | 
|  | /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */ | 
|  | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | 
|  | + htab->root.hgot->root.u.def.section->output_offset | 
|  | + htab->root.hgot->root.u.def.value); | 
|  |  | 
|  | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | 
|  | got_value_low = got_value & 0xffff; | 
|  |  | 
|  | /* Calculate the address of the PLT header.  */ | 
|  | plt_address = (htab->root.splt->output_section->vma | 
|  | + htab->root.splt->output_offset); | 
|  |  | 
|  | /* Install the PLT header.  */ | 
|  | loc = htab->root.splt->contents; | 
|  | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | 
|  | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | 
|  | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | 
|  | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | 
|  | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | 
|  | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | 
|  |  | 
|  | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */ | 
|  | loc = htab->srelplt2->contents; | 
|  | rela.r_offset = plt_address; | 
|  | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | 
|  | rela.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  |  | 
|  | /* Output the relocation for the following addiu of | 
|  | %lo(_GLOBAL_OFFSET_TABLE_).  */ | 
|  | rela.r_offset += 4; | 
|  | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  |  | 
|  | /* Fix up the remaining relocations.  They may have the wrong | 
|  | symbol index for _G_O_T_ or _P_L_T_ depending on the order | 
|  | in which symbols were output.  */ | 
|  | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | 
|  | { | 
|  | Elf_Internal_Rela rel; | 
|  |  | 
|  | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | 
|  | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  |  | 
|  | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | 
|  | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  |  | 
|  | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | 
|  | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Install the PLT header for a VxWorks shared library.  */ | 
|  |  | 
|  | static void | 
|  | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | unsigned int i; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* We just need to copy the entry byte-by-byte.  */ | 
|  | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | 
|  | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | 
|  | htab->root.splt->contents + i * 4); | 
|  | } | 
|  |  | 
|  | /* Finish up the dynamic sections.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *sdyn; | 
|  | asection *sgot; | 
|  | struct mips_got_info *gg, *g; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  |  | 
|  | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | 
|  |  | 
|  | sgot = htab->root.sgot; | 
|  | gg = htab->got_info; | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | bfd_byte *b; | 
|  | int dyn_to_skip = 0, dyn_skipped = 0; | 
|  |  | 
|  | BFD_ASSERT (sdyn != NULL); | 
|  | BFD_ASSERT (gg != NULL); | 
|  |  | 
|  | g = mips_elf_bfd_got (output_bfd, false); | 
|  | BFD_ASSERT (g != NULL); | 
|  |  | 
|  | for (b = sdyn->contents; | 
|  | b < sdyn->contents + sdyn->size; | 
|  | b += MIPS_ELF_DYN_SIZE (dynobj)) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | const char *name; | 
|  | size_t elemsize; | 
|  | asection *s; | 
|  | bool swap_out_p; | 
|  |  | 
|  | /* Read in the current dynamic entry.  */ | 
|  | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | 
|  |  | 
|  | /* Assume that we're going to modify it and write it out.  */ | 
|  | swap_out_p = true; | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | case DT_RELENT: | 
|  | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); | 
|  | break; | 
|  |  | 
|  | case DT_RELAENT: | 
|  | BFD_ASSERT (htab->root.target_os == is_vxworks); | 
|  | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | 
|  | break; | 
|  |  | 
|  | case DT_STRSZ: | 
|  | /* Rewrite DT_STRSZ.  */ | 
|  | dyn.d_un.d_val = | 
|  | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | 
|  | break; | 
|  |  | 
|  | case DT_PLTGOT: | 
|  | s = htab->root.sgot; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_PLTGOT: | 
|  | s = htab->root.sgotplt; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_RLD_VERSION: | 
|  | dyn.d_un.d_val = 1; /* XXX */ | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_FLAGS: | 
|  | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_TIME_STAMP: | 
|  | { | 
|  | time_t t; | 
|  | time (&t); | 
|  | dyn.d_un.d_val = t; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_ICHECKSUM: | 
|  | /* XXX FIXME: */ | 
|  | swap_out_p = false; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_IVERSION: | 
|  | /* XXX FIXME: */ | 
|  | swap_out_p = false; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_BASE_ADDRESS: | 
|  | s = output_bfd->sections; | 
|  | BFD_ASSERT (s != NULL); | 
|  | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_LOCAL_GOTNO: | 
|  | dyn.d_un.d_val = g->local_gotno; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_UNREFEXTNO: | 
|  | /* The index into the dynamic symbol table which is the | 
|  | entry of the first external symbol that is not | 
|  | referenced within the same object.  */ | 
|  | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_GOTSYM: | 
|  | if (htab->global_gotsym) | 
|  | { | 
|  | dyn.d_un.d_val = htab->global_gotsym->dynindx; | 
|  | break; | 
|  | } | 
|  | /* In case if we don't have global got symbols we default | 
|  | to setting DT_MIPS_GOTSYM to the same value as | 
|  | DT_MIPS_SYMTABNO.  */ | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case DT_MIPS_SYMTABNO: | 
|  | name = ".dynsym"; | 
|  | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | 
|  | s = bfd_get_linker_section (dynobj, name); | 
|  |  | 
|  | if (s != NULL) | 
|  | dyn.d_un.d_val = s->size / elemsize; | 
|  | else | 
|  | dyn.d_un.d_val = 0; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_HIPAGENO: | 
|  | dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_RLD_MAP: | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  | h = mips_elf_hash_table (info)->rld_symbol; | 
|  | if (!h) | 
|  | { | 
|  | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | 
|  | swap_out_p = false; | 
|  | break; | 
|  | } | 
|  | s = h->root.u.def.section; | 
|  |  | 
|  | /* The MIPS_RLD_MAP tag stores the absolute address of the | 
|  | debug pointer.  */ | 
|  | dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset | 
|  | + h->root.u.def.value); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_RLD_MAP_REL: | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  | bfd_vma dt_addr, rld_addr; | 
|  | h = mips_elf_hash_table (info)->rld_symbol; | 
|  | if (!h) | 
|  | { | 
|  | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | 
|  | swap_out_p = false; | 
|  | break; | 
|  | } | 
|  | s = h->root.u.def.section; | 
|  |  | 
|  | /* The MIPS_RLD_MAP_REL tag stores the offset to the debug | 
|  | pointer, relative to the address of the tag.  */ | 
|  | dt_addr = (sdyn->output_section->vma + sdyn->output_offset | 
|  | + (b - sdyn->contents)); | 
|  | rld_addr = (s->output_section->vma + s->output_offset | 
|  | + h->root.u.def.value); | 
|  | dyn.d_un.d_ptr = rld_addr - dt_addr; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_OPTIONS: | 
|  | s = (bfd_get_section_by_name | 
|  | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | 
|  | dyn.d_un.d_ptr = s->vma; | 
|  | break; | 
|  |  | 
|  | case DT_PLTREL: | 
|  | BFD_ASSERT (htab->use_plts_and_copy_relocs); | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | dyn.d_un.d_val = DT_RELA; | 
|  | else | 
|  | dyn.d_un.d_val = DT_REL; | 
|  | break; | 
|  |  | 
|  | case DT_PLTRELSZ: | 
|  | BFD_ASSERT (htab->use_plts_and_copy_relocs); | 
|  | dyn.d_un.d_val = htab->root.srelplt->size; | 
|  | break; | 
|  |  | 
|  | case DT_JMPREL: | 
|  | BFD_ASSERT (htab->use_plts_and_copy_relocs); | 
|  | dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma | 
|  | + htab->root.srelplt->output_offset); | 
|  | break; | 
|  |  | 
|  | case DT_TEXTREL: | 
|  | /* If we didn't need any text relocations after all, delete | 
|  | the dynamic tag.  */ | 
|  | if (!(info->flags & DF_TEXTREL)) | 
|  | { | 
|  | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | 
|  | swap_out_p = false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DT_FLAGS: | 
|  | /* If we didn't need any text relocations after all, clear | 
|  | DF_TEXTREL from DT_FLAGS.  */ | 
|  | if (!(info->flags & DF_TEXTREL)) | 
|  | dyn.d_un.d_val &= ~DF_TEXTREL; | 
|  | else | 
|  | swap_out_p = false; | 
|  | break; | 
|  |  | 
|  | case DT_MIPS_XHASH: | 
|  | name = ".MIPS.xhash"; | 
|  | s = bfd_get_linker_section (dynobj, name); | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | swap_out_p = false; | 
|  | if (htab->root.target_os == is_vxworks | 
|  | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) | 
|  | swap_out_p = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (swap_out_p || dyn_skipped) | 
|  | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | 
|  | (dynobj, &dyn, b - dyn_skipped); | 
|  |  | 
|  | if (dyn_to_skip) | 
|  | { | 
|  | dyn_skipped += dyn_to_skip; | 
|  | dyn_to_skip = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wipe out any trailing entries if we shifted down a dynamic tag.  */ | 
|  | if (dyn_skipped > 0) | 
|  | memset (b - dyn_skipped, 0, dyn_skipped); | 
|  | } | 
|  |  | 
|  | if (sgot != NULL && sgot->size > 0 | 
|  | && !bfd_is_abs_section (sgot->output_section)) | 
|  | { | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | { | 
|  | /* The first entry of the global offset table points to the | 
|  | ".dynamic" section.  The second is initialized by the | 
|  | loader and contains the shared library identifier. | 
|  | The third is also initialized by the loader and points | 
|  | to the lazy resolution stub.  */ | 
|  | MIPS_ELF_PUT_WORD (output_bfd, | 
|  | sdyn->output_offset + sdyn->output_section->vma, | 
|  | sgot->contents); | 
|  | MIPS_ELF_PUT_WORD (output_bfd, 0, | 
|  | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | 
|  | MIPS_ELF_PUT_WORD (output_bfd, 0, | 
|  | sgot->contents | 
|  | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The first entry of the global offset table will be filled at | 
|  | runtime. The second entry will be used by some runtime loaders. | 
|  | This isn't the case of IRIX rld.  */ | 
|  | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | 
|  | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), | 
|  | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | 
|  | } | 
|  |  | 
|  | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | 
|  | = MIPS_ELF_GOT_SIZE (output_bfd); | 
|  | } | 
|  |  | 
|  | /* Generate dynamic relocations for the non-primary gots.  */ | 
|  | if (gg != NULL && gg->next) | 
|  | { | 
|  | Elf_Internal_Rela rel[3]; | 
|  | bfd_vma addend = 0; | 
|  |  | 
|  | memset (rel, 0, sizeof (rel)); | 
|  | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | 
|  |  | 
|  | for (g = gg->next; g->next != gg; g = g->next) | 
|  | { | 
|  | bfd_vma got_index = g->next->local_gotno + g->next->global_gotno | 
|  | + g->next->tls_gotno; | 
|  |  | 
|  | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents | 
|  | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); | 
|  | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), | 
|  | sgot->contents | 
|  | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); | 
|  |  | 
|  | if (! bfd_link_pic (info)) | 
|  | continue; | 
|  |  | 
|  | for (; got_index < g->local_gotno; got_index++) | 
|  | { | 
|  | if (got_index >= g->assigned_low_gotno | 
|  | && got_index <= g->assigned_high_gotno) | 
|  | continue; | 
|  |  | 
|  | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | 
|  | = got_index * MIPS_ELF_GOT_SIZE (output_bfd); | 
|  | if (!(mips_elf_create_dynamic_relocation | 
|  | (output_bfd, info, rel, NULL, | 
|  | bfd_abs_section_ptr, | 
|  | 0, &addend, sgot))) | 
|  | return false; | 
|  | BFD_ASSERT (addend == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The generation of dynamic relocations for the non-primary gots | 
|  | adds more dynamic relocations.  We cannot count them until | 
|  | here.  */ | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | bfd_byte *b; | 
|  | bool swap_out_p; | 
|  |  | 
|  | BFD_ASSERT (sdyn != NULL); | 
|  |  | 
|  | for (b = sdyn->contents; | 
|  | b < sdyn->contents + sdyn->size; | 
|  | b += MIPS_ELF_DYN_SIZE (dynobj)) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | asection *s; | 
|  |  | 
|  | /* Read in the current dynamic entry.  */ | 
|  | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | 
|  |  | 
|  | /* Assume that we're going to modify it and write it out.  */ | 
|  | swap_out_p = true; | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | case DT_RELSZ: | 
|  | /* Reduce DT_RELSZ to account for any relocations we | 
|  | decided not to make.  This is for the n64 irix rld, | 
|  | which doesn't seem to apply any relocations if there | 
|  | are trailing null entries.  */ | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | dyn.d_un.d_val = (s->reloc_count | 
|  | * (ABI_64_P (output_bfd) | 
|  | ? sizeof (Elf64_Mips_External_Rel) | 
|  | : sizeof (Elf32_External_Rel))); | 
|  | /* Adjust the section size too.  Tools like the prelinker | 
|  | can reasonably expect the values to the same.  */ | 
|  | BFD_ASSERT (!bfd_is_abs_section (s->output_section)); | 
|  | elf_section_data (s->output_section)->this_hdr.sh_size | 
|  | = dyn.d_un.d_val; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | swap_out_p = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (swap_out_p) | 
|  | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | 
|  | (dynobj, &dyn, b); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | asection *s; | 
|  | Elf32_compact_rel cpt; | 
|  |  | 
|  | if (SGI_COMPAT (output_bfd)) | 
|  | { | 
|  | /* Write .compact_rel section out.  */ | 
|  | s = bfd_get_linker_section (dynobj, ".compact_rel"); | 
|  | if (s != NULL) | 
|  | { | 
|  | cpt.id1 = 1; | 
|  | cpt.num = s->reloc_count; | 
|  | cpt.id2 = 2; | 
|  | cpt.offset = (s->output_section->filepos | 
|  | + sizeof (Elf32_External_compact_rel)); | 
|  | cpt.reserved0 = 0; | 
|  | cpt.reserved1 = 0; | 
|  | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | 
|  | ((Elf32_External_compact_rel *) | 
|  | s->contents)); | 
|  |  | 
|  | /* Clean up a dummy stub function entry in .text.  */ | 
|  | if (htab->sstubs != NULL | 
|  | && htab->sstubs->contents != NULL) | 
|  | { | 
|  | file_ptr dummy_offset; | 
|  |  | 
|  | BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); | 
|  | dummy_offset = htab->sstubs->size - htab->function_stub_size; | 
|  | memset (htab->sstubs->contents + dummy_offset, 0, | 
|  | htab->function_stub_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The psABI says that the dynamic relocations must be sorted in | 
|  | increasing order of r_symndx.  The VxWorks EABI doesn't require | 
|  | this, and because the code below handles REL rather than RELA | 
|  | relocations, using it for VxWorks would be outright harmful.  */ | 
|  | if (htab->root.target_os != is_vxworks) | 
|  | { | 
|  | s = mips_elf_rel_dyn_section (info, false); | 
|  | if (s != NULL | 
|  | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | 
|  | { | 
|  | reldyn_sorting_bfd = output_bfd; | 
|  |  | 
|  | if (ABI_64_P (output_bfd)) | 
|  | qsort ((Elf64_External_Rel *) s->contents + 1, | 
|  | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | 
|  | sort_dynamic_relocs_64); | 
|  | else | 
|  | qsort ((Elf32_External_Rel *) s->contents + 1, | 
|  | s->reloc_count - 1, sizeof (Elf32_External_Rel), | 
|  | sort_dynamic_relocs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (htab->root.splt && htab->root.splt->size > 0) | 
|  | { | 
|  | if (htab->root.target_os == is_vxworks) | 
|  | { | 
|  | if (bfd_link_pic (info)) | 
|  | mips_vxworks_finish_shared_plt (output_bfd, info); | 
|  | else | 
|  | mips_vxworks_finish_exec_plt (output_bfd, info); | 
|  | } | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (!bfd_link_pic (info)); | 
|  | if (!mips_finish_exec_plt (output_bfd, info)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */ | 
|  |  | 
|  | static void | 
|  | mips_set_isa_flags (bfd *abfd) | 
|  | { | 
|  | flagword val; | 
|  |  | 
|  | switch (bfd_get_mach (abfd)) | 
|  | { | 
|  | default: | 
|  | if (ABI_N32_P (abfd) || ABI_64_P (abfd)) | 
|  | val = E_MIPS_ARCH_3; | 
|  | else | 
|  | val = E_MIPS_ARCH_1; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips3000: | 
|  | val = E_MIPS_ARCH_1; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips3900: | 
|  | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips6000: | 
|  | val = E_MIPS_ARCH_2; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips4010: | 
|  | val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips4000: | 
|  | case bfd_mach_mips4300: | 
|  | case bfd_mach_mips4400: | 
|  | case bfd_mach_mips4600: | 
|  | val = E_MIPS_ARCH_3; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips4100: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips4111: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips4120: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips4650: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips5400: | 
|  | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips5500: | 
|  | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips5900: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips9000: | 
|  | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips5000: | 
|  | case bfd_mach_mips7000: | 
|  | case bfd_mach_mips8000: | 
|  | case bfd_mach_mips10000: | 
|  | case bfd_mach_mips12000: | 
|  | case bfd_mach_mips14000: | 
|  | case bfd_mach_mips16000: | 
|  | val = E_MIPS_ARCH_4; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips5: | 
|  | val = E_MIPS_ARCH_5; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_loongson_2e: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_loongson_2f: | 
|  | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_sb1: | 
|  | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_gs464: | 
|  | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_gs464e: | 
|  | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_gs264e: | 
|  | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_octeon: | 
|  | case bfd_mach_mips_octeonp: | 
|  | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_octeon3: | 
|  | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_xlr: | 
|  | val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_octeon2: | 
|  | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mipsisa32: | 
|  | val = E_MIPS_ARCH_32; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mipsisa64: | 
|  | val = E_MIPS_ARCH_64; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mipsisa32r2: | 
|  | case bfd_mach_mipsisa32r3: | 
|  | case bfd_mach_mipsisa32r5: | 
|  | val = E_MIPS_ARCH_32R2; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mips_interaptiv_mr2: | 
|  | val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mipsisa64r2: | 
|  | case bfd_mach_mipsisa64r3: | 
|  | case bfd_mach_mipsisa64r5: | 
|  | val = E_MIPS_ARCH_64R2; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mipsisa32r6: | 
|  | val = E_MIPS_ARCH_32R6; | 
|  | break; | 
|  |  | 
|  | case bfd_mach_mipsisa64r6: | 
|  | val = E_MIPS_ARCH_64R6; | 
|  | break; | 
|  | } | 
|  | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | 
|  | elf_elfheader (abfd)->e_flags |= val; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. | 
|  | Don't do so for code sections.  We want to keep ordering of HI16/LO16 | 
|  | as is.  On the other hand, elf-eh-frame.c processing requires .eh_frame | 
|  | relocs to be sorted.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_sort_relocs_p (asection *sec) | 
|  | { | 
|  | return (sec->flags & SEC_CODE) == 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The final processing done just before writing out a MIPS ELF object | 
|  | file.  This gets the MIPS architecture right based on the machine | 
|  | number.  This is used by both the 32-bit and the 64-bit ABI.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_final_write_processing (bfd *abfd) | 
|  | { | 
|  | unsigned int i; | 
|  | Elf_Internal_Shdr **hdrpp; | 
|  | const char *name; | 
|  | asection *sec; | 
|  |  | 
|  | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | 
|  | is nonzero.  This is for compatibility with old objects, which used | 
|  | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */ | 
|  | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | 
|  | mips_set_isa_flags (abfd); | 
|  |  | 
|  | /* Set the sh_info field for .gptab sections and other appropriate | 
|  | info for each special section.  */ | 
|  | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | 
|  | i < elf_numsections (abfd); | 
|  | i++, hdrpp++) | 
|  | { | 
|  | switch ((*hdrpp)->sh_type) | 
|  | { | 
|  | case SHT_MIPS_MSYM: | 
|  | case SHT_MIPS_LIBLIST: | 
|  | sec = bfd_get_section_by_name (abfd, ".dynstr"); | 
|  | if (sec != NULL) | 
|  | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_MIPS_GPTAB: | 
|  | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | 
|  | name = bfd_section_name ((*hdrpp)->bfd_section); | 
|  | BFD_ASSERT (name != NULL | 
|  | && startswith (name, ".gptab.")); | 
|  | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | 
|  | BFD_ASSERT (sec != NULL); | 
|  | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_MIPS_CONTENT: | 
|  | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | 
|  | name = bfd_section_name ((*hdrpp)->bfd_section); | 
|  | BFD_ASSERT (name != NULL | 
|  | && startswith (name, ".MIPS.content")); | 
|  | sec = bfd_get_section_by_name (abfd, | 
|  | name + sizeof ".MIPS.content" - 1); | 
|  | BFD_ASSERT (sec != NULL); | 
|  | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_MIPS_SYMBOL_LIB: | 
|  | sec = bfd_get_section_by_name (abfd, ".dynsym"); | 
|  | if (sec != NULL) | 
|  | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | 
|  | sec = bfd_get_section_by_name (abfd, ".liblist"); | 
|  | if (sec != NULL) | 
|  | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_MIPS_EVENTS: | 
|  | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | 
|  | name = bfd_section_name ((*hdrpp)->bfd_section); | 
|  | BFD_ASSERT (name != NULL); | 
|  | if (startswith (name, ".MIPS.events")) | 
|  | sec = bfd_get_section_by_name (abfd, | 
|  | name + sizeof ".MIPS.events" - 1); | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (startswith (name, ".MIPS.post_rel")); | 
|  | sec = bfd_get_section_by_name (abfd, | 
|  | (name | 
|  | + sizeof ".MIPS.post_rel" - 1)); | 
|  | } | 
|  | BFD_ASSERT (sec != NULL); | 
|  | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_MIPS_XHASH: | 
|  | sec = bfd_get_section_by_name (abfd, ".dynsym"); | 
|  | if (sec != NULL) | 
|  | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_final_write_processing (bfd *abfd) | 
|  | { | 
|  | _bfd_mips_final_write_processing (abfd); | 
|  | return _bfd_elf_final_write_processing (abfd); | 
|  | } | 
|  |  | 
|  | /* When creating an IRIX5 executable, we need REGINFO and RTPROC | 
|  | segments.  */ | 
|  |  | 
|  | int | 
|  | _bfd_mips_elf_additional_program_headers (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | asection *s; | 
|  | int ret = 0; | 
|  |  | 
|  | /* See if we need a PT_MIPS_REGINFO segment.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".reginfo"); | 
|  | if (s && (s->flags & SEC_LOAD)) | 
|  | ++ret; | 
|  |  | 
|  | /* See if we need a PT_MIPS_ABIFLAGS segment.  */ | 
|  | if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) | 
|  | ++ret; | 
|  |  | 
|  | /* See if we need a PT_MIPS_OPTIONS segment.  */ | 
|  | if (IRIX_COMPAT (abfd) == ict_irix6 | 
|  | && bfd_get_section_by_name (abfd, | 
|  | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | 
|  | ++ret; | 
|  |  | 
|  | /* See if we need a PT_MIPS_RTPROC segment.  */ | 
|  | if (IRIX_COMPAT (abfd) == ict_irix5 | 
|  | && bfd_get_section_by_name (abfd, ".dynamic") | 
|  | && bfd_get_section_by_name (abfd, ".mdebug")) | 
|  | ++ret; | 
|  |  | 
|  | /* Allocate a PT_NULL header in dynamic objects.  See | 
|  | _bfd_mips_elf_modify_segment_map for details.  */ | 
|  | if (!SGI_COMPAT (abfd) | 
|  | && bfd_get_section_by_name (abfd, ".dynamic")) | 
|  | ++ret; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Modify the segment map for an IRIX5 executable.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_modify_segment_map (bfd *abfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | asection *s; | 
|  | struct elf_segment_map *m, **pm; | 
|  | size_t amt; | 
|  |  | 
|  | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | 
|  | segment.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".reginfo"); | 
|  | if (s != NULL && (s->flags & SEC_LOAD) != 0) | 
|  | { | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | if (m->p_type == PT_MIPS_REGINFO) | 
|  | break; | 
|  | if (m == NULL) | 
|  | { | 
|  | amt = sizeof *m; | 
|  | m = bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | return false; | 
|  |  | 
|  | m->p_type = PT_MIPS_REGINFO; | 
|  | m->count = 1; | 
|  | m->sections[0] = s; | 
|  |  | 
|  | /* We want to put it after the PHDR and INTERP segments.  */ | 
|  | pm = &elf_seg_map (abfd); | 
|  | while (*pm != NULL | 
|  | && ((*pm)->p_type == PT_PHDR | 
|  | || (*pm)->p_type == PT_INTERP)) | 
|  | pm = &(*pm)->next; | 
|  |  | 
|  | m->next = *pm; | 
|  | *pm = m; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS | 
|  | segment.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); | 
|  | if (s != NULL && (s->flags & SEC_LOAD) != 0) | 
|  | { | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | if (m->p_type == PT_MIPS_ABIFLAGS) | 
|  | break; | 
|  | if (m == NULL) | 
|  | { | 
|  | amt = sizeof *m; | 
|  | m = bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | return false; | 
|  |  | 
|  | m->p_type = PT_MIPS_ABIFLAGS; | 
|  | m->count = 1; | 
|  | m->sections[0] = s; | 
|  |  | 
|  | /* We want to put it after the PHDR and INTERP segments.  */ | 
|  | pm = &elf_seg_map (abfd); | 
|  | while (*pm != NULL | 
|  | && ((*pm)->p_type == PT_PHDR | 
|  | || (*pm)->p_type == PT_INTERP)) | 
|  | pm = &(*pm)->next; | 
|  |  | 
|  | m->next = *pm; | 
|  | *pm = m; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | 
|  | .dynamic end up in PT_DYNAMIC.  However, we do have to insert a | 
|  | PT_MIPS_OPTIONS segment immediately following the program header | 
|  | table.  */ | 
|  | if (NEWABI_P (abfd) | 
|  | /* On non-IRIX6 new abi, we'll have already created a segment | 
|  | for this section, so don't create another.  I'm not sure this | 
|  | is not also the case for IRIX 6, but I can't test it right | 
|  | now.  */ | 
|  | && IRIX_COMPAT (abfd) == ict_irix6) | 
|  | { | 
|  | for (s = abfd->sections; s; s = s->next) | 
|  | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | 
|  | break; | 
|  |  | 
|  | if (s) | 
|  | { | 
|  | struct elf_segment_map *options_segment; | 
|  |  | 
|  | pm = &elf_seg_map (abfd); | 
|  | while (*pm != NULL | 
|  | && ((*pm)->p_type == PT_PHDR | 
|  | || (*pm)->p_type == PT_INTERP)) | 
|  | pm = &(*pm)->next; | 
|  |  | 
|  | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | options_segment = bfd_zalloc (abfd, amt); | 
|  | options_segment->next = *pm; | 
|  | options_segment->p_type = PT_MIPS_OPTIONS; | 
|  | options_segment->p_flags = PF_R; | 
|  | options_segment->p_flags_valid = true; | 
|  | options_segment->count = 1; | 
|  | options_segment->sections[0] = s; | 
|  | *pm = options_segment; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (IRIX_COMPAT (abfd) == ict_irix5) | 
|  | { | 
|  | /* If there are .dynamic and .mdebug sections, we make a room | 
|  | for the RTPROC header.  FIXME: Rewrite without section names.  */ | 
|  | if (bfd_get_section_by_name (abfd, ".interp") == NULL | 
|  | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | 
|  | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | 
|  | { | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | if (m->p_type == PT_MIPS_RTPROC) | 
|  | break; | 
|  | if (m == NULL) | 
|  | { | 
|  | amt = sizeof *m; | 
|  | m = bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | return false; | 
|  |  | 
|  | m->p_type = PT_MIPS_RTPROC; | 
|  |  | 
|  | s = bfd_get_section_by_name (abfd, ".rtproc"); | 
|  | if (s == NULL) | 
|  | { | 
|  | m->count = 0; | 
|  | m->p_flags = 0; | 
|  | m->p_flags_valid = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | m->count = 1; | 
|  | m->sections[0] = s; | 
|  | } | 
|  |  | 
|  | /* We want to put it after the DYNAMIC segment.  */ | 
|  | pm = &elf_seg_map (abfd); | 
|  | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | 
|  | pm = &(*pm)->next; | 
|  | if (*pm != NULL) | 
|  | pm = &(*pm)->next; | 
|  |  | 
|  | m->next = *pm; | 
|  | *pm = m; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, | 
|  | .dynstr, .dynsym, and .hash sections, and everything in | 
|  | between.  */ | 
|  | for (pm = &elf_seg_map (abfd); *pm != NULL; | 
|  | pm = &(*pm)->next) | 
|  | if ((*pm)->p_type == PT_DYNAMIC) | 
|  | break; | 
|  | m = *pm; | 
|  | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. | 
|  | glibc's dynamic linker has traditionally derived the number of | 
|  | tags from the p_filesz field, and sometimes allocates stack | 
|  | arrays of that size.  An overly-big PT_DYNAMIC segment can | 
|  | be actively harmful in such cases.  Making PT_DYNAMIC contain | 
|  | other sections can also make life hard for the prelinker, | 
|  | which might move one of the other sections to a different | 
|  | PT_LOAD segment.  */ | 
|  | if (SGI_COMPAT (abfd) | 
|  | && m != NULL | 
|  | && m->count == 1 | 
|  | && strcmp (m->sections[0]->name, ".dynamic") == 0) | 
|  | { | 
|  | static const char *sec_names[] = | 
|  | { | 
|  | ".dynamic", ".dynstr", ".dynsym", ".hash" | 
|  | }; | 
|  | bfd_vma low, high; | 
|  | unsigned int i, c; | 
|  | struct elf_segment_map *n; | 
|  |  | 
|  | low = ~(bfd_vma) 0; | 
|  | high = 0; | 
|  | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | 
|  | { | 
|  | s = bfd_get_section_by_name (abfd, sec_names[i]); | 
|  | if (s != NULL && (s->flags & SEC_LOAD) != 0) | 
|  | { | 
|  | bfd_size_type sz; | 
|  |  | 
|  | if (low > s->vma) | 
|  | low = s->vma; | 
|  | sz = s->size; | 
|  | if (high < s->vma + sz) | 
|  | high = s->vma + sz; | 
|  | } | 
|  | } | 
|  |  | 
|  | c = 0; | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | if ((s->flags & SEC_LOAD) != 0 | 
|  | && s->vma >= low | 
|  | && s->vma + s->size <= high) | 
|  | ++c; | 
|  |  | 
|  | amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *); | 
|  | n = bfd_zalloc (abfd, amt); | 
|  | if (n == NULL) | 
|  | return false; | 
|  | *n = *m; | 
|  | n->count = c; | 
|  |  | 
|  | i = 0; | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if ((s->flags & SEC_LOAD) != 0 | 
|  | && s->vma >= low | 
|  | && s->vma + s->size <= high) | 
|  | { | 
|  | n->sections[i] = s; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  |  | 
|  | *pm = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate a spare program header in dynamic objects so that tools | 
|  | like the prelinker can add an extra PT_LOAD entry. | 
|  |  | 
|  | If the prelinker needs to make room for a new PT_LOAD entry, its | 
|  | standard procedure is to move the first (read-only) sections into | 
|  | the new (writable) segment.  However, the MIPS ABI requires | 
|  | .dynamic to be in a read-only segment, and the section will often | 
|  | start within sizeof (ElfNN_Phdr) bytes of the last program header. | 
|  |  | 
|  | Although the prelinker could in principle move .dynamic to a | 
|  | writable segment, it seems better to allocate a spare program | 
|  | header instead, and avoid the need to move any sections. | 
|  | There is a long tradition of allocating spare dynamic tags, | 
|  | so allocating a spare program header seems like a natural | 
|  | extension. | 
|  |  | 
|  | If INFO is NULL, we may be copying an already prelinked binary | 
|  | with objcopy or strip, so do not add this header.  */ | 
|  | if (info != NULL | 
|  | && !SGI_COMPAT (abfd) | 
|  | && bfd_get_section_by_name (abfd, ".dynamic")) | 
|  | { | 
|  | for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) | 
|  | if ((*pm)->p_type == PT_NULL) | 
|  | break; | 
|  | if (*pm == NULL) | 
|  | { | 
|  | m = bfd_zalloc (abfd, sizeof (*m)); | 
|  | if (m == NULL) | 
|  | return false; | 
|  |  | 
|  | m->p_type = PT_NULL; | 
|  | *pm = m; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the section that should be marked against GC for a given | 
|  | relocation.  */ | 
|  |  | 
|  | asection * | 
|  | _bfd_mips_elf_gc_mark_hook (asection *sec, | 
|  | struct bfd_link_info *info, | 
|  | Elf_Internal_Rela *rel, | 
|  | struct elf_link_hash_entry *h, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | /* ??? Do mips16 stub sections need to be handled special?  */ | 
|  |  | 
|  | if (h != NULL) | 
|  | switch (ELF_R_TYPE (sec->owner, rel->r_info)) | 
|  | { | 
|  | case R_MIPS_GNU_VTINHERIT: | 
|  | case R_MIPS_GNU_VTENTRY: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | 
|  | } | 
|  |  | 
|  | /* Prevent .MIPS.abiflags from being discarded with --gc-sections.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, | 
|  | elf_gc_mark_hook_fn gc_mark_hook) | 
|  | { | 
|  | bfd *sub; | 
|  |  | 
|  | _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); | 
|  |  | 
|  | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | 
|  | { | 
|  | asection *o; | 
|  |  | 
|  | if (! is_mips_elf (sub)) | 
|  | continue; | 
|  |  | 
|  | for (o = sub->sections; o != NULL; o = o->next) | 
|  | if (!o->gc_mark | 
|  | && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o))) | 
|  | { | 
|  | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | 
|  | hiding the old indirect symbol.  Process additional relocation | 
|  | information.  Also called for weakdefs, in which case we just let | 
|  | _bfd_elf_link_hash_copy_indirect copy the flags for us.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *dir, | 
|  | struct elf_link_hash_entry *ind) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *dirmips, *indmips; | 
|  |  | 
|  | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | 
|  |  | 
|  | dirmips = (struct mips_elf_link_hash_entry *) dir; | 
|  | indmips = (struct mips_elf_link_hash_entry *) ind; | 
|  | /* Any absolute non-dynamic relocations against an indirect or weak | 
|  | definition will be against the target symbol.  */ | 
|  | if (indmips->has_static_relocs) | 
|  | dirmips->has_static_relocs = true; | 
|  |  | 
|  | if (ind->root.type != bfd_link_hash_indirect) | 
|  | return; | 
|  |  | 
|  | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | 
|  | if (indmips->readonly_reloc) | 
|  | dirmips->readonly_reloc = true; | 
|  | if (indmips->no_fn_stub) | 
|  | dirmips->no_fn_stub = true; | 
|  | if (indmips->fn_stub) | 
|  | { | 
|  | dirmips->fn_stub = indmips->fn_stub; | 
|  | indmips->fn_stub = NULL; | 
|  | } | 
|  | if (indmips->need_fn_stub) | 
|  | { | 
|  | dirmips->need_fn_stub = true; | 
|  | indmips->need_fn_stub = false; | 
|  | } | 
|  | if (indmips->call_stub) | 
|  | { | 
|  | dirmips->call_stub = indmips->call_stub; | 
|  | indmips->call_stub = NULL; | 
|  | } | 
|  | if (indmips->call_fp_stub) | 
|  | { | 
|  | dirmips->call_fp_stub = indmips->call_fp_stub; | 
|  | indmips->call_fp_stub = NULL; | 
|  | } | 
|  | if (indmips->global_got_area < dirmips->global_got_area) | 
|  | dirmips->global_got_area = indmips->global_got_area; | 
|  | if (indmips->global_got_area < GGA_NONE) | 
|  | indmips->global_got_area = GGA_NONE; | 
|  | if (indmips->has_nonpic_branches) | 
|  | dirmips->has_nonpic_branches = true; | 
|  | } | 
|  |  | 
|  | /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts | 
|  | to hide it.  It has to remain global (it will also be protected) so as to | 
|  | be assigned a global GOT entry, which will then remain unchanged at load | 
|  | time.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *entry, | 
|  | bool force_local) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | if (htab->use_absolute_zero | 
|  | && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0) | 
|  | return; | 
|  |  | 
|  | _bfd_elf_link_hash_hide_symbol (info, entry, force_local); | 
|  | } | 
|  |  | 
|  | #define PDR_SIZE 32 | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | asection *o; | 
|  | bool ret = false; | 
|  | unsigned char *tdata; | 
|  | size_t i, skip; | 
|  |  | 
|  | o = bfd_get_section_by_name (abfd, ".pdr"); | 
|  | if (! o) | 
|  | return false; | 
|  | if (o->size == 0) | 
|  | return false; | 
|  | if (o->size % PDR_SIZE != 0) | 
|  | return false; | 
|  | if (o->output_section != NULL | 
|  | && bfd_is_abs_section (o->output_section)) | 
|  | return false; | 
|  |  | 
|  | tdata = bfd_zmalloc (o->size / PDR_SIZE); | 
|  | if (! tdata) | 
|  | return false; | 
|  |  | 
|  | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | 
|  | info->keep_memory); | 
|  | if (!cookie->rels) | 
|  | { | 
|  | free (tdata); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | cookie->rel = cookie->rels; | 
|  | cookie->relend = cookie->rels + o->reloc_count; | 
|  |  | 
|  | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) | 
|  | { | 
|  | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) | 
|  | { | 
|  | tdata[i] = 1; | 
|  | skip ++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skip != 0) | 
|  | { | 
|  | mips_elf_section_data (o)->u.tdata = tdata; | 
|  | if (o->rawsize == 0) | 
|  | o->rawsize = o->size; | 
|  | o->size -= skip * PDR_SIZE; | 
|  | ret = true; | 
|  | } | 
|  | else | 
|  | free (tdata); | 
|  |  | 
|  | if (! info->keep_memory) | 
|  | free (cookie->rels); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) | 
|  | { | 
|  | if (strcmp (sec->name, ".pdr") == 0) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_write_section (bfd *output_bfd, | 
|  | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, | 
|  | asection *sec, bfd_byte *contents) | 
|  | { | 
|  | bfd_byte *to, *from, *end; | 
|  | int i; | 
|  |  | 
|  | if (strcmp (sec->name, ".pdr") != 0) | 
|  | return false; | 
|  |  | 
|  | if (mips_elf_section_data (sec)->u.tdata == NULL) | 
|  | return false; | 
|  |  | 
|  | to = contents; | 
|  | end = contents + sec->size; | 
|  | for (from = contents, i = 0; | 
|  | from < end; | 
|  | from += PDR_SIZE, i++) | 
|  | { | 
|  | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) | 
|  | continue; | 
|  | if (to != from) | 
|  | memcpy (to, from, PDR_SIZE); | 
|  | to += PDR_SIZE; | 
|  | } | 
|  | bfd_set_section_contents (output_bfd, sec->output_section, contents, | 
|  | sec->output_offset, sec->size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* microMIPS code retains local labels for linker relaxation.  Omit them | 
|  | from output by default for clarity.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) | 
|  | { | 
|  | return _bfd_elf_is_local_label_name (abfd, sym->name); | 
|  | } | 
|  |  | 
|  | /* MIPS ELF uses a special find_nearest_line routine in order the | 
|  | handle the ECOFF debugging information.  */ | 
|  |  | 
|  | struct mips_elf_find_line | 
|  | { | 
|  | struct ecoff_debug_info d; | 
|  | struct ecoff_find_line i; | 
|  | }; | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, | 
|  | asection *section, bfd_vma offset, | 
|  | const char **filename_ptr, | 
|  | const char **functionname_ptr, | 
|  | unsigned int *line_ptr, | 
|  | unsigned int *discriminator_ptr) | 
|  | { | 
|  | asection *msec; | 
|  |  | 
|  | if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, | 
|  | filename_ptr, functionname_ptr, | 
|  | line_ptr, discriminator_ptr, | 
|  | dwarf_debug_sections, | 
|  | &elf_tdata (abfd)->dwarf2_find_line_info) | 
|  | == 1) | 
|  | return true; | 
|  |  | 
|  | if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, | 
|  | filename_ptr, functionname_ptr, | 
|  | line_ptr)) | 
|  | { | 
|  | if (!*functionname_ptr) | 
|  | _bfd_elf_find_function (abfd, symbols, section, offset, | 
|  | *filename_ptr ? NULL : filename_ptr, | 
|  | functionname_ptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | msec = bfd_get_section_by_name (abfd, ".mdebug"); | 
|  | if (msec != NULL) | 
|  | { | 
|  | flagword origflags; | 
|  | struct mips_elf_find_line *fi; | 
|  | const struct ecoff_debug_swap * const swap = | 
|  | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | 
|  |  | 
|  | /* If we are called during a link, mips_elf_final_link may have | 
|  | cleared the SEC_HAS_CONTENTS field.  We force it back on here | 
|  | if appropriate (which it normally will be).  */ | 
|  | origflags = msec->flags; | 
|  | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | 
|  | msec->flags |= SEC_HAS_CONTENTS; | 
|  |  | 
|  | fi = mips_elf_tdata (abfd)->find_line_info; | 
|  | if (fi == NULL) | 
|  | { | 
|  | bfd_size_type external_fdr_size; | 
|  | char *fraw_src; | 
|  | char *fraw_end; | 
|  | struct fdr *fdr_ptr; | 
|  | bfd_size_type amt = sizeof (struct mips_elf_find_line); | 
|  |  | 
|  | fi = bfd_zalloc (abfd, amt); | 
|  | if (fi == NULL) | 
|  | { | 
|  | msec->flags = origflags; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | 
|  | { | 
|  | msec->flags = origflags; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Swap in the FDR information.  */ | 
|  | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | 
|  | fi->d.fdr = bfd_alloc (abfd, amt); | 
|  | if (fi->d.fdr == NULL) | 
|  | { | 
|  | msec->flags = origflags; | 
|  | return false; | 
|  | } | 
|  | external_fdr_size = swap->external_fdr_size; | 
|  | fdr_ptr = fi->d.fdr; | 
|  | fraw_src = (char *) fi->d.external_fdr; | 
|  | fraw_end = (fraw_src | 
|  | + fi->d.symbolic_header.ifdMax * external_fdr_size); | 
|  | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | 
|  | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); | 
|  |  | 
|  | mips_elf_tdata (abfd)->find_line_info = fi; | 
|  |  | 
|  | /* Note that we don't bother to ever free this information. | 
|  | find_nearest_line is either called all the time, as in | 
|  | objdump -l, so the information should be saved, or it is | 
|  | rarely called, as in ld error messages, so the memory | 
|  | wasted is unimportant.  Still, it would probably be a | 
|  | good idea for free_cached_info to throw it away.  */ | 
|  | } | 
|  |  | 
|  | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | 
|  | &fi->i, filename_ptr, functionname_ptr, | 
|  | line_ptr)) | 
|  | { | 
|  | msec->flags = origflags; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | msec->flags = origflags; | 
|  | } | 
|  |  | 
|  | /* Fall back on the generic ELF find_nearest_line routine.  */ | 
|  |  | 
|  | return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, | 
|  | filename_ptr, functionname_ptr, | 
|  | line_ptr, discriminator_ptr); | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_find_inliner_info (bfd *abfd, | 
|  | const char **filename_ptr, | 
|  | const char **functionname_ptr, | 
|  | unsigned int *line_ptr) | 
|  | { | 
|  | bool found; | 
|  | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | 
|  | functionname_ptr, line_ptr, | 
|  | & elf_tdata (abfd)->dwarf2_find_line_info); | 
|  | return found; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* When are writing out the .options or .MIPS.options section, | 
|  | remember the bytes we are writing out, so that we can install the | 
|  | GP value in the section_processing routine.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, | 
|  | const void *location, | 
|  | file_ptr offset, bfd_size_type count) | 
|  | { | 
|  | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) | 
|  | { | 
|  | bfd_byte *c; | 
|  |  | 
|  | if (elf_section_data (section) == NULL) | 
|  | { | 
|  | size_t amt = sizeof (struct bfd_elf_section_data); | 
|  | section->used_by_bfd = bfd_zalloc (abfd, amt); | 
|  | if (elf_section_data (section) == NULL) | 
|  | return false; | 
|  | } | 
|  | c = mips_elf_section_data (section)->u.tdata; | 
|  | if (c == NULL) | 
|  | { | 
|  | c = bfd_zalloc (abfd, section->size); | 
|  | if (c == NULL) | 
|  | return false; | 
|  | mips_elf_section_data (section)->u.tdata = c; | 
|  | } | 
|  |  | 
|  | memcpy (c + offset, location, count); | 
|  | } | 
|  |  | 
|  | return _bfd_elf_set_section_contents (abfd, section, location, offset, | 
|  | count); | 
|  | } | 
|  |  | 
|  | /* This is almost identical to bfd_generic_get_... except that some | 
|  | MIPS relocations need to be handled specially.  Sigh.  */ | 
|  |  | 
|  | bfd_byte * | 
|  | _bfd_elf_mips_get_relocated_section_contents | 
|  | (bfd *abfd, | 
|  | struct bfd_link_info *link_info, | 
|  | struct bfd_link_order *link_order, | 
|  | bfd_byte *data, | 
|  | bool relocatable, | 
|  | asymbol **symbols) | 
|  | { | 
|  | bfd *input_bfd = link_order->u.indirect.section->owner; | 
|  | asection *input_section = link_order->u.indirect.section; | 
|  | long reloc_size; | 
|  | arelent **reloc_vector; | 
|  | long reloc_count; | 
|  |  | 
|  | reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | 
|  | if (reloc_size < 0) | 
|  | return NULL; | 
|  |  | 
|  | /* Read in the section.  */ | 
|  | if (!bfd_get_full_section_contents (input_bfd, input_section, &data)) | 
|  | return NULL; | 
|  |  | 
|  | if (data == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (reloc_size == 0) | 
|  | return data; | 
|  |  | 
|  | reloc_vector = (arelent **) bfd_malloc (reloc_size); | 
|  | if (reloc_vector == NULL) | 
|  | { | 
|  | struct mips_hi16 **hip, *hi; | 
|  | error_return: | 
|  | /* If we are going to return an error, remove entries on | 
|  | mips_hi16_list that point into this section's data.  Data | 
|  | will typically be freed on return from this function.  */ | 
|  | hip = &mips_hi16_list; | 
|  | while ((hi = *hip) != NULL) | 
|  | { | 
|  | if (hi->input_section == input_section) | 
|  | { | 
|  | *hip = hi->next; | 
|  | free (hi); | 
|  | } | 
|  | else | 
|  | hip = &hi->next; | 
|  | } | 
|  | data = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | reloc_count = bfd_canonicalize_reloc (input_bfd, | 
|  | input_section, | 
|  | reloc_vector, | 
|  | symbols); | 
|  | if (reloc_count < 0) | 
|  | goto error_return; | 
|  |  | 
|  | if (reloc_count > 0) | 
|  | { | 
|  | arelent **parent; | 
|  | /* for mips */ | 
|  | int gp_found; | 
|  | bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */ | 
|  |  | 
|  | { | 
|  | struct bfd_hash_entry *h; | 
|  | struct bfd_link_hash_entry *lh; | 
|  | /* Skip all this stuff if we aren't mixing formats.  */ | 
|  | if (abfd && input_bfd | 
|  | && abfd->xvec == input_bfd->xvec) | 
|  | lh = 0; | 
|  | else | 
|  | { | 
|  | h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); | 
|  | lh = (struct bfd_link_hash_entry *) h; | 
|  | } | 
|  | lookup: | 
|  | if (lh) | 
|  | { | 
|  | switch (lh->type) | 
|  | { | 
|  | case bfd_link_hash_undefined: | 
|  | case bfd_link_hash_undefweak: | 
|  | case bfd_link_hash_common: | 
|  | gp_found = 0; | 
|  | break; | 
|  | case bfd_link_hash_defined: | 
|  | case bfd_link_hash_defweak: | 
|  | gp_found = 1; | 
|  | gp = lh->u.def.value; | 
|  | break; | 
|  | case bfd_link_hash_indirect: | 
|  | case bfd_link_hash_warning: | 
|  | lh = lh->u.i.link; | 
|  | /* @@FIXME  ignoring warning for now */ | 
|  | goto lookup; | 
|  | case bfd_link_hash_new: | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  | else | 
|  | gp_found = 0; | 
|  | } | 
|  | /* end mips */ | 
|  |  | 
|  | for (parent = reloc_vector; *parent != NULL; parent++) | 
|  | { | 
|  | char *error_message = NULL; | 
|  | asymbol *symbol; | 
|  | bfd_reloc_status_type r; | 
|  |  | 
|  | symbol = *(*parent)->sym_ptr_ptr; | 
|  | /* PR ld/19628: A specially crafted input file | 
|  | can result in a NULL symbol pointer here.  */ | 
|  | if (symbol == NULL) | 
|  | { | 
|  | link_info->callbacks->einfo | 
|  | /* xgettext:c-format */ | 
|  | (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"), | 
|  | abfd, input_section, (* parent)->address); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Zap reloc field when the symbol is from a discarded | 
|  | section, ignoring any addend.  Do the same when called | 
|  | from bfd_simple_get_relocated_section_contents for | 
|  | undefined symbols in debug sections.  This is to keep | 
|  | debug info reasonably sane, in particular so that | 
|  | DW_FORM_ref_addr to another file's .debug_info isn't | 
|  | confused with an offset into the current file's | 
|  | .debug_info.  */ | 
|  | if ((symbol->section != NULL && discarded_section (symbol->section)) | 
|  | || (symbol->section == bfd_und_section_ptr | 
|  | && (input_section->flags & SEC_DEBUGGING) != 0 | 
|  | && link_info->input_bfds == link_info->output_bfd)) | 
|  | { | 
|  | bfd_vma off; | 
|  | static reloc_howto_type none_howto | 
|  | = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL, | 
|  | "unused", false, 0, 0, false); | 
|  |  | 
|  | off = ((*parent)->address | 
|  | * bfd_octets_per_byte (input_bfd, input_section)); | 
|  | _bfd_clear_contents ((*parent)->howto, input_bfd, | 
|  | input_section, data, off); | 
|  | (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; | 
|  | (*parent)->addend = 0; | 
|  | (*parent)->howto = &none_howto; | 
|  | r = bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Specific to MIPS: Deal with relocation types that require | 
|  | knowing the gp of the output bfd.  */ | 
|  |  | 
|  | /* If we've managed to find the gp and have a special | 
|  | function for the relocation then go ahead, else default | 
|  | to the generic handling.  */ | 
|  | else if (gp_found | 
|  | && ((*parent)->howto->special_function | 
|  | == _bfd_mips_elf32_gprel16_reloc)) | 
|  | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent, | 
|  | input_section, relocatable, | 
|  | data, gp); | 
|  | else | 
|  | r = bfd_perform_relocation (input_bfd, | 
|  | *parent, | 
|  | data, | 
|  | input_section, | 
|  | relocatable ? abfd : NULL, | 
|  | &error_message); | 
|  |  | 
|  | if (relocatable) | 
|  | { | 
|  | asection *os = input_section->output_section; | 
|  |  | 
|  | /* A partial link, so keep the relocs.  */ | 
|  | os->orelocation[os->reloc_count] = *parent; | 
|  | os->reloc_count++; | 
|  | } | 
|  |  | 
|  | if (r != bfd_reloc_ok) | 
|  | { | 
|  | switch (r) | 
|  | { | 
|  | case bfd_reloc_undefined: | 
|  | (*link_info->callbacks->undefined_symbol) | 
|  | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | 
|  | input_bfd, input_section, (*parent)->address, true); | 
|  | break; | 
|  | case bfd_reloc_dangerous: | 
|  | BFD_ASSERT (error_message != NULL); | 
|  | (*link_info->callbacks->reloc_dangerous) | 
|  | (link_info, error_message, | 
|  | input_bfd, input_section, (*parent)->address); | 
|  | break; | 
|  | case bfd_reloc_overflow: | 
|  | (*link_info->callbacks->reloc_overflow) | 
|  | (link_info, NULL, | 
|  | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | 
|  | (*parent)->howto->name, (*parent)->addend, | 
|  | input_bfd, input_section, (*parent)->address); | 
|  | break; | 
|  | case bfd_reloc_outofrange: | 
|  | /* PR ld/13730: | 
|  | This error can result when processing some partially | 
|  | complete binaries.  Do not abort, but issue an error | 
|  | message instead.  */ | 
|  | link_info->callbacks->einfo | 
|  | /* xgettext:c-format */ | 
|  | (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"), | 
|  | abfd, input_section, * parent); | 
|  | goto error_return; | 
|  |  | 
|  | case bfd_reloc_notsupported: | 
|  | /* PR ld/17512 | 
|  | This error can result when processing a corrupt binary. | 
|  | Do not abort.  Issue an error message instead.  */ | 
|  | link_info->callbacks->einfo | 
|  | /* xgettext:c-format */ | 
|  | (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"), | 
|  | abfd, input_section, * parent); | 
|  | goto error_return; | 
|  |  | 
|  | default: | 
|  | /* PR 17512; file: 90c2a92e. | 
|  | Report unexpected results, without aborting.  */ | 
|  | link_info->callbacks->einfo | 
|  | /* xgettext:c-format */ | 
|  | (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"), | 
|  | abfd, input_section, * parent, r); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | free (reloc_vector); | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | mips_elf_relax_delete_bytes (bfd *abfd, | 
|  | asection *sec, bfd_vma addr, int count) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | unsigned int sec_shndx; | 
|  | bfd_byte *contents; | 
|  | Elf_Internal_Rela *irel, *irelend; | 
|  | Elf_Internal_Sym *isym; | 
|  | Elf_Internal_Sym *isymend; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | struct elf_link_hash_entry **end_hashes; | 
|  | struct elf_link_hash_entry **start_hashes; | 
|  | unsigned int symcount; | 
|  |  | 
|  | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  | contents = elf_section_data (sec)->this_hdr.contents; | 
|  |  | 
|  | irel = elf_section_data (sec)->relocs; | 
|  | irelend = irel + sec->reloc_count; | 
|  |  | 
|  | /* Actually delete the bytes.  */ | 
|  | memmove (contents + addr, contents + addr + count, | 
|  | (size_t) (sec->size - addr - count)); | 
|  | sec->size -= count; | 
|  |  | 
|  | /* Adjust all the relocs.  */ | 
|  | for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) | 
|  | { | 
|  | /* Get the new reloc address.  */ | 
|  | if (irel->r_offset > addr) | 
|  | irel->r_offset -= count; | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (addr % 2 == 0); | 
|  | BFD_ASSERT (count % 2 == 0); | 
|  |  | 
|  | /* Adjust the local symbols defined in this section.  */ | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | isym = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) | 
|  | if (isym->st_shndx == sec_shndx && isym->st_value > addr) | 
|  | isym->st_value -= count; | 
|  |  | 
|  | /* Now adjust the global symbols defined in this section.  */ | 
|  | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | 
|  | - symtab_hdr->sh_info); | 
|  | sym_hashes = start_hashes = elf_sym_hashes (abfd); | 
|  | end_hashes = sym_hashes + symcount; | 
|  |  | 
|  | for (; sym_hashes < end_hashes; sym_hashes++) | 
|  | { | 
|  | struct elf_link_hash_entry *sym_hash = *sym_hashes; | 
|  |  | 
|  | if ((sym_hash->root.type == bfd_link_hash_defined | 
|  | || sym_hash->root.type == bfd_link_hash_defweak) | 
|  | && sym_hash->root.u.def.section == sec) | 
|  | { | 
|  | bfd_vma value = sym_hash->root.u.def.value; | 
|  |  | 
|  | if (ELF_ST_IS_MICROMIPS (sym_hash->other)) | 
|  | value &= MINUS_TWO; | 
|  | if (value > addr) | 
|  | sym_hash->root.u.def.value -= count; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Opcodes needed for microMIPS relaxation as found in | 
|  | opcodes/micromips-opc.c.  */ | 
|  |  | 
|  | struct opcode_descriptor { | 
|  | unsigned long match; | 
|  | unsigned long mask; | 
|  | }; | 
|  |  | 
|  | /* The $ra register aka $31.  */ | 
|  |  | 
|  | #define RA 31 | 
|  |  | 
|  | /* 32-bit instruction format register fields.  */ | 
|  |  | 
|  | #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) | 
|  | #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) | 
|  |  | 
|  | /* Check if a 5-bit register index can be abbreviated to 3 bits.  */ | 
|  |  | 
|  | #define OP16_VALID_REG(r) \ | 
|  | ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) | 
|  |  | 
|  |  | 
|  | /* 32-bit and 16-bit branches.  */ | 
|  |  | 
|  | static const struct opcode_descriptor b_insns_32[] = { | 
|  | { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */ | 
|  | { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | static const struct opcode_descriptor bc_insn_32 = | 
|  | { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 }; | 
|  |  | 
|  | static const struct opcode_descriptor bz_insn_32 = | 
|  | { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 }; | 
|  |  | 
|  | static const struct opcode_descriptor bzal_insn_32 = | 
|  | { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 }; | 
|  |  | 
|  | static const struct opcode_descriptor beq_insn_32 = | 
|  | { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 }; | 
|  |  | 
|  | static const struct opcode_descriptor b_insn_16 = | 
|  | { /* "b",	"mD",		*/ 0xcc00,     0xfc00 }; | 
|  |  | 
|  | static const struct opcode_descriptor bz_insn_16 = | 
|  | { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 }; | 
|  |  | 
|  |  | 
|  | /* 32-bit and 16-bit branch EQ and NE zero.  */ | 
|  |  | 
|  | /* NOTE: All opcode tables have BEQ/BNE in the same order: first the | 
|  | eq and second the ne.  This convention is used when replacing a | 
|  | 32-bit BEQ/BNE with the 16-bit version.  */ | 
|  |  | 
|  | #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) | 
|  |  | 
|  | static const struct opcode_descriptor bz_rs_insns_32[] = { | 
|  | { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 }, | 
|  | { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | static const struct opcode_descriptor bz_rt_insns_32[] = { | 
|  | { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 }, | 
|  | { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | static const struct opcode_descriptor bzc_insns_32[] = { | 
|  | { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 }, | 
|  | { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | static const struct opcode_descriptor bz_insns_16[] = { | 
|  | { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 }, | 
|  | { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | /* Switch between a 5-bit register index and its 3-bit shorthand.  */ | 
|  |  | 
|  | #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) | 
|  | #define BZ16_REG_FIELD(r) (((r) & 7) << 7) | 
|  |  | 
|  |  | 
|  | /* 32-bit instructions with a delay slot.  */ | 
|  |  | 
|  | static const struct opcode_descriptor jal_insn_32_bd16 = | 
|  | { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 }; | 
|  |  | 
|  | static const struct opcode_descriptor jal_insn_32_bd32 = | 
|  | { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 }; | 
|  |  | 
|  | static const struct opcode_descriptor jal_x_insn_32_bd32 = | 
|  | { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 }; | 
|  |  | 
|  | static const struct opcode_descriptor j_insn_32 = | 
|  | { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 }; | 
|  |  | 
|  | static const struct opcode_descriptor jalr_insn_32 = | 
|  | { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff }; | 
|  |  | 
|  | /* This table can be compacted, because no opcode replacement is made.  */ | 
|  |  | 
|  | static const struct opcode_descriptor ds_insns_32_bd16[] = { | 
|  | { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 }, | 
|  |  | 
|  | { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff }, | 
|  | { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 }, | 
|  |  | 
|  | { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 }, | 
|  | { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 }, | 
|  | { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | /* This table can be compacted, because no opcode replacement is made.  */ | 
|  |  | 
|  | static const struct opcode_descriptor ds_insns_32_bd32[] = { | 
|  | { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 }, | 
|  |  | 
|  | { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff }, | 
|  | { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* 16-bit instructions with a delay slot.  */ | 
|  |  | 
|  | static const struct opcode_descriptor jalr_insn_16_bd16 = | 
|  | { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 }; | 
|  |  | 
|  | static const struct opcode_descriptor jalr_insn_16_bd32 = | 
|  | { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 }; | 
|  |  | 
|  | static const struct opcode_descriptor jr_insn_16 = | 
|  | { /* "jr",	"mj",		*/ 0x4580,     0xffe0 }; | 
|  |  | 
|  | #define JR16_REG(opcode) ((opcode) & 0x1f) | 
|  |  | 
|  | /* This table can be compacted, because no opcode replacement is made.  */ | 
|  |  | 
|  | static const struct opcode_descriptor ds_insns_16_bd16[] = { | 
|  | { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 }, | 
|  |  | 
|  | { /* "b",	"mD",		*/ 0xcc00,     0xfc00 }, | 
|  | { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 }, | 
|  | { /* "jr",	"mj",		*/ 0x4580,     0xffe0 }, | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* LUI instruction.  */ | 
|  |  | 
|  | static const struct opcode_descriptor lui_insn = | 
|  | { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 }; | 
|  |  | 
|  |  | 
|  | /* ADDIU instruction.  */ | 
|  |  | 
|  | static const struct opcode_descriptor addiu_insn = | 
|  | { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 }; | 
|  |  | 
|  | static const struct opcode_descriptor addiupc_insn = | 
|  | { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 }; | 
|  |  | 
|  | #define ADDIUPC_REG_FIELD(r) \ | 
|  | (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) | 
|  |  | 
|  |  | 
|  | /* Relaxable instructions in a JAL delay slot: MOVE.  */ | 
|  |  | 
|  | /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves | 
|  | (ADDU, OR) have rd in 15:11 and rs in 10:16.  */ | 
|  | #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) | 
|  | #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) | 
|  |  | 
|  | #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) | 
|  | #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     ) | 
|  |  | 
|  | static const struct opcode_descriptor move_insns_32[] = { | 
|  | { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */ | 
|  | { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ | 
|  | { 0, 0 }  /* End marker for find_match().  */ | 
|  | }; | 
|  |  | 
|  | static const struct opcode_descriptor move_insn_16 = | 
|  | { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 }; | 
|  |  | 
|  |  | 
|  | /* NOP instructions.  */ | 
|  |  | 
|  | static const struct opcode_descriptor nop_insn_32 = | 
|  | { /* "nop",	"",		*/ 0x00000000, 0xffffffff }; | 
|  |  | 
|  | static const struct opcode_descriptor nop_insn_16 = | 
|  | { /* "nop",	"",		*/ 0x0c00,     0xffff }; | 
|  |  | 
|  |  | 
|  | /* Instruction match support.  */ | 
|  |  | 
|  | #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) | 
|  |  | 
|  | static int | 
|  | find_match (unsigned long opcode, const struct opcode_descriptor insn[]) | 
|  | { | 
|  | unsigned long indx; | 
|  |  | 
|  | for (indx = 0; insn[indx].mask != 0; indx++) | 
|  | if (MATCH (opcode, insn[indx])) | 
|  | return indx; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Branch and delay slot decoding support.  */ | 
|  |  | 
|  | /* If PTR points to what *might* be a 16-bit branch or jump, then | 
|  | return the minimum length of its delay slot, otherwise return 0. | 
|  | Non-zero results are not definitive as we might be checking against | 
|  | the second half of another instruction.  */ | 
|  |  | 
|  | static int | 
|  | check_br16_dslot (bfd *abfd, bfd_byte *ptr) | 
|  | { | 
|  | unsigned long opcode; | 
|  | int bdsize; | 
|  |  | 
|  | opcode = bfd_get_16 (abfd, ptr); | 
|  | if (MATCH (opcode, jalr_insn_16_bd32) != 0) | 
|  | /* 16-bit branch/jump with a 32-bit delay slot.  */ | 
|  | bdsize = 4; | 
|  | else if (MATCH (opcode, jalr_insn_16_bd16) != 0 | 
|  | || find_match (opcode, ds_insns_16_bd16) >= 0) | 
|  | /* 16-bit branch/jump with a 16-bit delay slot.  */ | 
|  | bdsize = 2; | 
|  | else | 
|  | /* No delay slot.  */ | 
|  | bdsize = 0; | 
|  |  | 
|  | return bdsize; | 
|  | } | 
|  |  | 
|  | /* If PTR points to what *might* be a 32-bit branch or jump, then | 
|  | return the minimum length of its delay slot, otherwise return 0. | 
|  | Non-zero results are not definitive as we might be checking against | 
|  | the second half of another instruction.  */ | 
|  |  | 
|  | static int | 
|  | check_br32_dslot (bfd *abfd, bfd_byte *ptr) | 
|  | { | 
|  | unsigned long opcode; | 
|  | int bdsize; | 
|  |  | 
|  | opcode = bfd_get_micromips_32 (abfd, ptr); | 
|  | if (find_match (opcode, ds_insns_32_bd32) >= 0) | 
|  | /* 32-bit branch/jump with a 32-bit delay slot.  */ | 
|  | bdsize = 4; | 
|  | else if (find_match (opcode, ds_insns_32_bd16) >= 0) | 
|  | /* 32-bit branch/jump with a 16-bit delay slot.  */ | 
|  | bdsize = 2; | 
|  | else | 
|  | /* No delay slot.  */ | 
|  | bdsize = 0; | 
|  |  | 
|  | return bdsize; | 
|  | } | 
|  |  | 
|  | /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot | 
|  | that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) | 
|  | { | 
|  | unsigned long opcode; | 
|  |  | 
|  | opcode = bfd_get_16 (abfd, ptr); | 
|  | if (MATCH (opcode, b_insn_16) | 
|  | /* B16  */ | 
|  | || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) | 
|  | /* JR16  */ | 
|  | || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) | 
|  | /* BEQZ16, BNEZ16  */ | 
|  | || (MATCH (opcode, jalr_insn_16_bd32) | 
|  | /* JALR16  */ | 
|  | && reg != JR16_REG (opcode) && reg != RA)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, | 
|  | then return TRUE, otherwise FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) | 
|  | { | 
|  | unsigned long opcode; | 
|  |  | 
|  | opcode = bfd_get_micromips_32 (abfd, ptr); | 
|  | if (MATCH (opcode, j_insn_32) | 
|  | /* J  */ | 
|  | || MATCH (opcode, bc_insn_32) | 
|  | /* BC1F, BC1T, BC2F, BC2T  */ | 
|  | || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) | 
|  | /* JAL, JALX  */ | 
|  | || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) | 
|  | /* BGEZ, BGTZ, BLEZ, BLTZ  */ | 
|  | || (MATCH (opcode, bzal_insn_32) | 
|  | /* BGEZAL, BLTZAL  */ | 
|  | && reg != OP32_SREG (opcode) && reg != RA) | 
|  | || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) | 
|  | /* JALR, JALR.HB, BEQ, BNE  */ | 
|  | && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, | 
|  | IRELEND) at OFFSET indicate that there must be a compact branch there, | 
|  | then return TRUE, otherwise FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, | 
|  | const Elf_Internal_Rela *internal_relocs, | 
|  | const Elf_Internal_Rela *irelend) | 
|  | { | 
|  | const Elf_Internal_Rela *irel; | 
|  | unsigned long opcode; | 
|  |  | 
|  | opcode = bfd_get_micromips_32 (abfd, ptr); | 
|  | if (find_match (opcode, bzc_insns_32) < 0) | 
|  | return false; | 
|  |  | 
|  | for (irel = internal_relocs; irel < irelend; irel++) | 
|  | if (irel->r_offset == offset | 
|  | && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Bitsize checking.  */ | 
|  | #define IS_BITSIZE(val, N)						\ | 
|  | (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\ | 
|  | - (1ULL << ((N) - 1))) == (val)) | 
|  |  | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, | 
|  | struct bfd_link_info *link_info, | 
|  | bool *again) | 
|  | { | 
|  | bool insn32 = mips_elf_hash_table (link_info)->insn32; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | Elf_Internal_Rela *internal_relocs; | 
|  | Elf_Internal_Rela *irel, *irelend; | 
|  | bfd_byte *contents = NULL; | 
|  | Elf_Internal_Sym *isymbuf = NULL; | 
|  |  | 
|  | /* Assume nothing changes.  */ | 
|  | *again = false; | 
|  |  | 
|  | /* We don't have to do anything for a relocatable link, if | 
|  | this section does not have relocs, or if this is not a | 
|  | code section.  */ | 
|  |  | 
|  | if (bfd_link_relocatable (link_info) | 
|  | || (sec->flags & SEC_RELOC) == 0 | 
|  | || sec->reloc_count == 0 | 
|  | || (sec->flags & SEC_CODE) == 0) | 
|  | return true; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  |  | 
|  | /* Get a copy of the native relocations.  */ | 
|  | internal_relocs = (_bfd_elf_link_read_relocs | 
|  | (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, | 
|  | link_info->keep_memory)); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | /* Walk through them looking for relaxing opportunities.  */ | 
|  | irelend = internal_relocs + sec->reloc_count; | 
|  | for (irel = internal_relocs; irel < irelend; irel++) | 
|  | { | 
|  | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | 
|  | unsigned int r_type = ELF32_R_TYPE (irel->r_info); | 
|  | bool target_is_micromips_code_p; | 
|  | unsigned long opcode; | 
|  | bfd_vma symval; | 
|  | bfd_vma pcrval; | 
|  | bfd_byte *ptr; | 
|  | int fndopc; | 
|  |  | 
|  | /* The number of bytes to delete for relaxation and from where | 
|  | to delete these bytes starting at irel->r_offset.  */ | 
|  | int delcnt = 0; | 
|  | int deloff = 0; | 
|  |  | 
|  | /* If this isn't something that can be relaxed, then ignore | 
|  | this reloc.  */ | 
|  | if (r_type != R_MICROMIPS_HI16 | 
|  | && r_type != R_MICROMIPS_PC16_S1 | 
|  | && r_type != R_MICROMIPS_26_S1) | 
|  | continue; | 
|  |  | 
|  | /* Get the section contents if we haven't done so already.  */ | 
|  | if (contents == NULL) | 
|  | { | 
|  | /* Get cached copy if it exists.  */ | 
|  | if (elf_section_data (sec)->this_hdr.contents != NULL) | 
|  | contents = elf_section_data (sec)->this_hdr.contents; | 
|  | /* Go get them off disk.  */ | 
|  | else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | 
|  | goto error_return; | 
|  | } | 
|  | ptr = contents + irel->r_offset; | 
|  |  | 
|  | /* Read this BFD's local symbols if we haven't done so already.  */ | 
|  | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | 
|  | { | 
|  | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (isymbuf == NULL) | 
|  | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (isymbuf == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Get the value of the symbol referred to by the reloc.  */ | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | /* A local symbol.  */ | 
|  | Elf_Internal_Sym *isym; | 
|  | asection *sym_sec; | 
|  |  | 
|  | isym = isymbuf + r_symndx; | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | sym_sec = bfd_und_section_ptr; | 
|  | else if (isym->st_shndx == SHN_ABS) | 
|  | sym_sec = bfd_abs_section_ptr; | 
|  | else if (isym->st_shndx == SHN_COMMON) | 
|  | sym_sec = bfd_com_section_ptr; | 
|  | else | 
|  | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | 
|  | symval = (isym->st_value | 
|  | + sym_sec->output_section->vma | 
|  | + sym_sec->output_offset); | 
|  | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned long indx; | 
|  | struct elf_link_hash_entry *h; | 
|  |  | 
|  | /* An external symbol.  */ | 
|  | indx = r_symndx - symtab_hdr->sh_info; | 
|  | h = elf_sym_hashes (abfd)[indx]; | 
|  | BFD_ASSERT (h != NULL); | 
|  |  | 
|  | if (h->root.type != bfd_link_hash_defined | 
|  | && h->root.type != bfd_link_hash_defweak) | 
|  | /* This appears to be a reference to an undefined | 
|  | symbol.  Just ignore it -- it will be caught by the | 
|  | regular reloc processing.  */ | 
|  | continue; | 
|  |  | 
|  | symval = (h->root.u.def.value | 
|  | + h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset); | 
|  | target_is_micromips_code_p = (!h->needs_plt | 
|  | && ELF_ST_IS_MICROMIPS (h->other)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* For simplicity of coding, we are going to modify the | 
|  | section contents, the section relocs, and the BFD symbol | 
|  | table.  We must tell the rest of the code not to free up this | 
|  | information.  It would be possible to instead create a table | 
|  | of changes which have to be made, as is done in coff-mips.c; | 
|  | that would be more work, but would require less memory when | 
|  | the linker is run.  */ | 
|  |  | 
|  | /* Only 32-bit instructions relaxed.  */ | 
|  | if (irel->r_offset + 4 > sec->size) | 
|  | continue; | 
|  |  | 
|  | opcode = bfd_get_micromips_32 (abfd, ptr); | 
|  |  | 
|  | /* This is the pc-relative distance from the instruction the | 
|  | relocation is applied to, to the symbol referred.  */ | 
|  | pcrval = (symval | 
|  | - (sec->output_section->vma + sec->output_offset) | 
|  | - irel->r_offset); | 
|  |  | 
|  | /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation | 
|  | of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or | 
|  | R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is | 
|  |  | 
|  | (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) | 
|  |  | 
|  | where pcrval has first to be adjusted to apply against the LO16 | 
|  | location (we make the adjustment later on, when we have figured | 
|  | out the offset).  */ | 
|  | if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) | 
|  | { | 
|  | bool bzc = false; | 
|  | unsigned long nextopc; | 
|  | unsigned long reg; | 
|  | bfd_vma offset; | 
|  |  | 
|  | /* Give up if the previous reloc was a HI16 against this symbol | 
|  | too.  */ | 
|  | if (irel > internal_relocs | 
|  | && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 | 
|  | && ELF32_R_SYM (irel[-1].r_info) == r_symndx) | 
|  | continue; | 
|  |  | 
|  | /* Or if the next reloc is not a LO16 against this symbol.  */ | 
|  | if (irel + 1 >= irelend | 
|  | || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 | 
|  | || ELF32_R_SYM (irel[1].r_info) != r_symndx) | 
|  | continue; | 
|  |  | 
|  | /* Or if the second next reloc is a LO16 against this symbol too.  */ | 
|  | if (irel + 2 >= irelend | 
|  | && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 | 
|  | && ELF32_R_SYM (irel[2].r_info) == r_symndx) | 
|  | continue; | 
|  |  | 
|  | /* See if the LUI instruction *might* be in a branch delay slot. | 
|  | We check whether what looks like a 16-bit branch or jump is | 
|  | actually an immediate argument to a compact branch, and let | 
|  | it through if so.  */ | 
|  | if (irel->r_offset >= 2 | 
|  | && check_br16_dslot (abfd, ptr - 2) | 
|  | && !(irel->r_offset >= 4 | 
|  | && (bzc = check_relocated_bzc (abfd, | 
|  | ptr - 4, irel->r_offset - 4, | 
|  | internal_relocs, irelend)))) | 
|  | continue; | 
|  | if (irel->r_offset >= 4 | 
|  | && !bzc | 
|  | && check_br32_dslot (abfd, ptr - 4)) | 
|  | continue; | 
|  |  | 
|  | reg = OP32_SREG (opcode); | 
|  |  | 
|  | /* We only relax adjacent instructions or ones separated with | 
|  | a branch or jump that has a delay slot.  The branch or jump | 
|  | must not fiddle with the register used to hold the address. | 
|  | Subtract 4 for the LUI itself.  */ | 
|  | offset = irel[1].r_offset - irel[0].r_offset; | 
|  | switch (offset - 4) | 
|  | { | 
|  | case 0: | 
|  | break; | 
|  | case 2: | 
|  | if (check_br16 (abfd, ptr + 4, reg)) | 
|  | break; | 
|  | continue; | 
|  | case 4: | 
|  | if (check_br32 (abfd, ptr + 4, reg)) | 
|  | break; | 
|  | continue; | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); | 
|  |  | 
|  | /* Give up unless the same register is used with both | 
|  | relocations.  */ | 
|  | if (OP32_SREG (nextopc) != reg) | 
|  | continue; | 
|  |  | 
|  | /* Now adjust pcrval, subtracting the offset to the LO16 reloc | 
|  | and rounding up to take masking of the two LSBs into account.  */ | 
|  | pcrval = ((pcrval - offset + 3) | 3) ^ 3; | 
|  |  | 
|  | /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */ | 
|  | if (IS_BITSIZE (symval, 16)) | 
|  | { | 
|  | /* Fix the relocation's type.  */ | 
|  | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); | 
|  |  | 
|  | /* Instructions using R_MICROMIPS_LO16 have the base or | 
|  | source register in bits 20:16.  This register becomes $0 | 
|  | (zero) as the result of the R_MICROMIPS_HI16 being 0.  */ | 
|  | nextopc &= ~0x001f0000; | 
|  | bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, | 
|  | contents + irel[1].r_offset); | 
|  | } | 
|  |  | 
|  | /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. | 
|  | We add 4 to take LUI deletion into account while checking | 
|  | the PC-relative distance.  */ | 
|  | else if (symval % 4 == 0 | 
|  | && IS_BITSIZE (pcrval + 4, 25) | 
|  | && MATCH (nextopc, addiu_insn) | 
|  | && OP32_TREG (nextopc) == OP32_SREG (nextopc) | 
|  | && OP16_VALID_REG (OP32_TREG (nextopc))) | 
|  | { | 
|  | /* Fix the relocation's type.  */ | 
|  | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); | 
|  |  | 
|  | /* Replace ADDIU with the ADDIUPC version.  */ | 
|  | nextopc = (addiupc_insn.match | 
|  | | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); | 
|  |  | 
|  | bfd_put_micromips_32 (abfd, nextopc, | 
|  | contents + irel[1].r_offset); | 
|  | } | 
|  |  | 
|  | /* Can't do anything, give up, sigh...  */ | 
|  | else | 
|  | continue; | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); | 
|  |  | 
|  | /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */ | 
|  | delcnt = 4; | 
|  | deloff = 0; | 
|  | } | 
|  |  | 
|  | /* Compact branch relaxation -- due to the multitude of macros | 
|  | employed by the compiler/assembler, compact branches are not | 
|  | always generated.  Obviously, this can/will be fixed elsewhere, | 
|  | but there is no drawback in double checking it here.  */ | 
|  | else if (r_type == R_MICROMIPS_PC16_S1 | 
|  | && irel->r_offset + 5 < sec->size | 
|  | && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 | 
|  | || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) | 
|  | && ((!insn32 | 
|  | && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), | 
|  | nop_insn_16) ? 2 : 0)) | 
|  | || (irel->r_offset + 7 < sec->size | 
|  | && (delcnt = MATCH (bfd_get_micromips_32 (abfd, | 
|  | ptr + 4), | 
|  | nop_insn_32) ? 4 : 0)))) | 
|  | { | 
|  | unsigned long reg; | 
|  |  | 
|  | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); | 
|  |  | 
|  | /* Replace BEQZ/BNEZ with the compact version.  */ | 
|  | opcode = (bzc_insns_32[fndopc].match | 
|  | | BZC32_REG_FIELD (reg) | 
|  | | (opcode & 0xffff));		/* Addend value.  */ | 
|  |  | 
|  | bfd_put_micromips_32 (abfd, opcode, ptr); | 
|  |  | 
|  | /* Delete the delay slot NOP: two or four bytes from | 
|  | irel->offset + 4; delcnt has already been set above.  */ | 
|  | deloff = 4; | 
|  | } | 
|  |  | 
|  | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need | 
|  | to check the distance from the next instruction, so subtract 2.  */ | 
|  | else if (!insn32 | 
|  | && r_type == R_MICROMIPS_PC16_S1 | 
|  | && IS_BITSIZE (pcrval - 2, 11) | 
|  | && find_match (opcode, b_insns_32) >= 0) | 
|  | { | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); | 
|  |  | 
|  | /* Replace the 32-bit opcode with a 16-bit opcode.  */ | 
|  | bfd_put_16 (abfd, | 
|  | (b_insn_16.match | 
|  | | (opcode & 0x3ff)),		/* Addend value.  */ | 
|  | ptr); | 
|  |  | 
|  | /* Delete 2 bytes from irel->r_offset + 2.  */ | 
|  | delcnt = 2; | 
|  | deloff = 2; | 
|  | } | 
|  |  | 
|  | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need | 
|  | to check the distance from the next instruction, so subtract 2.  */ | 
|  | else if (!insn32 | 
|  | && r_type == R_MICROMIPS_PC16_S1 | 
|  | && IS_BITSIZE (pcrval - 2, 8) | 
|  | && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 | 
|  | && OP16_VALID_REG (OP32_SREG (opcode))) | 
|  | || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 | 
|  | && OP16_VALID_REG (OP32_TREG (opcode))))) | 
|  | { | 
|  | unsigned long reg; | 
|  |  | 
|  | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); | 
|  |  | 
|  | /* Fix the relocation's type.  */ | 
|  | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); | 
|  |  | 
|  | /* Replace the 32-bit opcode with a 16-bit opcode.  */ | 
|  | bfd_put_16 (abfd, | 
|  | (bz_insns_16[fndopc].match | 
|  | | BZ16_REG_FIELD (reg) | 
|  | | (opcode & 0x7f)),		/* Addend value.  */ | 
|  | ptr); | 
|  |  | 
|  | /* Delete 2 bytes from irel->r_offset + 2.  */ | 
|  | delcnt = 2; | 
|  | deloff = 2; | 
|  | } | 
|  |  | 
|  | /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */ | 
|  | else if (!insn32 | 
|  | && r_type == R_MICROMIPS_26_S1 | 
|  | && target_is_micromips_code_p | 
|  | && irel->r_offset + 7 < sec->size | 
|  | && MATCH (opcode, jal_insn_32_bd32)) | 
|  | { | 
|  | unsigned long n32opc; | 
|  | bool relaxed = false; | 
|  |  | 
|  | n32opc = bfd_get_micromips_32 (abfd, ptr + 4); | 
|  |  | 
|  | if (MATCH (n32opc, nop_insn_32)) | 
|  | { | 
|  | /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */ | 
|  | bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); | 
|  |  | 
|  | relaxed = true; | 
|  | } | 
|  | else if (find_match (n32opc, move_insns_32) >= 0) | 
|  | { | 
|  | /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */ | 
|  | bfd_put_16 (abfd, | 
|  | (move_insn_16.match | 
|  | | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) | 
|  | | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), | 
|  | ptr + 4); | 
|  |  | 
|  | relaxed = true; | 
|  | } | 
|  | /* Other 32-bit instructions relaxable to 16-bit | 
|  | instructions will be handled here later.  */ | 
|  |  | 
|  | if (relaxed) | 
|  | { | 
|  | /* JAL with 32-bit delay slot that is changed to a JALS | 
|  | with 16-bit delay slot.  */ | 
|  | bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); | 
|  |  | 
|  | /* Delete 2 bytes from irel->r_offset + 6.  */ | 
|  | delcnt = 2; | 
|  | deloff = 6; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delcnt != 0) | 
|  | { | 
|  | /* Note that we've changed the relocs, section contents, etc.  */ | 
|  | elf_section_data (sec)->relocs = internal_relocs; | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  |  | 
|  | /* Delete bytes depending on the delcnt and deloff.  */ | 
|  | if (!mips_elf_relax_delete_bytes (abfd, sec, | 
|  | irel->r_offset + deloff, delcnt)) | 
|  | goto error_return; | 
|  |  | 
|  | /* That will change things, so we should relax again. | 
|  | Note that this is not required, and it may be slow.  */ | 
|  | *again = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isymbuf != NULL | 
|  | && symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (isymbuf); | 
|  | else | 
|  | { | 
|  | /* Cache the symbols for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) isymbuf; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (contents != NULL | 
|  | && elf_section_data (sec)->this_hdr.contents != contents) | 
|  | { | 
|  | if (! link_info->keep_memory) | 
|  | free (contents); | 
|  | else | 
|  | { | 
|  | /* Cache the section contents for elf_link_input_bfd.  */ | 
|  | elf_section_data (sec)->this_hdr.contents = contents; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (elf_section_data (sec)->relocs != internal_relocs) | 
|  | free (internal_relocs); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | if (symtab_hdr->contents != (unsigned char *) isymbuf) | 
|  | free (isymbuf); | 
|  | if (elf_section_data (sec)->this_hdr.contents != contents) | 
|  | free (contents); | 
|  | if (elf_section_data (sec)->relocs != internal_relocs) | 
|  | free (internal_relocs); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Create a MIPS ELF linker hash table.  */ | 
|  |  | 
|  | struct bfd_link_hash_table * | 
|  | _bfd_mips_elf_link_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct mips_elf_link_hash_table *ret; | 
|  | size_t amt = sizeof (struct mips_elf_link_hash_table); | 
|  |  | 
|  | ret = bfd_zmalloc (amt); | 
|  | if (ret == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | 
|  | mips_elf_link_hash_newfunc, | 
|  | sizeof (struct mips_elf_link_hash_entry), | 
|  | MIPS_ELF_DATA)) | 
|  | { | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  | ret->root.init_plt_refcount.plist = NULL; | 
|  | ret->root.init_plt_offset.plist = NULL; | 
|  |  | 
|  | return &ret->root.root; | 
|  | } | 
|  |  | 
|  | /* Likewise, but indicate that the target is VxWorks.  */ | 
|  |  | 
|  | struct bfd_link_hash_table * | 
|  | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct bfd_link_hash_table *ret; | 
|  |  | 
|  | ret = _bfd_mips_elf_link_hash_table_create (abfd); | 
|  | if (ret) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = (struct mips_elf_link_hash_table *) ret; | 
|  | htab->use_plts_and_copy_relocs = true; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* A function that the linker calls if we are allowed to use PLTs | 
|  | and copy relocs.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) | 
|  | { | 
|  | mips_elf_hash_table (info)->use_plts_and_copy_relocs = true; | 
|  | } | 
|  |  | 
|  | /* A function that the linker calls to select between all or only | 
|  | 32-bit microMIPS instructions, and between making or ignoring | 
|  | branch relocation checks for invalid transitions between ISA modes. | 
|  | Also record whether we have been configured for a GNU target.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32, | 
|  | bool ignore_branch_isa, | 
|  | bool gnu_target) | 
|  | { | 
|  | mips_elf_hash_table (info)->insn32 = insn32; | 
|  | mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa; | 
|  | mips_elf_hash_table (info)->gnu_target = gnu_target; | 
|  | } | 
|  |  | 
|  | /* A function that the linker calls to enable use of compact branches in | 
|  | linker generated code for MIPSR6.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on) | 
|  | { | 
|  | mips_elf_hash_table (info)->compact_branches = on; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Structure for saying that BFD machine EXTENSION extends BASE.  */ | 
|  |  | 
|  | struct mips_mach_extension | 
|  | { | 
|  | unsigned long extension, base; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* An array describing how BFD machines relate to one another.  The entries | 
|  | are ordered topologically with MIPS I extensions listed last.  */ | 
|  |  | 
|  | static const struct mips_mach_extension mips_mach_extensions[] = | 
|  | { | 
|  | /* MIPS64r2 extensions.  */ | 
|  | { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, | 
|  | { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, | 
|  | { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, | 
|  | { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, | 
|  | { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e }, | 
|  | { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 }, | 
|  | { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 }, | 
|  |  | 
|  | /* MIPS64 extensions.  */ | 
|  | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, | 
|  | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, | 
|  | { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, | 
|  |  | 
|  | /* MIPS V extensions.  */ | 
|  | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | 
|  |  | 
|  | /* R10000 extensions.  */ | 
|  | { bfd_mach_mips12000, bfd_mach_mips10000 }, | 
|  | { bfd_mach_mips14000, bfd_mach_mips10000 }, | 
|  | { bfd_mach_mips16000, bfd_mach_mips10000 }, | 
|  |  | 
|  | /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core | 
|  | vr5400 ISA, but doesn't include the multimedia stuff.  It seems | 
|  | better to allow vr5400 and vr5500 code to be merged anyway, since | 
|  | many libraries will just use the core ISA.  Perhaps we could add | 
|  | some sort of ASE flag if this ever proves a problem.  */ | 
|  | { bfd_mach_mips5500, bfd_mach_mips5400 }, | 
|  | { bfd_mach_mips5400, bfd_mach_mips5000 }, | 
|  |  | 
|  | /* MIPS IV extensions.  */ | 
|  | { bfd_mach_mips5, bfd_mach_mips8000 }, | 
|  | { bfd_mach_mips10000, bfd_mach_mips8000 }, | 
|  | { bfd_mach_mips5000, bfd_mach_mips8000 }, | 
|  | { bfd_mach_mips7000, bfd_mach_mips8000 }, | 
|  | { bfd_mach_mips9000, bfd_mach_mips8000 }, | 
|  |  | 
|  | /* VR4100 extensions.  */ | 
|  | { bfd_mach_mips4120, bfd_mach_mips4100 }, | 
|  | { bfd_mach_mips4111, bfd_mach_mips4100 }, | 
|  |  | 
|  | /* MIPS III extensions.  */ | 
|  | { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips8000, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips4650, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips4600, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips4400, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips4300, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips4100, bfd_mach_mips4000 }, | 
|  | { bfd_mach_mips5900, bfd_mach_mips4000 }, | 
|  |  | 
|  | /* MIPS32r3 extensions.  */ | 
|  | { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 }, | 
|  |  | 
|  | /* MIPS32r2 extensions.  */ | 
|  | { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 }, | 
|  |  | 
|  | /* MIPS32 extensions.  */ | 
|  | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | 
|  |  | 
|  | /* MIPS II extensions.  */ | 
|  | { bfd_mach_mips4000, bfd_mach_mips6000 }, | 
|  | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | 
|  | { bfd_mach_mips4010, bfd_mach_mips6000 }, | 
|  |  | 
|  | /* MIPS I extensions.  */ | 
|  | { bfd_mach_mips6000, bfd_mach_mips3000 }, | 
|  | { bfd_mach_mips3900, bfd_mach_mips3000 } | 
|  | }; | 
|  |  | 
|  | /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */ | 
|  |  | 
|  | static bool | 
|  | mips_mach_extends_p (unsigned long base, unsigned long extension) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | if (extension == base) | 
|  | return true; | 
|  |  | 
|  | if (base == bfd_mach_mipsisa32 | 
|  | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | 
|  | return true; | 
|  |  | 
|  | if (base == bfd_mach_mipsisa32r2 | 
|  | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | 
|  | if (extension == mips_mach_extensions[i].extension) | 
|  | { | 
|  | extension = mips_mach_extensions[i].base; | 
|  | if (extension == base) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Return the BFD mach for each .MIPS.abiflags ISA Extension.  */ | 
|  |  | 
|  | static unsigned long | 
|  | bfd_mips_isa_ext_mach (unsigned int isa_ext) | 
|  | { | 
|  | switch (isa_ext) | 
|  | { | 
|  | case AFL_EXT_3900:	      return bfd_mach_mips3900; | 
|  | case AFL_EXT_4010:	      return bfd_mach_mips4010; | 
|  | case AFL_EXT_4100:	      return bfd_mach_mips4100; | 
|  | case AFL_EXT_4111:	      return bfd_mach_mips4111; | 
|  | case AFL_EXT_4120:	      return bfd_mach_mips4120; | 
|  | case AFL_EXT_4650:	      return bfd_mach_mips4650; | 
|  | case AFL_EXT_5400:	      return bfd_mach_mips5400; | 
|  | case AFL_EXT_5500:	      return bfd_mach_mips5500; | 
|  | case AFL_EXT_5900:	      return bfd_mach_mips5900; | 
|  | case AFL_EXT_10000:	      return bfd_mach_mips10000; | 
|  | case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; | 
|  | case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; | 
|  | case AFL_EXT_SB1:	      return bfd_mach_mips_sb1; | 
|  | case AFL_EXT_OCTEON:      return bfd_mach_mips_octeon; | 
|  | case AFL_EXT_OCTEONP:     return bfd_mach_mips_octeonp; | 
|  | case AFL_EXT_OCTEON2:     return bfd_mach_mips_octeon2; | 
|  | case AFL_EXT_XLR:	      return bfd_mach_mips_xlr; | 
|  | default:		      return bfd_mach_mips3000; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the .MIPS.abiflags value representing each ISA Extension.  */ | 
|  |  | 
|  | unsigned int | 
|  | bfd_mips_isa_ext (bfd *abfd) | 
|  | { | 
|  | switch (bfd_get_mach (abfd)) | 
|  | { | 
|  | case bfd_mach_mips3900:	    return AFL_EXT_3900; | 
|  | case bfd_mach_mips4010:	    return AFL_EXT_4010; | 
|  | case bfd_mach_mips4100:	    return AFL_EXT_4100; | 
|  | case bfd_mach_mips4111:	    return AFL_EXT_4111; | 
|  | case bfd_mach_mips4120:	    return AFL_EXT_4120; | 
|  | case bfd_mach_mips4650:	    return AFL_EXT_4650; | 
|  | case bfd_mach_mips5400:	    return AFL_EXT_5400; | 
|  | case bfd_mach_mips5500:	    return AFL_EXT_5500; | 
|  | case bfd_mach_mips5900:	    return AFL_EXT_5900; | 
|  | case bfd_mach_mips10000:	    return AFL_EXT_10000; | 
|  | case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; | 
|  | case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; | 
|  | case bfd_mach_mips_sb1:	    return AFL_EXT_SB1; | 
|  | case bfd_mach_mips_octeon:	    return AFL_EXT_OCTEON; | 
|  | case bfd_mach_mips_octeonp:	    return AFL_EXT_OCTEONP; | 
|  | case bfd_mach_mips_octeon3:	    return AFL_EXT_OCTEON3; | 
|  | case bfd_mach_mips_octeon2:	    return AFL_EXT_OCTEON2; | 
|  | case bfd_mach_mips_xlr:	    return AFL_EXT_XLR; | 
|  | case bfd_mach_mips_interaptiv_mr2: | 
|  | return AFL_EXT_INTERAPTIV_MR2; | 
|  | default:			    return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Encode ISA level and revision as a single value.  */ | 
|  | #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) | 
|  |  | 
|  | /* Decode a single value into level and revision.  */ | 
|  | #define ISA_LEVEL(LEVREV)  ((LEVREV) >> 3) | 
|  | #define ISA_REV(LEVREV)    ((LEVREV) & 0x7) | 
|  |  | 
|  | /* Update the isa_level, isa_rev, isa_ext fields of abiflags.  */ | 
|  |  | 
|  | static void | 
|  | update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) | 
|  | { | 
|  | int new_isa = 0; | 
|  | switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) | 
|  | { | 
|  | case E_MIPS_ARCH_1:    new_isa = LEVEL_REV (1, 0); break; | 
|  | case E_MIPS_ARCH_2:    new_isa = LEVEL_REV (2, 0); break; | 
|  | case E_MIPS_ARCH_3:    new_isa = LEVEL_REV (3, 0); break; | 
|  | case E_MIPS_ARCH_4:    new_isa = LEVEL_REV (4, 0); break; | 
|  | case E_MIPS_ARCH_5:    new_isa = LEVEL_REV (5, 0); break; | 
|  | case E_MIPS_ARCH_32:   new_isa = LEVEL_REV (32, 1); break; | 
|  | case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; | 
|  | case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; | 
|  | case E_MIPS_ARCH_64:   new_isa = LEVEL_REV (64, 1); break; | 
|  | case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; | 
|  | case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; | 
|  | default: | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unknown architecture %s"), | 
|  | abfd, bfd_printable_name (abfd)); | 
|  | } | 
|  |  | 
|  | if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) | 
|  | { | 
|  | abiflags->isa_level = ISA_LEVEL (new_isa); | 
|  | abiflags->isa_rev = ISA_REV (new_isa); | 
|  | } | 
|  |  | 
|  | /* Update the isa_ext if ABFD describes a further extension.  */ | 
|  | if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), | 
|  | bfd_get_mach (abfd))) | 
|  | abiflags->isa_ext = bfd_mips_isa_ext (abfd); | 
|  | } | 
|  |  | 
|  | /* Return true if the given ELF header flags describe a 32-bit binary.  */ | 
|  |  | 
|  | static bool | 
|  | mips_32bit_flags_p (flagword flags) | 
|  | { | 
|  | return ((flags & EF_MIPS_32BITMODE) != 0 | 
|  | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | 
|  | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | 
|  | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | 
|  | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | 
|  | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | 
|  | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 | 
|  | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); | 
|  | } | 
|  |  | 
|  | /* Infer the content of the ABI flags based on the elf header.  */ | 
|  |  | 
|  | static void | 
|  | infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) | 
|  | { | 
|  | obj_attribute *in_attr; | 
|  |  | 
|  | memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); | 
|  | update_mips_abiflags_isa (abfd, abiflags); | 
|  |  | 
|  | if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) | 
|  | abiflags->gpr_size = AFL_REG_32; | 
|  | else | 
|  | abiflags->gpr_size = AFL_REG_64; | 
|  |  | 
|  | abiflags->cpr1_size = AFL_REG_NONE; | 
|  |  | 
|  | in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; | 
|  | abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; | 
|  |  | 
|  | if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE | 
|  | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX | 
|  | || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE | 
|  | && abiflags->gpr_size == AFL_REG_32)) | 
|  | abiflags->cpr1_size = AFL_REG_32; | 
|  | else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE | 
|  | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 | 
|  | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) | 
|  | abiflags->cpr1_size = AFL_REG_64; | 
|  |  | 
|  | abiflags->cpr2_size = AFL_REG_NONE; | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) | 
|  | abiflags->ases |= AFL_ASE_MDMX; | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | 
|  | abiflags->ases |= AFL_ASE_MIPS16; | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) | 
|  | abiflags->ases |= AFL_ASE_MICROMIPS; | 
|  |  | 
|  | if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY | 
|  | && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT | 
|  | && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A | 
|  | && abiflags->isa_level >= 32 | 
|  | && abiflags->ases != AFL_ASE_LOONGSON_EXT) | 
|  | abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; | 
|  | } | 
|  |  | 
|  | /* We need to use a special link routine to handle the .reginfo and | 
|  | the .mdebug sections.  We need to merge all instances of these | 
|  | sections together, not write them all out sequentially.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | asection *o; | 
|  | struct bfd_link_order *p; | 
|  | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | 
|  | asection *rtproc_sec, *abiflags_sec; | 
|  | Elf32_RegInfo reginfo; | 
|  | struct ecoff_debug_info debug; | 
|  | struct mips_htab_traverse_info hti; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | 
|  | HDRR *symhdr = &debug.symbolic_header; | 
|  | void *mdebug_handle = NULL; | 
|  | asection *s; | 
|  | EXTR esym; | 
|  | unsigned int i; | 
|  | bfd_size_type amt; | 
|  | struct mips_elf_link_hash_table *htab; | 
|  |  | 
|  | static const char * const secname[] = | 
|  | { | 
|  | ".text", ".init", ".fini", ".data", | 
|  | ".rodata", ".sdata", ".sbss", ".bss" | 
|  | }; | 
|  | static const int sc[] = | 
|  | { | 
|  | scText, scInit, scFini, scData, | 
|  | scRData, scSData, scSBss, scBss | 
|  | }; | 
|  |  | 
|  | htab = mips_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* Sort the dynamic symbols so that those with GOT entries come after | 
|  | those without.  */ | 
|  | if (!mips_elf_sort_hash_table (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* Create any scheduled LA25 stubs.  */ | 
|  | hti.info = info; | 
|  | hti.output_bfd = abfd; | 
|  | hti.error = false; | 
|  | htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); | 
|  | if (hti.error) | 
|  | return false; | 
|  |  | 
|  | /* Get a value for the GP register.  */ | 
|  | if (elf_gp (abfd) == 0) | 
|  | { | 
|  | struct bfd_link_hash_entry *h; | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); | 
|  | if (h != NULL && h->type == bfd_link_hash_defined) | 
|  | elf_gp (abfd) = (h->u.def.value | 
|  | + h->u.def.section->output_section->vma | 
|  | + h->u.def.section->output_offset); | 
|  | else if (htab->root.target_os == is_vxworks | 
|  | && (h = bfd_link_hash_lookup (info->hash, | 
|  | "_GLOBAL_OFFSET_TABLE_", | 
|  | false, false, true)) | 
|  | && h->type == bfd_link_hash_defined) | 
|  | elf_gp (abfd) = (h->u.def.section->output_section->vma | 
|  | + h->u.def.section->output_offset | 
|  | + h->u.def.value); | 
|  | else if (bfd_link_relocatable (info)) | 
|  | { | 
|  | bfd_vma lo = MINUS_ONE; | 
|  |  | 
|  | /* Find the GP-relative section with the lowest offset.  */ | 
|  | for (o = abfd->sections; o != NULL; o = o->next) | 
|  | if (o->vma < lo | 
|  | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | 
|  | lo = o->vma; | 
|  |  | 
|  | /* And calculate GP relative to that.  */ | 
|  | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* If the relocate_section function needs to do a reloc | 
|  | involving the GP value, it should make a reloc_dangerous | 
|  | callback to warn that GP is not defined.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Go through the sections and collect the .reginfo and .mdebug | 
|  | information.  */ | 
|  | abiflags_sec = NULL; | 
|  | reginfo_sec = NULL; | 
|  | mdebug_sec = NULL; | 
|  | gptab_data_sec = NULL; | 
|  | gptab_bss_sec = NULL; | 
|  | for (o = abfd->sections; o != NULL; o = o->next) | 
|  | { | 
|  | if (strcmp (o->name, ".MIPS.abiflags") == 0) | 
|  | { | 
|  | /* We have found the .MIPS.abiflags section in the output file. | 
|  | Look through all the link_orders comprising it and remove them. | 
|  | The data is merged in _bfd_mips_elf_merge_private_bfd_data.  */ | 
|  | for (p = o->map_head.link_order; p != NULL; p = p->next) | 
|  | { | 
|  | asection *input_section; | 
|  |  | 
|  | if (p->type != bfd_indirect_link_order) | 
|  | { | 
|  | if (p->type == bfd_data_link_order) | 
|  | continue; | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | input_section = p->u.indirect.section; | 
|  |  | 
|  | /* Hack: reset the SEC_HAS_CONTENTS flag so that | 
|  | elf_link_input_bfd ignores this section.  */ | 
|  | input_section->flags &= ~SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | /* Size has been set in _bfd_mips_elf_always_size_sections.  */ | 
|  | BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); | 
|  |  | 
|  | /* Skip this section later on (I don't think this currently | 
|  | matters, but someday it might).  */ | 
|  | o->map_head.link_order = NULL; | 
|  |  | 
|  | abiflags_sec = o; | 
|  | } | 
|  |  | 
|  | if (strcmp (o->name, ".reginfo") == 0) | 
|  | { | 
|  | memset (®info, 0, sizeof reginfo); | 
|  |  | 
|  | /* We have found the .reginfo section in the output file. | 
|  | Look through all the link_orders comprising it and merge | 
|  | the information together.  */ | 
|  | for (p = o->map_head.link_order; p != NULL; p = p->next) | 
|  | { | 
|  | asection *input_section; | 
|  | bfd *input_bfd; | 
|  | Elf32_External_RegInfo ext; | 
|  | Elf32_RegInfo sub; | 
|  | bfd_size_type sz; | 
|  |  | 
|  | if (p->type != bfd_indirect_link_order) | 
|  | { | 
|  | if (p->type == bfd_data_link_order) | 
|  | continue; | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | input_section = p->u.indirect.section; | 
|  | input_bfd = input_section->owner; | 
|  |  | 
|  | sz = (input_section->size < sizeof (ext) | 
|  | ? input_section->size : sizeof (ext)); | 
|  | memset (&ext, 0, sizeof (ext)); | 
|  | if (! bfd_get_section_contents (input_bfd, input_section, | 
|  | &ext, 0, sz)) | 
|  | return false; | 
|  |  | 
|  | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | 
|  |  | 
|  | reginfo.ri_gprmask |= sub.ri_gprmask; | 
|  | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | 
|  | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | 
|  | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | 
|  | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | 
|  |  | 
|  | /* ri_gp_value is set by the function | 
|  | `_bfd_mips_elf_section_processing' when the section is | 
|  | finally written out.  */ | 
|  |  | 
|  | /* Hack: reset the SEC_HAS_CONTENTS flag so that | 
|  | elf_link_input_bfd ignores this section.  */ | 
|  | input_section->flags &= ~SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | /* Size has been set in _bfd_mips_elf_always_size_sections.  */ | 
|  | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); | 
|  |  | 
|  | /* Skip this section later on (I don't think this currently | 
|  | matters, but someday it might).  */ | 
|  | o->map_head.link_order = NULL; | 
|  |  | 
|  | reginfo_sec = o; | 
|  | } | 
|  |  | 
|  | if (strcmp (o->name, ".mdebug") == 0) | 
|  | { | 
|  | struct extsym_info einfo; | 
|  | bfd_vma last; | 
|  |  | 
|  | /* We have found the .mdebug section in the output file. | 
|  | Look through all the link_orders comprising it and merge | 
|  | the information together.  */ | 
|  | symhdr->magic = swap->sym_magic; | 
|  | /* FIXME: What should the version stamp be?  */ | 
|  | symhdr->vstamp = 0; | 
|  | symhdr->ilineMax = 0; | 
|  | symhdr->cbLine = 0; | 
|  | symhdr->idnMax = 0; | 
|  | symhdr->ipdMax = 0; | 
|  | symhdr->isymMax = 0; | 
|  | symhdr->ioptMax = 0; | 
|  | symhdr->iauxMax = 0; | 
|  | symhdr->issMax = 0; | 
|  | symhdr->issExtMax = 0; | 
|  | symhdr->ifdMax = 0; | 
|  | symhdr->crfd = 0; | 
|  | symhdr->iextMax = 0; | 
|  |  | 
|  | /* We accumulate the debugging information itself in the | 
|  | debug_info structure.  */ | 
|  | debug.line = NULL; | 
|  | debug.external_dnr = NULL; | 
|  | debug.external_pdr = NULL; | 
|  | debug.external_sym = NULL; | 
|  | debug.external_opt = NULL; | 
|  | debug.external_aux = NULL; | 
|  | debug.ss = NULL; | 
|  | debug.ssext = debug.ssext_end = NULL; | 
|  | debug.external_fdr = NULL; | 
|  | debug.external_rfd = NULL; | 
|  | debug.external_ext = debug.external_ext_end = NULL; | 
|  |  | 
|  | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | 
|  | if (mdebug_handle == NULL) | 
|  | return false; | 
|  |  | 
|  | esym.jmptbl = 0; | 
|  | esym.cobol_main = 0; | 
|  | esym.weakext = 0; | 
|  | esym.reserved = 0; | 
|  | esym.ifd = ifdNil; | 
|  | esym.asym.iss = issNil; | 
|  | esym.asym.st = stLocal; | 
|  | esym.asym.reserved = 0; | 
|  | esym.asym.index = indexNil; | 
|  | last = 0; | 
|  | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | 
|  | { | 
|  | esym.asym.sc = sc[i]; | 
|  | s = bfd_get_section_by_name (abfd, secname[i]); | 
|  | if (s != NULL) | 
|  | { | 
|  | esym.asym.value = s->vma; | 
|  | last = s->vma + s->size; | 
|  | } | 
|  | else | 
|  | esym.asym.value = last; | 
|  | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | 
|  | secname[i], &esym)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (p = o->map_head.link_order; p != NULL; p = p->next) | 
|  | { | 
|  | asection *input_section; | 
|  | bfd *input_bfd; | 
|  | const struct ecoff_debug_swap *input_swap; | 
|  | struct ecoff_debug_info input_debug; | 
|  | char *eraw_src; | 
|  | char *eraw_end; | 
|  |  | 
|  | if (p->type != bfd_indirect_link_order) | 
|  | { | 
|  | if (p->type == bfd_data_link_order) | 
|  | continue; | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | input_section = p->u.indirect.section; | 
|  | input_bfd = input_section->owner; | 
|  |  | 
|  | if (!is_mips_elf (input_bfd)) | 
|  | { | 
|  | /* I don't know what a non MIPS ELF bfd would be | 
|  | doing with a .mdebug section, but I don't really | 
|  | want to deal with it.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | input_swap = (get_elf_backend_data (input_bfd) | 
|  | ->elf_backend_ecoff_debug_swap); | 
|  |  | 
|  | BFD_ASSERT (p->size == input_section->size); | 
|  |  | 
|  | /* The ECOFF linking code expects that we have already | 
|  | read in the debugging information and set up an | 
|  | ecoff_debug_info structure, so we do that now.  */ | 
|  | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | 
|  | &input_debug)) | 
|  | return false; | 
|  |  | 
|  | if (! (bfd_ecoff_debug_accumulate | 
|  | (mdebug_handle, abfd, &debug, swap, input_bfd, | 
|  | &input_debug, input_swap, info))) | 
|  | return false; | 
|  |  | 
|  | /* Loop through the external symbols.  For each one with | 
|  | interesting information, try to find the symbol in | 
|  | the linker global hash table and save the information | 
|  | for the output external symbols.  */ | 
|  | eraw_src = input_debug.external_ext; | 
|  | eraw_end = (eraw_src | 
|  | + (input_debug.symbolic_header.iextMax | 
|  | * input_swap->external_ext_size)); | 
|  | for (; | 
|  | eraw_src < eraw_end; | 
|  | eraw_src += input_swap->external_ext_size) | 
|  | { | 
|  | EXTR ext; | 
|  | const char *name; | 
|  | struct mips_elf_link_hash_entry *h; | 
|  |  | 
|  | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); | 
|  | if (ext.asym.sc == scNil | 
|  | || ext.asym.sc == scUndefined | 
|  | || ext.asym.sc == scSUndefined) | 
|  | continue; | 
|  |  | 
|  | name = input_debug.ssext + ext.asym.iss; | 
|  | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | 
|  | name, false, false, true); | 
|  | if (h == NULL || h->esym.ifd != -2) | 
|  | continue; | 
|  |  | 
|  | if (ext.ifd != -1) | 
|  | { | 
|  | BFD_ASSERT (ext.ifd | 
|  | < input_debug.symbolic_header.ifdMax); | 
|  | ext.ifd = input_debug.ifdmap[ext.ifd]; | 
|  | } | 
|  |  | 
|  | h->esym = ext; | 
|  | } | 
|  |  | 
|  | /* Free up the information we just read.  */ | 
|  | free (input_debug.line); | 
|  | free (input_debug.external_dnr); | 
|  | free (input_debug.external_pdr); | 
|  | free (input_debug.external_sym); | 
|  | free (input_debug.external_opt); | 
|  | free (input_debug.external_aux); | 
|  | free (input_debug.ss); | 
|  | free (input_debug.ssext); | 
|  | free (input_debug.external_fdr); | 
|  | free (input_debug.external_rfd); | 
|  | free (input_debug.external_ext); | 
|  |  | 
|  | /* Hack: reset the SEC_HAS_CONTENTS flag so that | 
|  | elf_link_input_bfd ignores this section.  */ | 
|  | input_section->flags &= ~SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | if (SGI_COMPAT (abfd) && bfd_link_pic (info)) | 
|  | { | 
|  | /* Create .rtproc section.  */ | 
|  | rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); | 
|  | if (rtproc_sec == NULL) | 
|  | { | 
|  | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED | SEC_READONLY); | 
|  |  | 
|  | rtproc_sec = bfd_make_section_anyway_with_flags (abfd, | 
|  | ".rtproc", | 
|  | flags); | 
|  | if (rtproc_sec == NULL | 
|  | || !bfd_set_section_alignment (rtproc_sec, 4)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | 
|  | info, rtproc_sec, | 
|  | &debug)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Build the external symbol information.  */ | 
|  | einfo.abfd = abfd; | 
|  | einfo.info = info; | 
|  | einfo.debug = &debug; | 
|  | einfo.swap = swap; | 
|  | einfo.failed = false; | 
|  | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | 
|  | mips_elf_output_extsym, &einfo); | 
|  | if (einfo.failed) | 
|  | return false; | 
|  |  | 
|  | /* Set the size of the .mdebug section.  */ | 
|  | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); | 
|  |  | 
|  | /* Skip this section later on (I don't think this currently | 
|  | matters, but someday it might).  */ | 
|  | o->map_head.link_order = NULL; | 
|  |  | 
|  | mdebug_sec = o; | 
|  | } | 
|  |  | 
|  | if (startswith (o->name, ".gptab.")) | 
|  | { | 
|  | const char *subname; | 
|  | unsigned int c; | 
|  | Elf32_gptab *tab; | 
|  | Elf32_External_gptab *ext_tab; | 
|  | unsigned int j; | 
|  |  | 
|  | /* The .gptab.sdata and .gptab.sbss sections hold | 
|  | information describing how the small data area would | 
|  | change depending upon the -G switch.  These sections | 
|  | not used in executables files.  */ | 
|  | if (! bfd_link_relocatable (info)) | 
|  | { | 
|  | for (p = o->map_head.link_order; p != NULL; p = p->next) | 
|  | { | 
|  | asection *input_section; | 
|  |  | 
|  | if (p->type != bfd_indirect_link_order) | 
|  | { | 
|  | if (p->type == bfd_data_link_order) | 
|  | continue; | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | input_section = p->u.indirect.section; | 
|  |  | 
|  | /* Hack: reset the SEC_HAS_CONTENTS flag so that | 
|  | elf_link_input_bfd ignores this section.  */ | 
|  | input_section->flags &= ~SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | /* Skip this section later on (I don't think this | 
|  | currently matters, but someday it might).  */ | 
|  | o->map_head.link_order = NULL; | 
|  |  | 
|  | /* Really remove the section.  */ | 
|  | bfd_section_list_remove (abfd, o); | 
|  | --abfd->section_count; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* There is one gptab for initialized data, and one for | 
|  | uninitialized data.  */ | 
|  | if (strcmp (o->name, ".gptab.sdata") == 0) | 
|  | gptab_data_sec = o; | 
|  | else if (strcmp (o->name, ".gptab.sbss") == 0) | 
|  | gptab_bss_sec = o; | 
|  | else | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: illegal section name `%pA'"), abfd, o); | 
|  | bfd_set_error (bfd_error_nonrepresentable_section); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* The linker script always combines .gptab.data and | 
|  | .gptab.sdata into .gptab.sdata, and likewise for | 
|  | .gptab.bss and .gptab.sbss.  It is possible that there is | 
|  | no .sdata or .sbss section in the output file, in which | 
|  | case we must change the name of the output section.  */ | 
|  | subname = o->name + sizeof ".gptab" - 1; | 
|  | if (bfd_get_section_by_name (abfd, subname) == NULL) | 
|  | { | 
|  | if (o == gptab_data_sec) | 
|  | o->name = ".gptab.data"; | 
|  | else | 
|  | o->name = ".gptab.bss"; | 
|  | subname = o->name + sizeof ".gptab" - 1; | 
|  | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | 
|  | } | 
|  |  | 
|  | /* Set up the first entry.  */ | 
|  | c = 1; | 
|  | amt = c * sizeof (Elf32_gptab); | 
|  | tab = bfd_malloc (amt); | 
|  | if (tab == NULL) | 
|  | return false; | 
|  | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); | 
|  | tab[0].gt_header.gt_unused = 0; | 
|  |  | 
|  | /* Combine the input sections.  */ | 
|  | for (p = o->map_head.link_order; p != NULL; p = p->next) | 
|  | { | 
|  | asection *input_section; | 
|  | bfd *input_bfd; | 
|  | bfd_size_type size; | 
|  | unsigned long last; | 
|  | bfd_size_type gpentry; | 
|  |  | 
|  | if (p->type != bfd_indirect_link_order) | 
|  | { | 
|  | if (p->type == bfd_data_link_order) | 
|  | continue; | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | input_section = p->u.indirect.section; | 
|  | input_bfd = input_section->owner; | 
|  |  | 
|  | /* Combine the gptab entries for this input section one | 
|  | by one.  We know that the input gptab entries are | 
|  | sorted by ascending -G value.  */ | 
|  | size = input_section->size; | 
|  | last = 0; | 
|  | for (gpentry = sizeof (Elf32_External_gptab); | 
|  | gpentry < size; | 
|  | gpentry += sizeof (Elf32_External_gptab)) | 
|  | { | 
|  | Elf32_External_gptab ext_gptab; | 
|  | Elf32_gptab int_gptab; | 
|  | unsigned long val; | 
|  | unsigned long add; | 
|  | bool exact; | 
|  | unsigned int look; | 
|  |  | 
|  | if (! (bfd_get_section_contents | 
|  | (input_bfd, input_section, &ext_gptab, gpentry, | 
|  | sizeof (Elf32_External_gptab)))) | 
|  | { | 
|  | free (tab); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | 
|  | &int_gptab); | 
|  | val = int_gptab.gt_entry.gt_g_value; | 
|  | add = int_gptab.gt_entry.gt_bytes - last; | 
|  |  | 
|  | exact = false; | 
|  | for (look = 1; look < c; look++) | 
|  | { | 
|  | if (tab[look].gt_entry.gt_g_value >= val) | 
|  | tab[look].gt_entry.gt_bytes += add; | 
|  |  | 
|  | if (tab[look].gt_entry.gt_g_value == val) | 
|  | exact = true; | 
|  | } | 
|  |  | 
|  | if (! exact) | 
|  | { | 
|  | Elf32_gptab *new_tab; | 
|  | unsigned int max; | 
|  |  | 
|  | /* We need a new table entry.  */ | 
|  | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | 
|  | new_tab = bfd_realloc (tab, amt); | 
|  | if (new_tab == NULL) | 
|  | { | 
|  | free (tab); | 
|  | return false; | 
|  | } | 
|  | tab = new_tab; | 
|  | tab[c].gt_entry.gt_g_value = val; | 
|  | tab[c].gt_entry.gt_bytes = add; | 
|  |  | 
|  | /* Merge in the size for the next smallest -G | 
|  | value, since that will be implied by this new | 
|  | value.  */ | 
|  | max = 0; | 
|  | for (look = 1; look < c; look++) | 
|  | { | 
|  | if (tab[look].gt_entry.gt_g_value < val | 
|  | && (max == 0 | 
|  | || (tab[look].gt_entry.gt_g_value | 
|  | > tab[max].gt_entry.gt_g_value))) | 
|  | max = look; | 
|  | } | 
|  | if (max != 0) | 
|  | tab[c].gt_entry.gt_bytes += | 
|  | tab[max].gt_entry.gt_bytes; | 
|  |  | 
|  | ++c; | 
|  | } | 
|  |  | 
|  | last = int_gptab.gt_entry.gt_bytes; | 
|  | } | 
|  |  | 
|  | /* Hack: reset the SEC_HAS_CONTENTS flag so that | 
|  | elf_link_input_bfd ignores this section.  */ | 
|  | input_section->flags &= ~SEC_HAS_CONTENTS; | 
|  | } | 
|  |  | 
|  | /* The table must be sorted by -G value.  */ | 
|  | if (c > 2) | 
|  | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | 
|  |  | 
|  | /* Swap out the table.  */ | 
|  | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | 
|  | ext_tab = bfd_alloc (abfd, amt); | 
|  | if (ext_tab == NULL) | 
|  | { | 
|  | free (tab); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < c; j++) | 
|  | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | 
|  | free (tab); | 
|  |  | 
|  | o->size = c * sizeof (Elf32_External_gptab); | 
|  | o->contents = (bfd_byte *) ext_tab; | 
|  |  | 
|  | /* Skip this section later on (I don't think this currently | 
|  | matters, but someday it might).  */ | 
|  | o->map_head.link_order = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Invoke the regular ELF backend linker to do all the work.  */ | 
|  | if (!bfd_elf_final_link (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* Now write out the computed sections.  */ | 
|  |  | 
|  | if (abiflags_sec != NULL) | 
|  | { | 
|  | Elf_External_ABIFlags_v0 ext; | 
|  | Elf_Internal_ABIFlags_v0 *abiflags; | 
|  |  | 
|  | abiflags = &mips_elf_tdata (abfd)->abiflags; | 
|  |  | 
|  | /* Set up the abiflags if no valid input sections were found.  */ | 
|  | if (!mips_elf_tdata (abfd)->abiflags_valid) | 
|  | { | 
|  | infer_mips_abiflags (abfd, abiflags); | 
|  | mips_elf_tdata (abfd)->abiflags_valid = true; | 
|  | } | 
|  | bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); | 
|  | if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (reginfo_sec != NULL) | 
|  | { | 
|  | Elf32_External_RegInfo ext; | 
|  |  | 
|  | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | 
|  | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (mdebug_sec != NULL) | 
|  | { | 
|  | BFD_ASSERT (abfd->output_has_begun); | 
|  | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | 
|  | swap, info, | 
|  | mdebug_sec->filepos)) | 
|  | return false; | 
|  |  | 
|  | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | 
|  | } | 
|  |  | 
|  | if (gptab_data_sec != NULL) | 
|  | { | 
|  | if (! bfd_set_section_contents (abfd, gptab_data_sec, | 
|  | gptab_data_sec->contents, | 
|  | 0, gptab_data_sec->size)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (gptab_bss_sec != NULL) | 
|  | { | 
|  | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | 
|  | gptab_bss_sec->contents, | 
|  | 0, gptab_bss_sec->size)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SGI_COMPAT (abfd)) | 
|  | { | 
|  | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | 
|  | if (rtproc_sec != NULL) | 
|  | { | 
|  | if (! bfd_set_section_contents (abfd, rtproc_sec, | 
|  | rtproc_sec->contents, | 
|  | 0, rtproc_sec->size)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Merge object file header flags from IBFD into OBFD.  Raise an error | 
|  | if there are conflicting settings.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *obfd = info->output_bfd; | 
|  | struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); | 
|  | flagword old_flags; | 
|  | flagword new_flags; | 
|  | bool ok; | 
|  |  | 
|  | new_flags = elf_elfheader (ibfd)->e_flags; | 
|  | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | 
|  | old_flags = elf_elfheader (obfd)->e_flags; | 
|  |  | 
|  | /* Check flag compatibility.  */ | 
|  |  | 
|  | new_flags &= ~EF_MIPS_NOREORDER; | 
|  | old_flags &= ~EF_MIPS_NOREORDER; | 
|  |  | 
|  | /* Some IRIX 6 BSD-compatibility objects have this bit set.  It | 
|  | doesn't seem to matter.  */ | 
|  | new_flags &= ~EF_MIPS_XGOT; | 
|  | old_flags &= ~EF_MIPS_XGOT; | 
|  |  | 
|  | /* MIPSpro generates ucode info in n64 objects.  Again, we should | 
|  | just be able to ignore this.  */ | 
|  | new_flags &= ~EF_MIPS_UCODE; | 
|  | old_flags &= ~EF_MIPS_UCODE; | 
|  |  | 
|  | /* DSOs should only be linked with CPIC code.  */ | 
|  | if ((ibfd->flags & DYNAMIC) != 0) | 
|  | new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; | 
|  |  | 
|  | if (new_flags == old_flags) | 
|  | return true; | 
|  |  | 
|  | ok = true; | 
|  |  | 
|  | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) | 
|  | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: linking abicalls files with non-abicalls files"), | 
|  | ibfd); | 
|  | ok = true; | 
|  | } | 
|  |  | 
|  | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) | 
|  | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | 
|  | if (! (new_flags & EF_MIPS_PIC)) | 
|  | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | 
|  |  | 
|  | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | 
|  | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | 
|  |  | 
|  | /* Compare the ISAs.  */ | 
|  | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: linking 32-bit code with 64-bit code"), | 
|  | ibfd); | 
|  | ok = false; | 
|  | } | 
|  | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | 
|  | { | 
|  | /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */ | 
|  | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | 
|  | { | 
|  | /* Copy the architecture info from IBFD to OBFD.  Also copy | 
|  | the 32-bit flag (if set) so that we continue to recognise | 
|  | OBFD as a 32-bit binary.  */ | 
|  | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | 
|  | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | 
|  | elf_elfheader (obfd)->e_flags | 
|  | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | 
|  |  | 
|  | /* Update the ABI flags isa_level, isa_rev, isa_ext fields.  */ | 
|  | update_mips_abiflags_isa (obfd, &out_tdata->abiflags); | 
|  |  | 
|  | /* Copy across the ABI flags if OBFD doesn't use them | 
|  | and if that was what caused us to treat IBFD as 32-bit.  */ | 
|  | if ((old_flags & EF_MIPS_ABI) == 0 | 
|  | && mips_32bit_flags_p (new_flags) | 
|  | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | 
|  | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The ISAs aren't compatible.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: linking %s module with previous %s modules"), | 
|  | ibfd, | 
|  | bfd_printable_name (ibfd), | 
|  | bfd_printable_name (obfd)); | 
|  | ok = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | 
|  | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | 
|  |  | 
|  | /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it | 
|  | does set EI_CLASS differently from any 32-bit ABI.  */ | 
|  | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | 
|  | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | 
|  | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | 
|  | { | 
|  | /* Only error if both are set (to different values).  */ | 
|  | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | 
|  | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | 
|  | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: ABI mismatch: linking %s module with previous %s modules"), | 
|  | ibfd, | 
|  | elf_mips_abi_name (ibfd), | 
|  | elf_mips_abi_name (obfd)); | 
|  | ok = false; | 
|  | } | 
|  | new_flags &= ~EF_MIPS_ABI; | 
|  | old_flags &= ~EF_MIPS_ABI; | 
|  | } | 
|  |  | 
|  | /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together | 
|  | and allow arbitrary mixing of the remaining ASEs (retain the union).  */ | 
|  | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | 
|  | { | 
|  | int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; | 
|  | int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; | 
|  | int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; | 
|  | int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; | 
|  | int micro_mis = old_m16 && new_micro; | 
|  | int m16_mis = old_micro && new_m16; | 
|  |  | 
|  | if (m16_mis || micro_mis) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: ASE mismatch: linking %s module with previous %s modules"), | 
|  | ibfd, | 
|  | m16_mis ? "MIPS16" : "microMIPS", | 
|  | m16_mis ? "microMIPS" : "MIPS16"); | 
|  | ok = false; | 
|  | } | 
|  |  | 
|  | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | 
|  |  | 
|  | new_flags &= ~ EF_MIPS_ARCH_ASE; | 
|  | old_flags &= ~ EF_MIPS_ARCH_ASE; | 
|  | } | 
|  |  | 
|  | /* Compare NaN encodings.  */ | 
|  | if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), | 
|  | ibfd, | 
|  | (new_flags & EF_MIPS_NAN2008 | 
|  | ? "-mnan=2008" : "-mnan=legacy"), | 
|  | (old_flags & EF_MIPS_NAN2008 | 
|  | ? "-mnan=2008" : "-mnan=legacy")); | 
|  | ok = false; | 
|  | new_flags &= ~EF_MIPS_NAN2008; | 
|  | old_flags &= ~EF_MIPS_NAN2008; | 
|  | } | 
|  |  | 
|  | /* Compare FP64 state.  */ | 
|  | if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), | 
|  | ibfd, | 
|  | (new_flags & EF_MIPS_FP64 | 
|  | ? "-mfp64" : "-mfp32"), | 
|  | (old_flags & EF_MIPS_FP64 | 
|  | ? "-mfp64" : "-mfp32")); | 
|  | ok = false; | 
|  | new_flags &= ~EF_MIPS_FP64; | 
|  | old_flags &= ~EF_MIPS_FP64; | 
|  | } | 
|  |  | 
|  | /* Warn about any other mismatches */ | 
|  | if (new_flags != old_flags) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler | 
|  | (_("%pB: uses different e_flags (%#x) fields than previous modules " | 
|  | "(%#x)"), | 
|  | ibfd, new_flags, old_flags); | 
|  | ok = false; | 
|  | } | 
|  |  | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | /* Merge object attributes from IBFD into OBFD.  Raise an error if | 
|  | there are conflicting attributes.  */ | 
|  | static bool | 
|  | mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *obfd = info->output_bfd; | 
|  | obj_attribute *in_attr; | 
|  | obj_attribute *out_attr; | 
|  | bfd *abi_fp_bfd; | 
|  | bfd *abi_msa_bfd; | 
|  |  | 
|  | abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; | 
|  | in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | 
|  | if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) | 
|  | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; | 
|  |  | 
|  | abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; | 
|  | if (!abi_msa_bfd | 
|  | && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) | 
|  | mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; | 
|  |  | 
|  | if (!elf_known_obj_attributes_proc (obfd)[0].i) | 
|  | { | 
|  | /* This is the first object.  Copy the attributes.  */ | 
|  | _bfd_elf_copy_obj_attributes (ibfd, obfd); | 
|  |  | 
|  | /* Use the Tag_null value to indicate the attributes have been | 
|  | initialized.  */ | 
|  | elf_known_obj_attributes_proc (obfd)[0].i = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge | 
|  | non-conflicting ones.  */ | 
|  | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; | 
|  | if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) | 
|  | { | 
|  | int out_fp, in_fp; | 
|  |  | 
|  | out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; | 
|  | in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; | 
|  | out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; | 
|  | if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) | 
|  | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; | 
|  | else if (out_fp == Val_GNU_MIPS_ABI_FP_XX | 
|  | && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE | 
|  | || in_fp == Val_GNU_MIPS_ABI_FP_64 | 
|  | || in_fp == Val_GNU_MIPS_ABI_FP_64A)) | 
|  | { | 
|  | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; | 
|  | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; | 
|  | } | 
|  | else if (in_fp == Val_GNU_MIPS_ABI_FP_XX | 
|  | && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE | 
|  | || out_fp == Val_GNU_MIPS_ABI_FP_64 | 
|  | || out_fp == Val_GNU_MIPS_ABI_FP_64A)) | 
|  | /* Keep the current setting.  */; | 
|  | else if (out_fp == Val_GNU_MIPS_ABI_FP_64A | 
|  | && in_fp == Val_GNU_MIPS_ABI_FP_64) | 
|  | { | 
|  | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; | 
|  | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; | 
|  | } | 
|  | else if (in_fp == Val_GNU_MIPS_ABI_FP_64A | 
|  | && out_fp == Val_GNU_MIPS_ABI_FP_64) | 
|  | /* Keep the current setting.  */; | 
|  | else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) | 
|  | { | 
|  | const char *out_string, *in_string; | 
|  |  | 
|  | out_string = _bfd_mips_fp_abi_string (out_fp); | 
|  | in_string = _bfd_mips_fp_abi_string (in_fp); | 
|  | /* First warn about cases involving unrecognised ABIs.  */ | 
|  | if (!out_string && !in_string) | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler | 
|  | (_("warning: %pB uses unknown floating point ABI %d " | 
|  | "(set by %pB), %pB uses unknown floating point ABI %d"), | 
|  | obfd, out_fp, abi_fp_bfd, ibfd, in_fp); | 
|  | else if (!out_string) | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("warning: %pB uses unknown floating point ABI %d " | 
|  | "(set by %pB), %pB uses %s"), | 
|  | obfd, out_fp, abi_fp_bfd, ibfd, in_string); | 
|  | else if (!in_string) | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("warning: %pB uses %s (set by %pB), " | 
|  | "%pB uses unknown floating point ABI %d"), | 
|  | obfd, out_string, abi_fp_bfd, ibfd, in_fp); | 
|  | else | 
|  | { | 
|  | /* If one of the bfds is soft-float, the other must be | 
|  | hard-float.  The exact choice of hard-float ABI isn't | 
|  | really relevant to the error message.  */ | 
|  | if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) | 
|  | out_string = "-mhard-float"; | 
|  | else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) | 
|  | in_string = "-mhard-float"; | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("warning: %pB uses %s (set by %pB), %pB uses %s"), | 
|  | obfd, out_string, abi_fp_bfd, ibfd, in_string); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge | 
|  | non-conflicting ones.  */ | 
|  | if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) | 
|  | { | 
|  | out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; | 
|  | if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) | 
|  | out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; | 
|  | else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) | 
|  | switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) | 
|  | { | 
|  | case Val_GNU_MIPS_ABI_MSA_128: | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("warning: %pB uses %s (set by %pB), " | 
|  | "%pB uses unknown MSA ABI %d"), | 
|  | obfd, "-mmsa", abi_msa_bfd, | 
|  | ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) | 
|  | { | 
|  | case Val_GNU_MIPS_ABI_MSA_128: | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("warning: %pB uses unknown MSA ABI %d " | 
|  | "(set by %pB), %pB uses %s"), | 
|  | obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, | 
|  | abi_msa_bfd, ibfd, "-mmsa"); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("warning: %pB uses unknown MSA ABI %d " | 
|  | "(set by %pB), %pB uses unknown MSA ABI %d"), | 
|  | obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, | 
|  | abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Merge Tag_compatibility attributes and any common GNU ones.  */ | 
|  | return _bfd_elf_merge_object_attributes (ibfd, info); | 
|  | } | 
|  |  | 
|  | /* Merge object ABI flags from IBFD into OBFD.  Raise an error if | 
|  | there are conflicting settings.  */ | 
|  |  | 
|  | static bool | 
|  | mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) | 
|  | { | 
|  | obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; | 
|  | struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); | 
|  | struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); | 
|  |  | 
|  | /* Update the output abiflags fp_abi using the computed fp_abi.  */ | 
|  | out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; | 
|  |  | 
|  | #define max(a, b) ((a) > (b) ? (a) : (b)) | 
|  | /* Merge abiflags.  */ | 
|  | out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, | 
|  | in_tdata->abiflags.isa_level); | 
|  | out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, | 
|  | in_tdata->abiflags.isa_rev); | 
|  | out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, | 
|  | in_tdata->abiflags.gpr_size); | 
|  | out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, | 
|  | in_tdata->abiflags.cpr1_size); | 
|  | out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, | 
|  | in_tdata->abiflags.cpr2_size); | 
|  | #undef max | 
|  | out_tdata->abiflags.ases |= in_tdata->abiflags.ases; | 
|  | out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Merge backend specific data from an object file to the output | 
|  | object file when linking.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *obfd = info->output_bfd; | 
|  | struct mips_elf_obj_tdata *out_tdata; | 
|  | struct mips_elf_obj_tdata *in_tdata; | 
|  | bool null_input_bfd = true; | 
|  | asection *sec; | 
|  | bool ok; | 
|  |  | 
|  | /* Check if we have the same endianness.  */ | 
|  | if (! _bfd_generic_verify_endian_match (ibfd, info)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: endianness incompatible with that of the selected emulation"), | 
|  | ibfd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) | 
|  | return true; | 
|  |  | 
|  | in_tdata = mips_elf_tdata (ibfd); | 
|  | out_tdata = mips_elf_tdata (obfd); | 
|  |  | 
|  | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: ABI is incompatible with that of the selected emulation"), | 
|  | ibfd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Check to see if the input BFD actually contains any sections.  If not, | 
|  | then it has no attributes, and its flags may not have been initialized | 
|  | either, but it cannot actually cause any incompatibility.  */ | 
|  | /* FIXME: This excludes any input shared library from consideration.  */ | 
|  | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | /* Ignore synthetic sections and empty .text, .data and .bss sections | 
|  | which are automatically generated by gas.  Also ignore fake | 
|  | (s)common sections, since merely defining a common symbol does | 
|  | not affect compatibility.  */ | 
|  | if ((sec->flags & SEC_IS_COMMON) == 0 | 
|  | && strcmp (sec->name, ".reginfo") | 
|  | && strcmp (sec->name, ".mdebug") | 
|  | && (sec->size != 0 | 
|  | || (strcmp (sec->name, ".text") | 
|  | && strcmp (sec->name, ".data") | 
|  | && strcmp (sec->name, ".bss")))) | 
|  | { | 
|  | null_input_bfd = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (null_input_bfd) | 
|  | return true; | 
|  |  | 
|  | /* Populate abiflags using existing information.  */ | 
|  | if (in_tdata->abiflags_valid) | 
|  | { | 
|  | obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | 
|  | Elf_Internal_ABIFlags_v0 in_abiflags; | 
|  | Elf_Internal_ABIFlags_v0 abiflags; | 
|  |  | 
|  | /* Set up the FP ABI attribute from the abiflags if it is not already | 
|  | set.  */ | 
|  | if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) | 
|  | in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; | 
|  |  | 
|  | infer_mips_abiflags (ibfd, &abiflags); | 
|  | in_abiflags = in_tdata->abiflags; | 
|  |  | 
|  | /* It is not possible to infer the correct ISA revision | 
|  | for R3 or R5 so drop down to R2 for the checks.  */ | 
|  | if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) | 
|  | in_abiflags.isa_rev = 2; | 
|  |  | 
|  | if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) | 
|  | < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: inconsistent ISA between e_flags and " | 
|  | ".MIPS.abiflags"), ibfd); | 
|  | if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY | 
|  | && in_abiflags.fp_abi != abiflags.fp_abi) | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and " | 
|  | ".MIPS.abiflags"), ibfd); | 
|  | if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: inconsistent ASEs between e_flags and " | 
|  | ".MIPS.abiflags"), ibfd); | 
|  | /* The isa_ext is allowed to be an extension of what can be inferred | 
|  | from e_flags.  */ | 
|  | if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), | 
|  | bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: inconsistent ISA extensions between e_flags and " | 
|  | ".MIPS.abiflags"), ibfd); | 
|  | if (in_abiflags.flags2 != 0) | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: unexpected flag in the flags2 field of " | 
|  | ".MIPS.abiflags (0x%lx)"), ibfd, | 
|  | in_abiflags.flags2); | 
|  | } | 
|  | else | 
|  | { | 
|  | infer_mips_abiflags (ibfd, &in_tdata->abiflags); | 
|  | in_tdata->abiflags_valid = true; | 
|  | } | 
|  |  | 
|  | if (!out_tdata->abiflags_valid) | 
|  | { | 
|  | /* Copy input abiflags if output abiflags are not already valid.  */ | 
|  | out_tdata->abiflags = in_tdata->abiflags; | 
|  | out_tdata->abiflags_valid = true; | 
|  | } | 
|  |  | 
|  | if (! elf_flags_init (obfd)) | 
|  | { | 
|  | elf_flags_init (obfd) = true; | 
|  | elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; | 
|  | elf_elfheader (obfd)->e_ident[EI_CLASS] | 
|  | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | 
|  |  | 
|  | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | 
|  | && (bfd_get_arch_info (obfd)->the_default | 
|  | || mips_mach_extends_p (bfd_get_mach (obfd), | 
|  | bfd_get_mach (ibfd)))) | 
|  | { | 
|  | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | 
|  | bfd_get_mach (ibfd))) | 
|  | return false; | 
|  |  | 
|  | /* Update the ABI flags isa_level, isa_rev and isa_ext fields.  */ | 
|  | update_mips_abiflags_isa (obfd, &out_tdata->abiflags); | 
|  | } | 
|  |  | 
|  | ok = true; | 
|  | } | 
|  | else | 
|  | ok = mips_elf_merge_obj_e_flags (ibfd, info); | 
|  |  | 
|  | ok = mips_elf_merge_obj_attributes (ibfd, info) && ok; | 
|  |  | 
|  | ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; | 
|  |  | 
|  | if (!ok) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) | 
|  | { | 
|  | BFD_ASSERT (!elf_flags_init (abfd) | 
|  | || elf_elfheader (abfd)->e_flags == flags); | 
|  |  | 
|  | elf_elfheader (abfd)->e_flags = flags; | 
|  | elf_flags_init (abfd) = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | char * | 
|  | _bfd_mips_elf_get_target_dtag (bfd_vma dtag) | 
|  | { | 
|  | switch (dtag) | 
|  | { | 
|  | default: return ""; | 
|  | case DT_MIPS_RLD_VERSION: | 
|  | return "MIPS_RLD_VERSION"; | 
|  | case DT_MIPS_TIME_STAMP: | 
|  | return "MIPS_TIME_STAMP"; | 
|  | case DT_MIPS_ICHECKSUM: | 
|  | return "MIPS_ICHECKSUM"; | 
|  | case DT_MIPS_IVERSION: | 
|  | return "MIPS_IVERSION"; | 
|  | case DT_MIPS_FLAGS: | 
|  | return "MIPS_FLAGS"; | 
|  | case DT_MIPS_BASE_ADDRESS: | 
|  | return "MIPS_BASE_ADDRESS"; | 
|  | case DT_MIPS_MSYM: | 
|  | return "MIPS_MSYM"; | 
|  | case DT_MIPS_CONFLICT: | 
|  | return "MIPS_CONFLICT"; | 
|  | case DT_MIPS_LIBLIST: | 
|  | return "MIPS_LIBLIST"; | 
|  | case DT_MIPS_LOCAL_GOTNO: | 
|  | return "MIPS_LOCAL_GOTNO"; | 
|  | case DT_MIPS_CONFLICTNO: | 
|  | return "MIPS_CONFLICTNO"; | 
|  | case DT_MIPS_LIBLISTNO: | 
|  | return "MIPS_LIBLISTNO"; | 
|  | case DT_MIPS_SYMTABNO: | 
|  | return "MIPS_SYMTABNO"; | 
|  | case DT_MIPS_UNREFEXTNO: | 
|  | return "MIPS_UNREFEXTNO"; | 
|  | case DT_MIPS_GOTSYM: | 
|  | return "MIPS_GOTSYM"; | 
|  | case DT_MIPS_HIPAGENO: | 
|  | return "MIPS_HIPAGENO"; | 
|  | case DT_MIPS_RLD_MAP: | 
|  | return "MIPS_RLD_MAP"; | 
|  | case DT_MIPS_RLD_MAP_REL: | 
|  | return "MIPS_RLD_MAP_REL"; | 
|  | case DT_MIPS_DELTA_CLASS: | 
|  | return "MIPS_DELTA_CLASS"; | 
|  | case DT_MIPS_DELTA_CLASS_NO: | 
|  | return "MIPS_DELTA_CLASS_NO"; | 
|  | case DT_MIPS_DELTA_INSTANCE: | 
|  | return "MIPS_DELTA_INSTANCE"; | 
|  | case DT_MIPS_DELTA_INSTANCE_NO: | 
|  | return "MIPS_DELTA_INSTANCE_NO"; | 
|  | case DT_MIPS_DELTA_RELOC: | 
|  | return "MIPS_DELTA_RELOC"; | 
|  | case DT_MIPS_DELTA_RELOC_NO: | 
|  | return "MIPS_DELTA_RELOC_NO"; | 
|  | case DT_MIPS_DELTA_SYM: | 
|  | return "MIPS_DELTA_SYM"; | 
|  | case DT_MIPS_DELTA_SYM_NO: | 
|  | return "MIPS_DELTA_SYM_NO"; | 
|  | case DT_MIPS_DELTA_CLASSSYM: | 
|  | return "MIPS_DELTA_CLASSSYM"; | 
|  | case DT_MIPS_DELTA_CLASSSYM_NO: | 
|  | return "MIPS_DELTA_CLASSSYM_NO"; | 
|  | case DT_MIPS_CXX_FLAGS: | 
|  | return "MIPS_CXX_FLAGS"; | 
|  | case DT_MIPS_PIXIE_INIT: | 
|  | return "MIPS_PIXIE_INIT"; | 
|  | case DT_MIPS_SYMBOL_LIB: | 
|  | return "MIPS_SYMBOL_LIB"; | 
|  | case DT_MIPS_LOCALPAGE_GOTIDX: | 
|  | return "MIPS_LOCALPAGE_GOTIDX"; | 
|  | case DT_MIPS_LOCAL_GOTIDX: | 
|  | return "MIPS_LOCAL_GOTIDX"; | 
|  | case DT_MIPS_HIDDEN_GOTIDX: | 
|  | return "MIPS_HIDDEN_GOTIDX"; | 
|  | case DT_MIPS_PROTECTED_GOTIDX: | 
|  | return "MIPS_PROTECTED_GOT_IDX"; | 
|  | case DT_MIPS_OPTIONS: | 
|  | return "MIPS_OPTIONS"; | 
|  | case DT_MIPS_INTERFACE: | 
|  | return "MIPS_INTERFACE"; | 
|  | case DT_MIPS_DYNSTR_ALIGN: | 
|  | return "DT_MIPS_DYNSTR_ALIGN"; | 
|  | case DT_MIPS_INTERFACE_SIZE: | 
|  | return "DT_MIPS_INTERFACE_SIZE"; | 
|  | case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: | 
|  | return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; | 
|  | case DT_MIPS_PERF_SUFFIX: | 
|  | return "DT_MIPS_PERF_SUFFIX"; | 
|  | case DT_MIPS_COMPACT_SIZE: | 
|  | return "DT_MIPS_COMPACT_SIZE"; | 
|  | case DT_MIPS_GP_VALUE: | 
|  | return "DT_MIPS_GP_VALUE"; | 
|  | case DT_MIPS_AUX_DYNAMIC: | 
|  | return "DT_MIPS_AUX_DYNAMIC"; | 
|  | case DT_MIPS_PLTGOT: | 
|  | return "DT_MIPS_PLTGOT"; | 
|  | case DT_MIPS_RWPLT: | 
|  | return "DT_MIPS_RWPLT"; | 
|  | case DT_MIPS_XHASH: | 
|  | return "DT_MIPS_XHASH"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if | 
|  | not known.  */ | 
|  |  | 
|  | const char * | 
|  | _bfd_mips_fp_abi_string (int fp) | 
|  | { | 
|  | switch (fp) | 
|  | { | 
|  | /* These strings aren't translated because they're simply | 
|  | option lists.  */ | 
|  | case Val_GNU_MIPS_ABI_FP_DOUBLE: | 
|  | return "-mdouble-float"; | 
|  |  | 
|  | case Val_GNU_MIPS_ABI_FP_SINGLE: | 
|  | return "-msingle-float"; | 
|  |  | 
|  | case Val_GNU_MIPS_ABI_FP_SOFT: | 
|  | return "-msoft-float"; | 
|  |  | 
|  | case Val_GNU_MIPS_ABI_FP_OLD_64: | 
|  | return _("-mips32r2 -mfp64 (12 callee-saved)"); | 
|  |  | 
|  | case Val_GNU_MIPS_ABI_FP_XX: | 
|  | return "-mfpxx"; | 
|  |  | 
|  | case Val_GNU_MIPS_ABI_FP_64: | 
|  | return "-mgp32 -mfp64"; | 
|  |  | 
|  | case Val_GNU_MIPS_ABI_FP_64A: | 
|  | return "-mgp32 -mfp64 -mno-odd-spreg"; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_mips_ases (FILE *file, unsigned int mask) | 
|  | { | 
|  | if (mask & AFL_ASE_DSP) | 
|  | fputs ("\n\tDSP ASE", file); | 
|  | if (mask & AFL_ASE_DSPR2) | 
|  | fputs ("\n\tDSP R2 ASE", file); | 
|  | if (mask & AFL_ASE_DSPR3) | 
|  | fputs ("\n\tDSP R3 ASE", file); | 
|  | if (mask & AFL_ASE_EVA) | 
|  | fputs ("\n\tEnhanced VA Scheme", file); | 
|  | if (mask & AFL_ASE_MCU) | 
|  | fputs ("\n\tMCU (MicroController) ASE", file); | 
|  | if (mask & AFL_ASE_MDMX) | 
|  | fputs ("\n\tMDMX ASE", file); | 
|  | if (mask & AFL_ASE_MIPS3D) | 
|  | fputs ("\n\tMIPS-3D ASE", file); | 
|  | if (mask & AFL_ASE_MT) | 
|  | fputs ("\n\tMT ASE", file); | 
|  | if (mask & AFL_ASE_SMARTMIPS) | 
|  | fputs ("\n\tSmartMIPS ASE", file); | 
|  | if (mask & AFL_ASE_VIRT) | 
|  | fputs ("\n\tVZ ASE", file); | 
|  | if (mask & AFL_ASE_MSA) | 
|  | fputs ("\n\tMSA ASE", file); | 
|  | if (mask & AFL_ASE_MIPS16) | 
|  | fputs ("\n\tMIPS16 ASE", file); | 
|  | if (mask & AFL_ASE_MICROMIPS) | 
|  | fputs ("\n\tMICROMIPS ASE", file); | 
|  | if (mask & AFL_ASE_XPA) | 
|  | fputs ("\n\tXPA ASE", file); | 
|  | if (mask & AFL_ASE_MIPS16E2) | 
|  | fputs ("\n\tMIPS16e2 ASE", file); | 
|  | if (mask & AFL_ASE_CRC) | 
|  | fputs ("\n\tCRC ASE", file); | 
|  | if (mask & AFL_ASE_GINV) | 
|  | fputs ("\n\tGINV ASE", file); | 
|  | if (mask & AFL_ASE_LOONGSON_MMI) | 
|  | fputs ("\n\tLoongson MMI ASE", file); | 
|  | if (mask & AFL_ASE_LOONGSON_CAM) | 
|  | fputs ("\n\tLoongson CAM ASE", file); | 
|  | if (mask & AFL_ASE_LOONGSON_EXT) | 
|  | fputs ("\n\tLoongson EXT ASE", file); | 
|  | if (mask & AFL_ASE_LOONGSON_EXT2) | 
|  | fputs ("\n\tLoongson EXT2 ASE", file); | 
|  | if (mask == 0) | 
|  | fprintf (file, "\n\t%s", _("None")); | 
|  | else if ((mask & ~AFL_ASE_MASK) != 0) | 
|  | fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_mips_isa_ext (FILE *file, unsigned int isa_ext) | 
|  | { | 
|  | switch (isa_ext) | 
|  | { | 
|  | case 0: | 
|  | fputs (_("None"), file); | 
|  | break; | 
|  | case AFL_EXT_XLR: | 
|  | fputs ("RMI XLR", file); | 
|  | break; | 
|  | case AFL_EXT_OCTEON3: | 
|  | fputs ("Cavium Networks Octeon3", file); | 
|  | break; | 
|  | case AFL_EXT_OCTEON2: | 
|  | fputs ("Cavium Networks Octeon2", file); | 
|  | break; | 
|  | case AFL_EXT_OCTEONP: | 
|  | fputs ("Cavium Networks OcteonP", file); | 
|  | break; | 
|  | case AFL_EXT_OCTEON: | 
|  | fputs ("Cavium Networks Octeon", file); | 
|  | break; | 
|  | case AFL_EXT_5900: | 
|  | fputs ("Toshiba R5900", file); | 
|  | break; | 
|  | case AFL_EXT_4650: | 
|  | fputs ("MIPS R4650", file); | 
|  | break; | 
|  | case AFL_EXT_4010: | 
|  | fputs ("LSI R4010", file); | 
|  | break; | 
|  | case AFL_EXT_4100: | 
|  | fputs ("NEC VR4100", file); | 
|  | break; | 
|  | case AFL_EXT_3900: | 
|  | fputs ("Toshiba R3900", file); | 
|  | break; | 
|  | case AFL_EXT_10000: | 
|  | fputs ("MIPS R10000", file); | 
|  | break; | 
|  | case AFL_EXT_SB1: | 
|  | fputs ("Broadcom SB-1", file); | 
|  | break; | 
|  | case AFL_EXT_4111: | 
|  | fputs ("NEC VR4111/VR4181", file); | 
|  | break; | 
|  | case AFL_EXT_4120: | 
|  | fputs ("NEC VR4120", file); | 
|  | break; | 
|  | case AFL_EXT_5400: | 
|  | fputs ("NEC VR5400", file); | 
|  | break; | 
|  | case AFL_EXT_5500: | 
|  | fputs ("NEC VR5500", file); | 
|  | break; | 
|  | case AFL_EXT_LOONGSON_2E: | 
|  | fputs ("ST Microelectronics Loongson 2E", file); | 
|  | break; | 
|  | case AFL_EXT_LOONGSON_2F: | 
|  | fputs ("ST Microelectronics Loongson 2F", file); | 
|  | break; | 
|  | case AFL_EXT_INTERAPTIV_MR2: | 
|  | fputs ("Imagination interAptiv MR2", file); | 
|  | break; | 
|  | default: | 
|  | fprintf (file, "%s (%d)", _("Unknown"), isa_ext); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_mips_fp_abi_value (FILE *file, int val) | 
|  | { | 
|  | switch (val) | 
|  | { | 
|  | case Val_GNU_MIPS_ABI_FP_ANY: | 
|  | fprintf (file, _("Hard or soft float\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_DOUBLE: | 
|  | fprintf (file, _("Hard float (double precision)\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_SINGLE: | 
|  | fprintf (file, _("Hard float (single precision)\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_SOFT: | 
|  | fprintf (file, _("Soft float\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_OLD_64: | 
|  | fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_XX: | 
|  | fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_64: | 
|  | fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); | 
|  | break; | 
|  | case Val_GNU_MIPS_ABI_FP_64A: | 
|  | fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); | 
|  | break; | 
|  | default: | 
|  | fprintf (file, "??? (%d)\n", val); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | get_mips_reg_size (int reg_size) | 
|  | { | 
|  | return (reg_size == AFL_REG_NONE) ? 0 | 
|  | : (reg_size == AFL_REG_32) ? 32 | 
|  | : (reg_size == AFL_REG_64) ? 64 | 
|  | : (reg_size == AFL_REG_128) ? 128 | 
|  | : -1; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) | 
|  | { | 
|  | FILE *file = ptr; | 
|  |  | 
|  | BFD_ASSERT (abfd != NULL && ptr != NULL); | 
|  |  | 
|  | /* Print normal ELF private data.  */ | 
|  | _bfd_elf_print_private_bfd_data (abfd, ptr); | 
|  |  | 
|  | /* xgettext:c-format */ | 
|  | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | 
|  |  | 
|  | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | 
|  | fprintf (file, _(" [abi=O32]")); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | 
|  | fprintf (file, _(" [abi=O64]")); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | 
|  | fprintf (file, _(" [abi=EABI32]")); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | 
|  | fprintf (file, _(" [abi=EABI64]")); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | 
|  | fprintf (file, _(" [abi unknown]")); | 
|  | else if (ABI_N32_P (abfd)) | 
|  | fprintf (file, _(" [abi=N32]")); | 
|  | else if (ABI_64_P (abfd)) | 
|  | fprintf (file, _(" [abi=64]")); | 
|  | else | 
|  | fprintf (file, _(" [no abi set]")); | 
|  |  | 
|  | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | 
|  | fprintf (file, " [mips1]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | 
|  | fprintf (file, " [mips2]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | 
|  | fprintf (file, " [mips3]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | 
|  | fprintf (file, " [mips4]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | 
|  | fprintf (file, " [mips5]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | 
|  | fprintf (file, " [mips32]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | 
|  | fprintf (file, " [mips64]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) | 
|  | fprintf (file, " [mips32r2]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) | 
|  | fprintf (file, " [mips64r2]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) | 
|  | fprintf (file, " [mips32r6]"); | 
|  | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) | 
|  | fprintf (file, " [mips64r6]"); | 
|  | else | 
|  | fprintf (file, _(" [unknown ISA]")); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) | 
|  | fprintf (file, " [mdmx]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | 
|  | fprintf (file, " [mips16]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) | 
|  | fprintf (file, " [micromips]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) | 
|  | fprintf (file, " [nan2008]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) | 
|  | fprintf (file, " [old fp64]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) | 
|  | fprintf (file, " [32bitmode]"); | 
|  | else | 
|  | fprintf (file, _(" [not 32bitmode]")); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) | 
|  | fprintf (file, " [noreorder]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) | 
|  | fprintf (file, " [PIC]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) | 
|  | fprintf (file, " [CPIC]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) | 
|  | fprintf (file, " [XGOT]"); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) | 
|  | fprintf (file, " [UCODE]"); | 
|  |  | 
|  | fputc ('\n', file); | 
|  |  | 
|  | if (mips_elf_tdata (abfd)->abiflags_valid) | 
|  | { | 
|  | Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; | 
|  | fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); | 
|  | fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); | 
|  | if (abiflags->isa_rev > 1) | 
|  | fprintf (file, "r%d", abiflags->isa_rev); | 
|  | fprintf (file, "\nGPR size: %d", | 
|  | get_mips_reg_size (abiflags->gpr_size)); | 
|  | fprintf (file, "\nCPR1 size: %d", | 
|  | get_mips_reg_size (abiflags->cpr1_size)); | 
|  | fprintf (file, "\nCPR2 size: %d", | 
|  | get_mips_reg_size (abiflags->cpr2_size)); | 
|  | fputs ("\nFP ABI: ", file); | 
|  | print_mips_fp_abi_value (file, abiflags->fp_abi); | 
|  | fputs ("ISA Extension: ", file); | 
|  | print_mips_isa_ext (file, abiflags->isa_ext); | 
|  | fputs ("\nASEs:", file); | 
|  | print_mips_ases (file, abiflags->ases); | 
|  | fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); | 
|  | fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); | 
|  | fputc ('\n', file); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".lit4"),	  0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | 
|  | { STRING_COMMA_LEN (".lit8"),	  0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | 
|  | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, | 
|  | { STRING_COMMA_LEN (".sbss"),	 -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | 
|  | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | 
|  | { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 }, | 
|  | { STRING_COMMA_LEN (".MIPS.xhash"),  0, SHT_MIPS_XHASH,   SHF_ALLOC }, | 
|  | { NULL,		      0,  0, 0,		     0 } | 
|  | }; | 
|  |  | 
|  | /* Merge non visibility st_other attributes.  Ensure that the | 
|  | STO_OPTIONAL flag is copied into h->other, even if this is not a | 
|  | definiton of the symbol.  */ | 
|  | void | 
|  | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | 
|  | unsigned int st_other, | 
|  | bool definition, | 
|  | bool dynamic ATTRIBUTE_UNUSED) | 
|  | { | 
|  | if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0) | 
|  | { | 
|  | unsigned char other; | 
|  |  | 
|  | other = (definition ? st_other : h->other); | 
|  | other &= ~ELF_ST_VISIBILITY (-1); | 
|  | h->other = other | ELF_ST_VISIBILITY (h->other); | 
|  | } | 
|  |  | 
|  | if (!definition | 
|  | && ELF_MIPS_IS_OPTIONAL (st_other)) | 
|  | h->other |= STO_OPTIONAL; | 
|  | } | 
|  |  | 
|  | /* Decide whether an undefined symbol is special and can be ignored. | 
|  | This is the case for OPTIONAL symbols on IRIX.  */ | 
|  | bool | 
|  | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | 
|  | { | 
|  | return ELF_MIPS_IS_OPTIONAL (h->other) != 0; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) | 
|  | { | 
|  | return (sym->st_shndx == SHN_COMMON | 
|  | || sym->st_shndx == SHN_MIPS_ACOMMON | 
|  | || sym->st_shndx == SHN_MIPS_SCOMMON); | 
|  | } | 
|  |  | 
|  | /* Return address for Ith PLT stub in section PLT, for relocation REL | 
|  | or (bfd_vma) -1 if it should not be included.  */ | 
|  |  | 
|  | bfd_vma | 
|  | _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, | 
|  | const arelent *rel ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return (plt->vma | 
|  | + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) | 
|  | + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); | 
|  | } | 
|  |  | 
|  | /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16 | 
|  | and microMIPS PLT slots we may have a many-to-one mapping between .plt | 
|  | and .got.plt and also the slots may be of a different size each we walk | 
|  | the PLT manually fetching instructions and matching them against known | 
|  | patterns.  To make things easier standard MIPS slots, if any, always come | 
|  | first.  As we don't create proper ELF symbols we use the UDATA.I member | 
|  | of ASYMBOL to carry ISA annotation.  The encoding used is the same as | 
|  | with the ST_OTHER member of the ELF symbol.  */ | 
|  |  | 
|  | long | 
|  | _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, | 
|  | long symcount ATTRIBUTE_UNUSED, | 
|  | asymbol **syms ATTRIBUTE_UNUSED, | 
|  | long dynsymcount, asymbol **dynsyms, | 
|  | asymbol **ret) | 
|  | { | 
|  | static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; | 
|  | static const char microsuffix[] = "@micromipsplt"; | 
|  | static const char m16suffix[] = "@mips16plt"; | 
|  | static const char mipssuffix[] = "@plt"; | 
|  |  | 
|  | bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | bool micromips_p = MICROMIPS_P (abfd); | 
|  | Elf_Internal_Shdr *hdr; | 
|  | bfd_byte *plt_data; | 
|  | bfd_vma plt_offset; | 
|  | unsigned int other; | 
|  | bfd_vma entry_size; | 
|  | bfd_vma plt0_size; | 
|  | asection *relplt; | 
|  | bfd_vma opcode; | 
|  | asection *plt; | 
|  | asymbol *send; | 
|  | size_t size; | 
|  | char *names; | 
|  | long counti; | 
|  | arelent *p; | 
|  | asymbol *s; | 
|  | char *nend; | 
|  | long count; | 
|  | long pi; | 
|  | long i; | 
|  | long n; | 
|  |  | 
|  | *ret = NULL; | 
|  |  | 
|  | if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) | 
|  | return 0; | 
|  |  | 
|  | relplt = bfd_get_section_by_name (abfd, ".rel.plt"); | 
|  | if (relplt == NULL) | 
|  | return 0; | 
|  |  | 
|  | hdr = &elf_section_data (relplt)->this_hdr; | 
|  | if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) | 
|  | return 0; | 
|  |  | 
|  | plt = bfd_get_section_by_name (abfd, ".plt"); | 
|  | if (plt == NULL) | 
|  | return 0; | 
|  |  | 
|  | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; | 
|  | if (!(*slurp_relocs) (abfd, relplt, dynsyms, true)) | 
|  | return -1; | 
|  | p = relplt->relocation; | 
|  |  | 
|  | /* Calculating the exact amount of space required for symbols would | 
|  | require two passes over the PLT, so just pessimise assuming two | 
|  | PLT slots per relocation.  */ | 
|  | count = relplt->size / hdr->sh_entsize; | 
|  | counti = count * bed->s->int_rels_per_ext_rel; | 
|  | size = 2 * count * sizeof (asymbol); | 
|  | size += count * (sizeof (mipssuffix) + | 
|  | (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); | 
|  | for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) | 
|  | size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); | 
|  |  | 
|  | /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */ | 
|  | size += sizeof (asymbol) + sizeof (pltname); | 
|  |  | 
|  | if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) | 
|  | return -1; | 
|  |  | 
|  | if (plt->size < 16) | 
|  | return -1; | 
|  |  | 
|  | s = *ret = bfd_malloc (size); | 
|  | if (s == NULL) | 
|  | return -1; | 
|  | send = s + 2 * count + 1; | 
|  |  | 
|  | names = (char *) send; | 
|  | nend = (char *) s + size; | 
|  | n = 0; | 
|  |  | 
|  | opcode = bfd_get_micromips_32 (abfd, plt_data + 12); | 
|  | if (opcode == 0x3302fffe) | 
|  | { | 
|  | if (!micromips_p) | 
|  | return -1; | 
|  | plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); | 
|  | other = STO_MICROMIPS; | 
|  | } | 
|  | else if (opcode == 0x0398c1d0) | 
|  | { | 
|  | if (!micromips_p) | 
|  | return -1; | 
|  | plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); | 
|  | other = STO_MICROMIPS; | 
|  | } | 
|  | else | 
|  | { | 
|  | plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | 
|  | other = 0; | 
|  | } | 
|  |  | 
|  | s->the_bfd = abfd; | 
|  | s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; | 
|  | s->section = plt; | 
|  | s->value = 0; | 
|  | s->name = names; | 
|  | s->udata.i = other; | 
|  | memcpy (names, pltname, sizeof (pltname)); | 
|  | names += sizeof (pltname); | 
|  | ++s, ++n; | 
|  |  | 
|  | pi = 0; | 
|  | for (plt_offset = plt0_size; | 
|  | plt_offset + 8 <= plt->size && s < send; | 
|  | plt_offset += entry_size) | 
|  | { | 
|  | bfd_vma gotplt_addr; | 
|  | const char *suffix; | 
|  | bfd_vma gotplt_hi; | 
|  | bfd_vma gotplt_lo; | 
|  | size_t suffixlen; | 
|  |  | 
|  | opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); | 
|  |  | 
|  | /* Check if the second word matches the expected MIPS16 instruction.  */ | 
|  | if (opcode == 0x651aeb00) | 
|  | { | 
|  | if (micromips_p) | 
|  | return -1; | 
|  | /* Truncated table???  */ | 
|  | if (plt_offset + 16 > plt->size) | 
|  | break; | 
|  | gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); | 
|  | entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); | 
|  | suffixlen = sizeof (m16suffix); | 
|  | suffix = m16suffix; | 
|  | other = STO_MIPS16; | 
|  | } | 
|  | /* Likewise the expected microMIPS instruction (no insn32 mode).  */ | 
|  | else if (opcode == 0xff220000) | 
|  | { | 
|  | if (!micromips_p) | 
|  | return -1; | 
|  | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; | 
|  | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; | 
|  | gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; | 
|  | gotplt_lo <<= 2; | 
|  | gotplt_addr = gotplt_hi + gotplt_lo; | 
|  | gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; | 
|  | entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); | 
|  | suffixlen = sizeof (microsuffix); | 
|  | suffix = microsuffix; | 
|  | other = STO_MICROMIPS; | 
|  | } | 
|  | /* Likewise the expected microMIPS instruction (insn32 mode).  */ | 
|  | else if ((opcode & 0xffff0000) == 0xff2f0000) | 
|  | { | 
|  | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; | 
|  | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; | 
|  | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; | 
|  | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; | 
|  | gotplt_addr = gotplt_hi + gotplt_lo; | 
|  | entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); | 
|  | suffixlen = sizeof (microsuffix); | 
|  | suffix = microsuffix; | 
|  | other = STO_MICROMIPS; | 
|  | } | 
|  | /* Otherwise assume standard MIPS code.  */ | 
|  | else | 
|  | { | 
|  | gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; | 
|  | gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; | 
|  | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; | 
|  | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; | 
|  | gotplt_addr = gotplt_hi + gotplt_lo; | 
|  | entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); | 
|  | suffixlen = sizeof (mipssuffix); | 
|  | suffix = mipssuffix; | 
|  | other = 0; | 
|  | } | 
|  | /* Truncated table???  */ | 
|  | if (plt_offset + entry_size > plt->size) | 
|  | break; | 
|  |  | 
|  | for (i = 0; | 
|  | i < count && p[pi].address != gotplt_addr; | 
|  | i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); | 
|  |  | 
|  | if (i < count) | 
|  | { | 
|  | size_t namelen; | 
|  | size_t len; | 
|  |  | 
|  | *s = **p[pi].sym_ptr_ptr; | 
|  | /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since | 
|  | we are defining a symbol, ensure one of them is set.  */ | 
|  | if ((s->flags & BSF_LOCAL) == 0) | 
|  | s->flags |= BSF_GLOBAL; | 
|  | s->flags |= BSF_SYNTHETIC; | 
|  | s->section = plt; | 
|  | s->value = plt_offset; | 
|  | s->name = names; | 
|  | s->udata.i = other; | 
|  |  | 
|  | len = strlen ((*p[pi].sym_ptr_ptr)->name); | 
|  | namelen = len + suffixlen; | 
|  | if (names + namelen > nend) | 
|  | break; | 
|  |  | 
|  | memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); | 
|  | names += len; | 
|  | memcpy (names, suffix, suffixlen); | 
|  | names += suffixlen; | 
|  |  | 
|  | ++s, ++n; | 
|  | pi = (pi + bed->s->int_rels_per_ext_rel) % counti; | 
|  | } | 
|  | } | 
|  |  | 
|  | free (plt_data); | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Return the ABI flags associated with ABFD if available.  */ | 
|  |  | 
|  | Elf_Internal_ABIFlags_v0 * | 
|  | bfd_mips_elf_get_abiflags (bfd *abfd) | 
|  | { | 
|  | struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd); | 
|  |  | 
|  | return tdata->abiflags_valid ? &tdata->abiflags : NULL; | 
|  | } | 
|  |  | 
|  | /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header | 
|  | field.  Taken from `libc-abis.h' generated at GNU libc build time. | 
|  | Using a MIPS_ prefix as other libc targets use different values.  */ | 
|  | enum | 
|  | { | 
|  | MIPS_LIBC_ABI_DEFAULT = 0, | 
|  | MIPS_LIBC_ABI_MIPS_PLT, | 
|  | MIPS_LIBC_ABI_UNIQUE, | 
|  | MIPS_LIBC_ABI_MIPS_O32_FP64, | 
|  | MIPS_LIBC_ABI_ABSOLUTE, | 
|  | MIPS_LIBC_ABI_XHASH, | 
|  | MIPS_LIBC_ABI_MAX | 
|  | }; | 
|  |  | 
|  | bool | 
|  | _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info) | 
|  | { | 
|  | struct mips_elf_link_hash_table *htab = NULL; | 
|  | Elf_Internal_Ehdr *i_ehdrp; | 
|  |  | 
|  | if (!_bfd_elf_init_file_header (abfd, link_info)) | 
|  | return false; | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  | if (link_info) | 
|  | { | 
|  | htab = mips_elf_hash_table (link_info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | } | 
|  |  | 
|  | if (htab != NULL | 
|  | && htab->use_plts_and_copy_relocs | 
|  | && htab->root.target_os != is_vxworks) | 
|  | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT; | 
|  |  | 
|  | if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 | 
|  | || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) | 
|  | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64; | 
|  |  | 
|  | /* Mark that we need support for absolute symbols in the dynamic loader.  */ | 
|  | if (htab != NULL && htab->use_absolute_zero && htab->gnu_target) | 
|  | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE; | 
|  |  | 
|  | /* Mark that we need support for .MIPS.xhash in the dynamic linker, | 
|  | if it is the only hash section that will be created.  */ | 
|  | if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash) | 
|  | i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int | 
|  | _bfd_mips_elf_compact_eh_encoding | 
|  | (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return DW_EH_PE_pcrel | DW_EH_PE_sdata4; | 
|  | } | 
|  |  | 
|  | /* Return the opcode for can't unwind.  */ | 
|  |  | 
|  | int | 
|  | _bfd_mips_elf_cant_unwind_opcode | 
|  | (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return COMPACT_EH_CANT_UNWIND_OPCODE; | 
|  | } | 
|  |  | 
|  | /* Record a position XLAT_LOC in the xlat translation table, associated with | 
|  | the hash entry H.  The entry in the translation table will later be | 
|  | populated with the real symbol dynindx.  */ | 
|  |  | 
|  | void | 
|  | _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h, | 
|  | bfd_vma xlat_loc) | 
|  | { | 
|  | struct mips_elf_link_hash_entry *hmips; | 
|  |  | 
|  | hmips = (struct mips_elf_link_hash_entry *) h; | 
|  | hmips->mipsxhash_loc = xlat_loc; | 
|  | } |