| /* Intel 80386/80486-specific support for 32-bit ELF |
| Copyright (C) 1993-2016 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf-nacl.h" |
| #include "elf-vxworks.h" |
| #include "bfd_stdint.h" |
| #include "objalloc.h" |
| #include "hashtab.h" |
| #include "dwarf2.h" |
| #include "opcode/i386.h" |
| |
| /* 386 uses REL relocations instead of RELA. */ |
| #define USE_REL 1 |
| |
| #include "elf/i386.h" |
| |
| static reloc_howto_type elf_howto_table[]= |
| { |
| HOWTO(R_386_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_NONE", |
| TRUE, 0x00000000, 0x00000000, FALSE), |
| HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PC32", |
| TRUE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOT32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PLT32", |
| TRUE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_COPY", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GLOB_DAT", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_JUMP_SLOT", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_RELATIVE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOTOFF", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOTPC", |
| TRUE, 0xffffffff, 0xffffffff, TRUE), |
| |
| /* We have a gap in the reloc numbers here. |
| R_386_standard counts the number up to this point, and |
| R_386_ext_offset is the value to subtract from a reloc type of |
| R_386_16 thru R_386_PC8 to form an index into this table. */ |
| #define R_386_standard (R_386_GOTPC + 1) |
| #define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard) |
| |
| /* These relocs are a GNU extension. */ |
| HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_TPOFF", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_IE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_GOTIE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_GD", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LDM", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_16", |
| TRUE, 0xffff, 0xffff, FALSE), |
| HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PC16", |
| TRUE, 0xffff, 0xffff, TRUE), |
| HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_8", |
| TRUE, 0xff, 0xff, FALSE), |
| HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_386_PC8", |
| TRUE, 0xff, 0xff, TRUE), |
| |
| #define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset) |
| #define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext) |
| /* These are common with Solaris TLS implementation. */ |
| HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LDO_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_IE_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LE_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_TPOFF32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned, |
| bfd_elf_generic_reloc, "R_386_SIZE32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_GOTDESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_GOTDESC", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_DESC_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_DESC_CALL", |
| FALSE, 0, 0, FALSE), |
| HOWTO(R_386_TLS_DESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_DESC", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_IRELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_IRELATIVE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GOT32X, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOT32X", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| |
| /* Another gap. */ |
| #define R_386_ext2 (R_386_GOT32X + 1 - R_386_tls_offset) |
| #define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_ext2) |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_386_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_386_GNU_VTINHERIT", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_386_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| "R_386_GNU_VTENTRY", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE) /* pcrel_offset */ |
| |
| #define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset) |
| |
| }; |
| |
| #ifdef DEBUG_GEN_RELOC |
| #define TRACE(str) \ |
| fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str) |
| #else |
| #define TRACE(str) |
| #endif |
| |
| static reloc_howto_type * |
| elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| switch (code) |
| { |
| case BFD_RELOC_NONE: |
| TRACE ("BFD_RELOC_NONE"); |
| return &elf_howto_table[R_386_NONE]; |
| |
| case BFD_RELOC_32: |
| TRACE ("BFD_RELOC_32"); |
| return &elf_howto_table[R_386_32]; |
| |
| case BFD_RELOC_CTOR: |
| TRACE ("BFD_RELOC_CTOR"); |
| return &elf_howto_table[R_386_32]; |
| |
| case BFD_RELOC_32_PCREL: |
| TRACE ("BFD_RELOC_PC32"); |
| return &elf_howto_table[R_386_PC32]; |
| |
| case BFD_RELOC_386_GOT32: |
| TRACE ("BFD_RELOC_386_GOT32"); |
| return &elf_howto_table[R_386_GOT32]; |
| |
| case BFD_RELOC_386_PLT32: |
| TRACE ("BFD_RELOC_386_PLT32"); |
| return &elf_howto_table[R_386_PLT32]; |
| |
| case BFD_RELOC_386_COPY: |
| TRACE ("BFD_RELOC_386_COPY"); |
| return &elf_howto_table[R_386_COPY]; |
| |
| case BFD_RELOC_386_GLOB_DAT: |
| TRACE ("BFD_RELOC_386_GLOB_DAT"); |
| return &elf_howto_table[R_386_GLOB_DAT]; |
| |
| case BFD_RELOC_386_JUMP_SLOT: |
| TRACE ("BFD_RELOC_386_JUMP_SLOT"); |
| return &elf_howto_table[R_386_JUMP_SLOT]; |
| |
| case BFD_RELOC_386_RELATIVE: |
| TRACE ("BFD_RELOC_386_RELATIVE"); |
| return &elf_howto_table[R_386_RELATIVE]; |
| |
| case BFD_RELOC_386_GOTOFF: |
| TRACE ("BFD_RELOC_386_GOTOFF"); |
| return &elf_howto_table[R_386_GOTOFF]; |
| |
| case BFD_RELOC_386_GOTPC: |
| TRACE ("BFD_RELOC_386_GOTPC"); |
| return &elf_howto_table[R_386_GOTPC]; |
| |
| /* These relocs are a GNU extension. */ |
| case BFD_RELOC_386_TLS_TPOFF: |
| TRACE ("BFD_RELOC_386_TLS_TPOFF"); |
| return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_IE: |
| TRACE ("BFD_RELOC_386_TLS_IE"); |
| return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_GOTIE: |
| TRACE ("BFD_RELOC_386_TLS_GOTIE"); |
| return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_LE: |
| TRACE ("BFD_RELOC_386_TLS_LE"); |
| return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_GD: |
| TRACE ("BFD_RELOC_386_TLS_GD"); |
| return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_LDM: |
| TRACE ("BFD_RELOC_386_TLS_LDM"); |
| return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset]; |
| |
| case BFD_RELOC_16: |
| TRACE ("BFD_RELOC_16"); |
| return &elf_howto_table[R_386_16 - R_386_ext_offset]; |
| |
| case BFD_RELOC_16_PCREL: |
| TRACE ("BFD_RELOC_16_PCREL"); |
| return &elf_howto_table[R_386_PC16 - R_386_ext_offset]; |
| |
| case BFD_RELOC_8: |
| TRACE ("BFD_RELOC_8"); |
| return &elf_howto_table[R_386_8 - R_386_ext_offset]; |
| |
| case BFD_RELOC_8_PCREL: |
| TRACE ("BFD_RELOC_8_PCREL"); |
| return &elf_howto_table[R_386_PC8 - R_386_ext_offset]; |
| |
| /* Common with Sun TLS implementation. */ |
| case BFD_RELOC_386_TLS_LDO_32: |
| TRACE ("BFD_RELOC_386_TLS_LDO_32"); |
| return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_IE_32: |
| TRACE ("BFD_RELOC_386_TLS_IE_32"); |
| return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_LE_32: |
| TRACE ("BFD_RELOC_386_TLS_LE_32"); |
| return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DTPMOD32: |
| TRACE ("BFD_RELOC_386_TLS_DTPMOD32"); |
| return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DTPOFF32: |
| TRACE ("BFD_RELOC_386_TLS_DTPOFF32"); |
| return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_TPOFF32: |
| TRACE ("BFD_RELOC_386_TLS_TPOFF32"); |
| return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_SIZE32: |
| TRACE ("BFD_RELOC_SIZE32"); |
| return &elf_howto_table[R_386_SIZE32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_GOTDESC: |
| TRACE ("BFD_RELOC_386_TLS_GOTDESC"); |
| return &elf_howto_table[R_386_TLS_GOTDESC - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DESC_CALL: |
| TRACE ("BFD_RELOC_386_TLS_DESC_CALL"); |
| return &elf_howto_table[R_386_TLS_DESC_CALL - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DESC: |
| TRACE ("BFD_RELOC_386_TLS_DESC"); |
| return &elf_howto_table[R_386_TLS_DESC - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_IRELATIVE: |
| TRACE ("BFD_RELOC_386_IRELATIVE"); |
| return &elf_howto_table[R_386_IRELATIVE - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_GOT32X: |
| TRACE ("BFD_RELOC_386_GOT32X"); |
| return &elf_howto_table[R_386_GOT32X - R_386_tls_offset]; |
| |
| case BFD_RELOC_VTABLE_INHERIT: |
| TRACE ("BFD_RELOC_VTABLE_INHERIT"); |
| return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset]; |
| |
| case BFD_RELOC_VTABLE_ENTRY: |
| TRACE ("BFD_RELOC_VTABLE_ENTRY"); |
| return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset]; |
| |
| default: |
| break; |
| } |
| |
| TRACE ("Unknown"); |
| return 0; |
| } |
| |
| static reloc_howto_type * |
| elf_i386_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) |
| if (elf_howto_table[i].name != NULL |
| && strcasecmp (elf_howto_table[i].name, r_name) == 0) |
| return &elf_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| elf_i386_rtype_to_howto (bfd *abfd, unsigned r_type) |
| { |
| unsigned int indx; |
| |
| if ((indx = r_type) >= R_386_standard |
| && ((indx = r_type - R_386_ext_offset) - R_386_standard |
| >= R_386_ext - R_386_standard) |
| && ((indx = r_type - R_386_tls_offset) - R_386_ext |
| >= R_386_ext2 - R_386_ext) |
| && ((indx = r_type - R_386_vt_offset) - R_386_ext2 |
| >= R_386_vt - R_386_ext2)) |
| { |
| (*_bfd_error_handler) (_("%B: invalid relocation type %d"), |
| abfd, (int) r_type); |
| indx = R_386_NONE; |
| } |
| /* PR 17512: file: 0f67f69d. */ |
| if (elf_howto_table [indx].type != r_type) |
| return NULL; |
| return &elf_howto_table[indx]; |
| } |
| |
| static void |
| elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned int r_type = ELF32_R_TYPE (dst->r_info); |
| cache_ptr->howto = elf_i386_rtype_to_howto (abfd, r_type); |
| } |
| |
| /* Return whether a symbol name implies a local label. The UnixWare |
| 2.1 cc generates temporary symbols that start with .X, so we |
| recognize them here. FIXME: do other SVR4 compilers also use .X?. |
| If so, we should move the .X recognition into |
| _bfd_elf_is_local_label_name. */ |
| |
| static bfd_boolean |
| elf_i386_is_local_label_name (bfd *abfd, const char *name) |
| { |
| if (name[0] == '.' && name[1] == 'X') |
| return TRUE; |
| |
| return _bfd_elf_is_local_label_name (abfd, name); |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| |
| static bfd_boolean |
| elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int offset; |
| size_t size; |
| |
| if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| { |
| int pr_version = bfd_get_32 (abfd, note->descdata); |
| |
| if (pr_version != 1) |
| return FALSE; |
| |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 20); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 28; |
| size = bfd_get_32 (abfd, note->descdata + 8); |
| } |
| else |
| { |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 144: /* Linux/i386 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 72; |
| size = 68; |
| |
| break; |
| } |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bfd_boolean |
| elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| { |
| int pr_version = bfd_get_32 (abfd, note->descdata); |
| |
| if (pr_version != 1) |
| return FALSE; |
| |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 8, 17); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 25, 81); |
| } |
| else |
| { |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 124: /* Linux/i386 elf_prpsinfo. */ |
| elf_tdata (abfd)->core->pid |
| = bfd_get_32 (abfd, note->descdata + 12); |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| } |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| { |
| char *command = elf_tdata (abfd)->core->command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Functions for the i386 ELF linker. |
| |
| In order to gain some understanding of code in this file without |
| knowing all the intricate details of the linker, note the |
| following: |
| |
| Functions named elf_i386_* are called by external routines, other |
| functions are only called locally. elf_i386_* functions appear |
| in this file more or less in the order in which they are called |
| from external routines. eg. elf_i386_check_relocs is called |
| early in the link process, elf_i386_finish_dynamic_sections is |
| one of the last functions. */ |
| |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| |
| /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
| copying dynamic variables from a shared lib into an app's dynbss |
| section, and instead use a dynamic relocation to point into the |
| shared lib. */ |
| #define ELIMINATE_COPY_RELOCS 1 |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define PLT_ENTRY_SIZE 16 |
| |
| /* The first entry in an absolute procedure linkage table looks like |
| this. See the SVR4 ABI i386 supplement to see how this works. |
| Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */ |
| |
| static const bfd_byte elf_i386_plt0_entry[12] = |
| { |
| 0xff, 0x35, /* pushl contents of address */ |
| 0, 0, 0, 0, /* replaced with address of .got + 4. */ |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0 /* replaced with address of .got + 8. */ |
| }; |
| |
| /* Subsequent entries in an absolute procedure linkage table look like |
| this. */ |
| |
| static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0, /* replaced with address of this symbol in .got. */ |
| 0x68, /* pushl immediate */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| }; |
| |
| /* The first entry in a PIC procedure linkage table look like this. |
| Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */ |
| |
| static const bfd_byte elf_i386_pic_plt0_entry[12] = |
| { |
| 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ |
| 0xff, 0xa3, 8, 0, 0, 0 /* jmp *8(%ebx) */ |
| }; |
| |
| /* Subsequent entries in a PIC procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0xa3, /* jmp *offset(%ebx) */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x68, /* pushl immediate */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| }; |
| |
| /* Entries in the GOT procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_i386_got_plt_entry[8] = |
| { |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x66, 0x90 /* xchg %ax,%ax */ |
| }; |
| |
| /* Entries in the PIC GOT procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_i386_pic_got_plt_entry[8] = |
| { |
| 0xff, 0xa3, /* jmp *offset(%ebx) */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x66, 0x90 /* xchg %ax,%ax */ |
| }; |
| |
| /* .eh_frame covering the .plt section. */ |
| |
| static const bfd_byte elf_i386_eh_frame_plt[] = |
| { |
| #define PLT_CIE_LENGTH 20 |
| #define PLT_FDE_LENGTH 36 |
| #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8 |
| #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12 |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x7c, /* Data alignment factor */ |
| 8, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 4, 4, /* DW_CFA_def_cfa: r4 (esp) ofs 4 */ |
| DW_CFA_offset + 8, 1, /* DW_CFA_offset: r8 (eip) at cfa-4 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */ |
| 0, 0, 0, 0, /* R_386_PC32 .plt goes here */ |
| 0, 0, 0, 0, /* .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_def_cfa_offset, 8, /* DW_CFA_def_cfa_offset: 8 */ |
| DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */ |
| DW_CFA_def_cfa_offset, 12, /* DW_CFA_def_cfa_offset: 12 */ |
| DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */ |
| DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */ |
| 11, /* Block length */ |
| DW_OP_breg4, 4, /* DW_OP_breg4 (esp): 4 */ |
| DW_OP_breg8, 0, /* DW_OP_breg8 (eip): 0 */ |
| DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge, |
| DW_OP_lit2, DW_OP_shl, DW_OP_plus, |
| DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| struct elf_i386_plt_layout |
| { |
| /* The first entry in an absolute procedure linkage table looks like this. */ |
| const bfd_byte *plt0_entry; |
| unsigned int plt0_entry_size; |
| |
| /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */ |
| unsigned int plt0_got1_offset; |
| unsigned int plt0_got2_offset; |
| |
| /* Later entries in an absolute procedure linkage table look like this. */ |
| const bfd_byte *plt_entry; |
| unsigned int plt_entry_size; |
| |
| /* Offsets into plt_entry that are to be replaced with... */ |
| unsigned int plt_got_offset; /* ... address of this symbol in .got. */ |
| unsigned int plt_reloc_offset; /* ... offset into relocation table. */ |
| unsigned int plt_plt_offset; /* ... offset to start of .plt. */ |
| |
| /* Offset into plt_entry where the initial value of the GOT entry points. */ |
| unsigned int plt_lazy_offset; |
| |
| /* The first entry in a PIC procedure linkage table looks like this. */ |
| const bfd_byte *pic_plt0_entry; |
| |
| /* Subsequent entries in a PIC procedure linkage table look like this. */ |
| const bfd_byte *pic_plt_entry; |
| |
| /* .eh_frame covering the .plt section. */ |
| const bfd_byte *eh_frame_plt; |
| unsigned int eh_frame_plt_size; |
| }; |
| |
| #define GET_PLT_ENTRY_SIZE(abfd) \ |
| get_elf_i386_backend_data (abfd)->plt->plt_entry_size |
| |
| /* These are the standard parameters. */ |
| static const struct elf_i386_plt_layout elf_i386_plt = |
| { |
| elf_i386_plt0_entry, /* plt0_entry */ |
| sizeof (elf_i386_plt0_entry), /* plt0_entry_size */ |
| 2, /* plt0_got1_offset */ |
| 8, /* plt0_got2_offset */ |
| elf_i386_plt_entry, /* plt_entry */ |
| PLT_ENTRY_SIZE, /* plt_entry_size */ |
| 2, /* plt_got_offset */ |
| 7, /* plt_reloc_offset */ |
| 12, /* plt_plt_offset */ |
| 6, /* plt_lazy_offset */ |
| elf_i386_pic_plt0_entry, /* pic_plt0_entry */ |
| elf_i386_pic_plt_entry, /* pic_plt_entry */ |
| elf_i386_eh_frame_plt, /* eh_frame_plt */ |
| sizeof (elf_i386_eh_frame_plt), /* eh_frame_plt_size */ |
| }; |
| |
| |
| /* On VxWorks, the .rel.plt.unloaded section has absolute relocations |
| for the PLTResolve stub and then for each PLT entry. */ |
| #define PLTRESOLVE_RELOCS_SHLIB 0 |
| #define PLTRESOLVE_RELOCS 2 |
| #define PLT_NON_JUMP_SLOT_RELOCS 2 |
| |
| /* Architecture-specific backend data for i386. */ |
| |
| struct elf_i386_backend_data |
| { |
| /* Parameters describing PLT generation. */ |
| const struct elf_i386_plt_layout *plt; |
| |
| /* Value used to fill the unused bytes of the first PLT entry. */ |
| bfd_byte plt0_pad_byte; |
| |
| /* True if the target system is VxWorks. */ |
| int is_vxworks; |
| }; |
| |
| #define get_elf_i386_backend_data(abfd) \ |
| ((const struct elf_i386_backend_data *) \ |
| get_elf_backend_data (abfd)->arch_data) |
| |
| /* These are the standard parameters. */ |
| static const struct elf_i386_backend_data elf_i386_arch_bed = |
| { |
| &elf_i386_plt, /* plt */ |
| 0, /* plt0_pad_byte */ |
| 0, /* is_vxworks */ |
| }; |
| |
| #define elf_backend_arch_data &elf_i386_arch_bed |
| |
| /* Is a undefined weak symbol which is resolved to 0. Reference to an |
| undefined weak symbol is resolved to 0 when building executable if |
| it isn't dynamic and |
| 1. Has non-GOT/non-PLT relocations in text section. Or |
| 2. Has no GOT/PLT relocation. |
| */ |
| #define UNDEFINED_WEAK_RESOLVED_TO_ZERO(INFO, GOT_RELOC, EH) \ |
| ((EH)->elf.root.type == bfd_link_hash_undefweak \ |
| && bfd_link_executable (INFO) \ |
| && (elf_i386_hash_table (INFO)->interp == NULL \ |
| || !(GOT_RELOC) \ |
| || (EH)->has_non_got_reloc \ |
| || !(INFO)->dynamic_undefined_weak)) |
| |
| /* i386 ELF linker hash entry. */ |
| |
| struct elf_i386_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| /* Track dynamic relocs copied for this symbol. */ |
| struct elf_dyn_relocs *dyn_relocs; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 4 |
| #define GOT_TLS_IE_POS 5 |
| #define GOT_TLS_IE_NEG 6 |
| #define GOT_TLS_IE_BOTH 7 |
| #define GOT_TLS_GDESC 8 |
| #define GOT_TLS_GD_BOTH_P(type) \ |
| ((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) |
| #define GOT_TLS_GD_P(type) \ |
| ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GDESC_P(type) \ |
| ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GD_ANY_P(type) \ |
| (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) |
| unsigned char tls_type; |
| |
| /* Symbol is referenced by R_386_GOTOFF relocation. */ |
| unsigned int gotoff_ref : 1; |
| |
| /* Symbol has GOT or PLT relocations. */ |
| unsigned int has_got_reloc : 1; |
| |
| /* Symbol has non-GOT/non-PLT relocations in text sections. */ |
| unsigned int has_non_got_reloc : 1; |
| |
| /* 0: symbol isn't ___tls_get_addr. |
| 1: symbol is ___tls_get_addr. |
| 2: symbol is unknown. */ |
| unsigned int tls_get_addr : 2; |
| |
| /* Reference count of C/C++ function pointer relocations in read-write |
| section which can be resolved at run-time. */ |
| bfd_signed_vma func_pointer_refcount; |
| |
| /* Information about the GOT PLT entry. Filled when there are both |
| GOT and PLT relocations against the same function. */ |
| union gotplt_union plt_got; |
| |
| /* Offset of the GOTPLT entry reserved for the TLS descriptor, |
| starting at the end of the jump table. */ |
| bfd_vma tlsdesc_got; |
| }; |
| |
| #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent)) |
| |
| struct elf_i386_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| |
| /* GOTPLT entries for TLS descriptors. */ |
| bfd_vma *local_tlsdesc_gotent; |
| }; |
| |
| #define elf_i386_tdata(abfd) \ |
| ((struct elf_i386_obj_tdata *) (abfd)->tdata.any) |
| |
| #define elf_i386_local_got_tls_type(abfd) \ |
| (elf_i386_tdata (abfd)->local_got_tls_type) |
| |
| #define elf_i386_local_tlsdesc_gotent(abfd) \ |
| (elf_i386_tdata (abfd)->local_tlsdesc_gotent) |
| |
| #define is_i386_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == I386_ELF_DATA) |
| |
| static bfd_boolean |
| elf_i386_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_i386_obj_tdata), |
| I386_ELF_DATA); |
| } |
| |
| /* i386 ELF linker hash table. */ |
| |
| struct elf_i386_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *interp; |
| asection *sdynbss; |
| asection *srelbss; |
| asection *plt_eh_frame; |
| asection *plt_got; |
| |
| union |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| } tls_ldm_got; |
| |
| /* The amount of space used by the reserved portion of the sgotplt |
| section, plus whatever space is used by the jump slots. */ |
| bfd_vma sgotplt_jump_table_size; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| /* _TLS_MODULE_BASE_ symbol. */ |
| struct bfd_link_hash_entry *tls_module_base; |
| |
| /* Used by local STT_GNU_IFUNC symbols. */ |
| htab_t loc_hash_table; |
| void * loc_hash_memory; |
| |
| /* The (unloaded but important) .rel.plt.unloaded section on VxWorks. */ |
| asection *srelplt2; |
| |
| /* The index of the next unused R_386_TLS_DESC slot in .rel.plt. */ |
| bfd_vma next_tls_desc_index; |
| |
| /* The index of the next unused R_386_JUMP_SLOT slot in .rel.plt. */ |
| bfd_vma next_jump_slot_index; |
| |
| /* The index of the next unused R_386_IRELATIVE slot in .rel.plt. */ |
| bfd_vma next_irelative_index; |
| |
| /* TRUE if there are dynamic relocs against IFUNC symbols that apply |
| to read-only sections. */ |
| bfd_boolean readonly_dynrelocs_against_ifunc; |
| }; |
| |
| /* Get the i386 ELF linker hash table from a link_info structure. */ |
| |
| #define elf_i386_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == I386_ELF_DATA ? ((struct elf_i386_link_hash_table *) ((p)->hash)) : NULL) |
| |
| #define elf_i386_compute_jump_table_size(htab) \ |
| ((htab)->elf.srelplt->reloc_count * 4) |
| |
| /* Create an entry in an i386 ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elf_i386_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = (struct bfd_hash_entry *) |
| bfd_hash_allocate (table, sizeof (struct elf_i386_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_i386_link_hash_entry *eh; |
| |
| eh = (struct elf_i386_link_hash_entry *) entry; |
| eh->dyn_relocs = NULL; |
| eh->tls_type = GOT_UNKNOWN; |
| eh->gotoff_ref = 0; |
| eh->has_got_reloc = 0; |
| eh->has_non_got_reloc = 0; |
| eh->tls_get_addr = 2; |
| eh->func_pointer_refcount = 0; |
| eh->plt_got.offset = (bfd_vma) -1; |
| eh->tlsdesc_got = (bfd_vma) -1; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| static hashval_t |
| elf_i386_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| static int |
| elf_i386_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 |
| = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 |
| = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| static struct elf_link_hash_entry * |
| elf_i386_get_local_sym_hash (struct elf_i386_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bfd_boolean create) |
| { |
| struct elf_i386_link_hash_entry e, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| ELF32_R_SYM (rel->r_info)); |
| void **slot; |
| |
| e.elf.indx = sec->id; |
| e.elf.dynstr_index = ELF32_R_SYM (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct elf_i386_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct elf_i386_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct elf_i386_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = ELF32_R_SYM (rel->r_info); |
| ret->elf.dynindx = -1; |
| ret->func_pointer_refcount = 0; |
| ret->plt_got.offset = (bfd_vma) -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Destroy an i386 ELF linker hash table. */ |
| |
| static void |
| elf_i386_link_hash_table_free (bfd *obfd) |
| { |
| struct elf_i386_link_hash_table *htab |
| = (struct elf_i386_link_hash_table *) obfd->link.hash; |
| |
| if (htab->loc_hash_table) |
| htab_delete (htab->loc_hash_table); |
| if (htab->loc_hash_memory) |
| objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create an i386 ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elf_i386_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_i386_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_i386_link_hash_table); |
| |
| ret = (struct elf_i386_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
| elf_i386_link_hash_newfunc, |
| sizeof (struct elf_i386_link_hash_entry), |
| I386_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->loc_hash_table = htab_try_create (1024, |
| elf_i386_local_htab_hash, |
| elf_i386_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| elf_i386_link_hash_table_free (abfd); |
| return NULL; |
| } |
| ret->elf.root.hash_table_free = elf_i386_link_hash_table_free; |
| |
| return &ret->elf.root; |
| } |
| |
| /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and |
| .rel.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bfd_boolean |
| elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
| { |
| struct elf_i386_link_hash_table *htab; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return FALSE; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| asection *s = bfd_get_linker_section (dynobj, ".interp"); |
| if (s == NULL) |
| abort (); |
| s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| htab->interp = s; |
| } |
| |
| htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); |
| if (!htab->sdynbss) |
| abort (); |
| |
| if (bfd_link_executable (info)) |
| { |
| /* Always allow copy relocs for building executables. */ |
| asection *s = bfd_get_linker_section (dynobj, ".rel.bss"); |
| if (s == NULL) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (dynobj); |
| s = bfd_make_section_anyway_with_flags (dynobj, |
| ".rel.bss", |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || ! bfd_set_section_alignment (dynobj, s, |
| bed->s->log_file_align)) |
| return FALSE; |
| } |
| htab->srelbss = s; |
| } |
| |
| if (get_elf_i386_backend_data (dynobj)->is_vxworks |
| && !elf_vxworks_create_dynamic_sections (dynobj, info, |
| &htab->srelplt2)) |
| return FALSE; |
| |
| if (!info->no_ld_generated_unwind_info |
| && htab->plt_eh_frame == NULL |
| && htab->elf.splt != NULL) |
| { |
| flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
| | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| htab->plt_eh_frame |
| = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags); |
| if (htab->plt_eh_frame == NULL |
| || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 2)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| elf_i386_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_i386_link_hash_entry *edir, *eind; |
| |
| edir = (struct elf_i386_link_hash_entry *) dir; |
| eind = (struct elf_i386_link_hash_entry *) ind; |
| |
| if (eind->dyn_relocs != NULL) |
| { |
| if (edir->dyn_relocs != NULL) |
| { |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| /* Add reloc counts against the indirect sym to the direct sym |
| list. Merge any entries against the same section. */ |
| for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| struct elf_dyn_relocs *q; |
| |
| for (q = edir->dyn_relocs; q != NULL; q = q->next) |
| if (q->sec == p->sec) |
| { |
| q->pc_count += p->pc_count; |
| q->count += p->count; |
| *pp = p->next; |
| break; |
| } |
| if (q == NULL) |
| pp = &p->next; |
| } |
| *pp = edir->dyn_relocs; |
| } |
| |
| edir->dyn_relocs = eind->dyn_relocs; |
| eind->dyn_relocs = NULL; |
| } |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| |
| /* Copy gotoff_ref so that elf_i386_adjust_dynamic_symbol will |
| generate a R_386_COPY reloc. */ |
| edir->gotoff_ref |= eind->gotoff_ref; |
| |
| edir->has_got_reloc |= eind->has_got_reloc; |
| edir->has_non_got_reloc |= eind->has_non_got_reloc; |
| |
| if (ELIMINATE_COPY_RELOCS |
| && ind->root.type != bfd_link_hash_indirect |
| && dir->dynamic_adjusted) |
| { |
| /* If called to transfer flags for a weakdef during processing |
| of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
| We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
| dir->ref_dynamic |= ind->ref_dynamic; |
| dir->ref_regular |= ind->ref_regular; |
| dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| dir->needs_plt |= ind->needs_plt; |
| dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| } |
| else |
| { |
| if (eind->func_pointer_refcount > 0) |
| { |
| edir->func_pointer_refcount += eind->func_pointer_refcount; |
| eind->func_pointer_refcount = 0; |
| } |
| |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| } |
| |
| /* Return TRUE if the TLS access code sequence support transition |
| from R_TYPE. */ |
| |
| static bfd_boolean |
| elf_i386_check_tls_transition (asection *sec, |
| bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int r_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend) |
| { |
| unsigned int val, type, reg; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| bfd_vma offset; |
| bfd_byte *call; |
| bfd_boolean indirect_call, tls_get_addr; |
| |
| offset = rel->r_offset; |
| switch (r_type) |
| { |
| case R_386_TLS_GD: |
| case R_386_TLS_LDM: |
| if (offset < 2 || (rel + 1) >= relend) |
| return FALSE; |
| |
| indirect_call = FALSE; |
| call = contents + offset + 4; |
| val = *(call - 5); |
| type = *(call - 6); |
| if (r_type == R_386_TLS_GD) |
| { |
| /* Check transition from GD access model. Only |
| leal foo@tlsgd(,%ebx,1), %eax |
| call ___tls_get_addr@PLT |
| or |
| leal foo@tlsgd(%ebx) %eax |
| call ___tls_get_addr@PLT |
| nop |
| or |
| leal foo@tlsgd(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| can transit to different access model. */ |
| if ((offset + 10) > sec->size |
| || (type != 0x8d && type != 0x04)) |
| return FALSE; |
| |
| if (type == 0x04) |
| { |
| /* leal foo@tlsgd(,%ebx,1), %eax |
| call ___tls_get_addr@PLT */ |
| if (offset < 3) |
| return FALSE; |
| |
| if (*(call - 7) != 0x8d |
| || val != 0x1d |
| || call[0] != 0xe8) |
| return FALSE; |
| } |
| else |
| { |
| /* This must be |
| leal foo@tlsgd(%ebx), %eax |
| call ___tls_get_addr@PLT |
| nop |
| or |
| leal foo@tlsgd(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| |
| %eax can't be used as the GOT base register since it |
| is used to pass parameter to ___tls_get_addr. */ |
| reg = val & 7; |
| if ((val & 0xf8) != 0x80 || reg == 4 || reg == 0) |
| return FALSE; |
| |
| indirect_call = call[0] == 0xff; |
| if (!(reg == 3 && call[0] == 0xe8 && call[5] == 0x90) |
| && !(call[0] == 0x67 && call[1] == 0xe8) |
| && !(indirect_call |
| && (call[1] & 0xf8) == 0x90 |
| && (call[1] & 0x7) == reg)) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* Check transition from LD access model. Only |
| leal foo@tlsldm(%ebx), %eax |
| call ___tls_get_addr@PLT |
| or |
| leal foo@tlsldm(%reg), %eax |
| call *___tls_get_addr@GOT(%reg) |
| which may be converted to |
| addr32 call ___tls_get_addr |
| can transit to different access model. */ |
| if (type != 0x8d || (offset + 9) > sec->size) |
| return FALSE; |
| |
| /* %eax can't be used as the GOT base register since it is |
| used to pass parameter to ___tls_get_addr. */ |
| reg = val & 7; |
| if ((val & 0xf8) != 0x80 || reg == 4 || reg == 0) |
| return FALSE; |
| |
| indirect_call = call[0] == 0xff; |
| if (!(reg == 3 && call[0] == 0xe8) |
| && !(call[0] == 0x67 && call[1] == 0xe8) |
| && !(indirect_call |
| && (call[1] & 0xf8) == 0x90 |
| && (call[1] & 0x7) == reg)) |
| return FALSE; |
| } |
| |
| r_symndx = ELF32_R_SYM (rel[1].r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| return FALSE; |
| |
| tls_get_addr = FALSE; |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| if (h != NULL && h->root.root.string != NULL) |
| { |
| struct elf_i386_link_hash_entry *eh |
| = (struct elf_i386_link_hash_entry *) h; |
| tls_get_addr = eh->tls_get_addr == 1; |
| if (eh->tls_get_addr > 1) |
| { |
| /* Use strncmp to check ___tls_get_addr since |
| ___tls_get_addr may be versioned. */ |
| if (strncmp (h->root.root.string, "___tls_get_addr", 15) |
| == 0) |
| { |
| eh->tls_get_addr = 1; |
| tls_get_addr = TRUE; |
| } |
| else |
| eh->tls_get_addr = 0; |
| } |
| } |
| |
| if (!tls_get_addr) |
| return FALSE; |
| else if (indirect_call) |
| return (ELF32_R_TYPE (rel[1].r_info) == R_386_GOT32X); |
| else |
| return (ELF32_R_TYPE (rel[1].r_info) == R_386_PC32 |
| || ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32); |
| |
| case R_386_TLS_IE: |
| /* Check transition from IE access model: |
| movl foo@indntpoff(%rip), %eax |
| movl foo@indntpoff(%rip), %reg |
| addl foo@indntpoff(%rip), %reg |
| */ |
| |
| if (offset < 1 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| /* Check "movl foo@tpoff(%rip), %eax" first. */ |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if (val == 0xa1) |
| return TRUE; |
| |
| if (offset < 2) |
| return FALSE; |
| |
| /* Check movl|addl foo@tpoff(%rip), %reg. */ |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| return ((type == 0x8b || type == 0x03) |
| && (val & 0xc7) == 0x05); |
| |
| case R_386_TLS_GOTIE: |
| case R_386_TLS_IE_32: |
| /* Check transition from {IE_32,GOTIE} access model: |
| subl foo@{tpoff,gontoff}(%reg1), %reg2 |
| movl foo@{tpoff,gontoff}(%reg1), %reg2 |
| addl foo@{tpoff,gontoff}(%reg1), %reg2 |
| */ |
| |
| if (offset < 2 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if ((val & 0xc0) != 0x80 || (val & 7) == 4) |
| return FALSE; |
| |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| return type == 0x8b || type == 0x2b || type == 0x03; |
| |
| case R_386_TLS_GOTDESC: |
| /* Check transition from GDesc access model: |
| leal x@tlsdesc(%ebx), %eax |
| |
| Make sure it's a leal adding ebx to a 32-bit offset |
| into any register, although it's probably almost always |
| going to be eax. */ |
| |
| if (offset < 2 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 0x83; |
| |
| case R_386_TLS_DESC_CALL: |
| /* Check transition from GDesc access model: |
| call *x@tlsdesc(%eax) |
| */ |
| if (offset + 2 <= sec->size) |
| { |
| /* Make sure that it's a call *x@tlsdesc(%eax). */ |
| call = contents + offset; |
| return call[0] == 0xff && call[1] == 0x10; |
| } |
| |
| return FALSE; |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Return TRUE if the TLS access transition is OK or no transition |
| will be performed. Update R_TYPE if there is a transition. */ |
| |
| static bfd_boolean |
| elf_i386_tls_transition (struct bfd_link_info *info, bfd *abfd, |
| asection *sec, bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int *r_type, int tls_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend, |
| struct elf_link_hash_entry *h, |
| unsigned long r_symndx, |
| bfd_boolean from_relocate_section) |
| { |
| unsigned int from_type = *r_type; |
| unsigned int to_type = from_type; |
| bfd_boolean check = TRUE; |
| |
| /* Skip TLS transition for functions. */ |
| if (h != NULL |
| && (h->type == STT_FUNC |
| || h->type == STT_GNU_IFUNC)) |
| return TRUE; |
| |
| switch (from_type) |
| { |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| if (bfd_link_executable (info)) |
| { |
| if (h == NULL) |
| to_type = R_386_TLS_LE_32; |
| else if (from_type != R_386_TLS_IE |
| && from_type != R_386_TLS_GOTIE) |
| to_type = R_386_TLS_IE_32; |
| } |
| |
| /* When we are called from elf_i386_relocate_section, there may |
| be additional transitions based on TLS_TYPE. */ |
| if (from_relocate_section) |
| { |
| unsigned int new_to_type = to_type; |
| |
| if (bfd_link_executable (info) |
| && h != NULL |
| && h->dynindx == -1 |
| && (tls_type & GOT_TLS_IE)) |
| new_to_type = R_386_TLS_LE_32; |
| |
| if (to_type == R_386_TLS_GD |
| || to_type == R_386_TLS_GOTDESC |
| || to_type == R_386_TLS_DESC_CALL) |
| { |
| if (tls_type == GOT_TLS_IE_POS) |
| new_to_type = R_386_TLS_GOTIE; |
| else if (tls_type & GOT_TLS_IE) |
| new_to_type = R_386_TLS_IE_32; |
| } |
| |
| /* We checked the transition before when we were called from |
| elf_i386_check_relocs. We only want to check the new |
| transition which hasn't been checked before. */ |
| check = new_to_type != to_type && from_type == to_type; |
| to_type = new_to_type; |
| } |
| |
| break; |
| |
| case R_386_TLS_LDM: |
| if (bfd_link_executable (info)) |
| to_type = R_386_TLS_LE_32; |
| break; |
| |
| default: |
| return TRUE; |
| } |
| |
| /* Return TRUE if there is no transition. */ |
| if (from_type == to_type) |
| return TRUE; |
| |
| /* Check if the transition can be performed. */ |
| if (check |
| && ! elf_i386_check_tls_transition (sec, contents, |
| symtab_hdr, sym_hashes, |
| from_type, rel, relend)) |
| { |
| reloc_howto_type *from, *to; |
| const char *name; |
| |
| from = elf_i386_rtype_to_howto (abfd, from_type); |
| to = elf_i386_rtype_to_howto (abfd, to_type); |
| |
| if (h) |
| name = h->root.root.string; |
| else |
| { |
| struct elf_i386_link_hash_table *htab; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| name = "*unknown*"; |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| } |
| } |
| |
| (*_bfd_error_handler) |
| (_("%B: TLS transition from %s to %s against `%s' at 0x%lx " |
| "in section `%A' failed"), |
| abfd, sec, from->name, to->name, name, |
| (unsigned long) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| *r_type = to_type; |
| return TRUE; |
| } |
| |
| /* With the local symbol, foo, we convert |
| mov foo@GOT[(%reg1)], %reg2 |
| to |
| lea foo[@GOTOFF(%reg1)], %reg2 |
| and convert |
| call/jmp *foo@GOT[(%reg)] |
| to |
| nop call foo/jmp foo nop |
| When PIC is false, convert |
| test %reg1, foo@GOT[(%reg2)] |
| to |
| test $foo, %reg1 |
| and convert |
| binop foo@GOT[(%reg1)], %reg2 |
| to |
| binop $foo, %reg2 |
| where binop is one of adc, add, and, cmp, or, sbb, sub, xor |
| instructions. */ |
| |
| static |
| bfd_boolean |
| elf_i386_convert_load_reloc (bfd *abfd, Elf_Internal_Shdr *symtab_hdr, |
| bfd_byte *contents, |
| Elf_Internal_Rela *irel, |
| struct elf_link_hash_entry *h, |
| bfd_boolean *converted, |
| struct bfd_link_info *link_info) |
| { |
| struct elf_i386_link_hash_table *htab; |
| unsigned int opcode; |
| unsigned int modrm; |
| bfd_boolean baseless; |
| Elf_Internal_Sym *isym; |
| unsigned int addend; |
| unsigned int nop; |
| bfd_vma nop_offset; |
| bfd_boolean is_pic; |
| bfd_boolean to_reloc_32; |
| unsigned int r_type; |
| unsigned int r_symndx; |
| bfd_vma roff = irel->r_offset; |
| |
| if (roff < 2) |
| return TRUE; |
| |
| /* Addend for R_386_GOT32X relocations must be 0. */ |
| addend = bfd_get_32 (abfd, contents + roff); |
| if (addend != 0) |
| return TRUE; |
| |
| htab = elf_i386_hash_table (link_info); |
| is_pic = bfd_link_pic (link_info); |
| |
| r_type = ELF32_R_TYPE (irel->r_info); |
| r_symndx = ELF32_R_SYM (irel->r_info); |
| |
| modrm = bfd_get_8 (abfd, contents + roff - 1); |
| baseless = (modrm & 0xc7) == 0x5; |
| |
| if (baseless && is_pic) |
| { |
| /* For PIC, disallow R_386_GOT32X without a base register |
| since we don't know what the GOT base is. */ |
| const char *name; |
| |
| if (h == NULL) |
| { |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, |
| r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| } |
| else |
| name = h->root.root.string; |
| |
| (*_bfd_error_handler) |
| (_("%B: direct GOT relocation R_386_GOT32X against `%s' without base register can not be used when making a shared object"), |
| abfd, name); |
| return FALSE; |
| } |
| |
| opcode = bfd_get_8 (abfd, contents + roff - 2); |
| |
| /* Convert to R_386_32 if PIC is false or there is no base |
| register. */ |
| to_reloc_32 = !is_pic || baseless; |
| |
| /* Try to convert R_386_GOT32X. Get the symbol referred to by the |
| reloc. */ |
| if (h == NULL) |
| { |
| if (opcode == 0x0ff) |
| /* Convert "call/jmp *foo@GOT[(%reg)]". */ |
| goto convert_branch; |
| else |
| /* Convert "mov foo@GOT[(%reg1)], %reg2", |
| "test %reg1, foo@GOT(%reg2)" and |
| "binop foo@GOT[(%reg1)], %reg2". */ |
| goto convert_load; |
| } |
| |
| /* Undefined weak symbol is only bound locally in executable |
| and its reference is resolved as 0. */ |
| if (UNDEFINED_WEAK_RESOLVED_TO_ZERO (link_info, TRUE, |
| elf_i386_hash_entry (h))) |
| { |
| if (opcode == 0xff) |
| { |
| /* No direct branch to 0 for PIC. */ |
| if (is_pic) |
| return TRUE; |
| else |
| goto convert_branch; |
| } |
| else |
| { |
| /* We can convert load of address 0 to R_386_32. */ |
| to_reloc_32 = TRUE; |
| goto convert_load; |
| } |
| } |
| |
| if (opcode == 0xff) |
| { |
| /* We have "call/jmp *foo@GOT[(%reg)]". */ |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && SYMBOL_REFERENCES_LOCAL (link_info, h)) |
| { |
| /* The function is locally defined. */ |
| convert_branch: |
| /* Convert R_386_GOT32X to R_386_PC32. */ |
| if (modrm == 0x15 || (modrm & 0xf8) == 0x90) |
| { |
| struct elf_i386_link_hash_entry *eh |
| = (struct elf_i386_link_hash_entry *) h; |
| |
| /* Convert to "nop call foo". ADDR_PREFIX_OPCODE |
| is a nop prefix. */ |
| modrm = 0xe8; |
| /* To support TLS optimization, always use addr32 prefix |
| for "call *___tls_get_addr@GOT(%reg)". */ |
| if (eh && eh->tls_get_addr == 1) |
| { |
| nop = 0x67; |
| nop_offset = irel->r_offset - 2; |
| } |
| else |
| { |
| nop = link_info->call_nop_byte; |
| if (link_info->call_nop_as_suffix) |
| { |
| nop_offset = roff + 3; |
| irel->r_offset -= 1; |
| } |
| else |
| nop_offset = roff - 2; |
| } |
| } |
| else |
| { |
| /* Convert to "jmp foo nop". */ |
| modrm = 0xe9; |
| nop = NOP_OPCODE; |
| nop_offset = roff + 3; |
| irel->r_offset -= 1; |
| } |
| |
| bfd_put_8 (abfd, nop, contents + nop_offset); |
| bfd_put_8 (abfd, modrm, contents + irel->r_offset - 1); |
| /* When converting to PC-relative relocation, we |
| need to adjust addend by -4. */ |
| bfd_put_32 (abfd, -4, contents + irel->r_offset); |
| irel->r_info = ELF32_R_INFO (r_symndx, R_386_PC32); |
| |
| *converted = TRUE; |
| } |
| } |
| else |
| { |
| /* We have "mov foo@GOT[(%re1g)], %reg2", |
| "test %reg1, foo@GOT(%reg2)" and |
| "binop foo@GOT[(%reg1)], %reg2". |
| |
| Avoid optimizing _DYNAMIC since ld.so may use its |
| link-time address. */ |
| if (h == htab->elf.hdynamic) |
| return TRUE; |
| |
| /* def_regular is set by an assignment in a linker script in |
| bfd_elf_record_link_assignment. */ |
| if ((h->def_regular |
| || h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && SYMBOL_REFERENCES_LOCAL (link_info, h)) |
| { |
| convert_load: |
| if (opcode == 0x8b) |
| { |
| if (to_reloc_32) |
| { |
| /* Convert "mov foo@GOT[(%reg1)], %reg2" to |
| "mov $foo, %reg2" with R_386_32. */ |
| r_type = R_386_32; |
| modrm = 0xc0 | (modrm & 0x38) >> 3; |
| bfd_put_8 (abfd, modrm, contents + roff - 1); |
| opcode = 0xc7; |
| } |
| else |
| { |
| /* Convert "mov foo@GOT(%reg1), %reg2" to |
| "lea foo@GOTOFF(%reg1), %reg2". */ |
| r_type = R_386_GOTOFF; |
| opcode = 0x8d; |
| } |
| } |
| else |
| { |
| /* Only R_386_32 is supported. */ |
| if (!to_reloc_32) |
| return TRUE; |
| |
| if (opcode == 0x85) |
| { |
| /* Convert "test %reg1, foo@GOT(%reg2)" to |
| "test $foo, %reg1". */ |
| modrm = 0xc0 | (modrm & 0x38) >> 3; |
| opcode = 0xf7; |
| } |
| else |
| { |
| /* Convert "binop foo@GOT(%reg1), %reg2" to |
| "binop $foo, %reg2". */ |
| modrm = (0xc0 |
| | (modrm & 0x38) >> 3 |
| | (opcode & 0x3c)); |
| opcode = 0x81; |
| } |
| bfd_put_8 (abfd, modrm, contents + roff - 1); |
| r_type = R_386_32; |
| } |
| |
| bfd_put_8 (abfd, opcode, contents + roff - 2); |
| irel->r_info = ELF32_R_INFO (r_symndx, r_type); |
| |
| *converted = TRUE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Rename some of the generic section flags to better document how they |
| are used here. */ |
| #define need_convert_load sec_flg0 |
| #define check_relocs_failed sec_flg1 |
| |
| /* Look through the relocs for a section during the first phase, and |
| calculate needed space in the global offset table, procedure linkage |
| table, and dynamic reloc sections. */ |
| |
| static bfd_boolean |
| elf_i386_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_i386_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| bfd_byte *contents; |
| bfd_boolean use_plt_got; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| /* Don't do anything special with non-loaded, non-alloced sections. |
| In particular, any relocs in such sections should not affect GOT |
| and PLT reference counting (ie. we don't allow them to create GOT |
| or PLT entries), there's no possibility or desire to optimize TLS |
| relocs, and there's not much point in propagating relocs to shared |
| libs that the dynamic linker won't relocate. */ |
| if ((sec->flags & SEC_ALLOC) == 0) |
| return TRUE; |
| |
| BFD_ASSERT (is_i386_elf (abfd)); |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| { |
| sec->check_relocs_failed = 1; |
| return FALSE; |
| } |
| |
| /* Get the section contents. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| { |
| sec->check_relocs_failed = 1; |
| return FALSE; |
| } |
| |
| use_plt_got = (!get_elf_i386_backend_data (abfd)->is_vxworks |
| && (get_elf_i386_backend_data (abfd) |
| == &elf_i386_arch_bed)); |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| sreloc = NULL; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned int r_type; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| struct elf_i386_link_hash_entry *eh; |
| Elf_Internal_Sym *isym; |
| const char *name; |
| bfd_boolean size_reloc; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
| abfd, |
| r_symndx); |
| goto error_return; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| goto error_return; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_i386_get_local_sym_hash (htab, abfd, rel, TRUE); |
| if (h == NULL) |
| goto error_return; |
| |
| /* Fake a STT_GNU_IFUNC symbol. */ |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| isym = NULL; |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| eh = (struct elf_i386_link_hash_entry *) h; |
| if (h != NULL) |
| { |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_386_GOTOFF: |
| eh->gotoff_ref = 1; |
| case R_386_32: |
| case R_386_PC32: |
| case R_386_PLT32: |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| /* Create the ifunc sections for static executables. */ |
| if (h->type == STT_GNU_IFUNC |
| && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, |
| info)) |
| goto error_return; |
| break; |
| } |
| |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| h->root.non_ir_ref = 1; |
| |
| if (h->type == STT_GNU_IFUNC) |
| elf_tdata (info->output_bfd)->has_gnu_symbols |
| |= elf_gnu_symbol_ifunc; |
| } |
| |
| if (! elf_i386_tls_transition (info, abfd, sec, contents, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, rel_end, h, r_symndx, FALSE)) |
| goto error_return; |
| |
| switch (r_type) |
| { |
| case R_386_TLS_LDM: |
| htab->tls_ldm_got.refcount += 1; |
| goto create_got; |
| |
| case R_386_PLT32: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| eh->has_got_reloc = 1; |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| break; |
| |
| case R_386_SIZE32: |
| size_reloc = TRUE; |
| goto do_size; |
| |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| if (!bfd_link_executable (info)) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| /* This symbol requires a global offset table entry. */ |
| { |
| int tls_type, old_tls_type; |
| |
| switch (r_type) |
| { |
| default: |
| case R_386_GOT32: |
| case R_386_GOT32X: |
| tls_type = GOT_NORMAL; |
| break; |
| case R_386_TLS_GD: tls_type = GOT_TLS_GD; break; |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| tls_type = GOT_TLS_GDESC; break; |
| case R_386_TLS_IE_32: |
| if (ELF32_R_TYPE (rel->r_info) == r_type) |
| tls_type = GOT_TLS_IE_NEG; |
| else |
| /* If this is a GD->IE transition, we may use either of |
| R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */ |
| tls_type = GOT_TLS_IE; |
| break; |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| tls_type = GOT_TLS_IE_POS; break; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount += 1; |
| old_tls_type = elf_i386_hash_entry(h)->tls_type; |
| } |
| else |
| { |
| bfd_signed_vma *local_got_refcounts; |
| |
| /* This is a global offset table entry for a local symbol. */ |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| { |
| bfd_size_type size; |
| |
| size = symtab_hdr->sh_info; |
| size *= (sizeof (bfd_signed_vma) |
| + sizeof (bfd_vma) + sizeof(char)); |
| local_got_refcounts = (bfd_signed_vma *) |
| bfd_zalloc (abfd, size); |
| if (local_got_refcounts == NULL) |
| goto error_return; |
| elf_local_got_refcounts (abfd) = local_got_refcounts; |
| elf_i386_local_tlsdesc_gotent (abfd) |
| = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); |
| elf_i386_local_got_tls_type (abfd) |
| = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); |
| } |
| local_got_refcounts[r_symndx] += 1; |
| old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx]; |
| } |
| |
| if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) |
| tls_type |= old_tls_type; |
| /* If a TLS symbol is accessed using IE at least once, |
| there is no point to use dynamic model for it. */ |
| else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
| && (! GOT_TLS_GD_ANY_P (old_tls_type) |
| || (tls_type & GOT_TLS_IE) == 0)) |
| { |
| if ((old_tls_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type = old_tls_type; |
| else if (GOT_TLS_GD_ANY_P (old_tls_type) |
| && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type |= old_tls_type; |
| else |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: `%s' accessed both as normal and " |
| "thread local symbol"), |
| abfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| } |
| |
| if (old_tls_type != tls_type) |
| { |
| if (h != NULL) |
| elf_i386_hash_entry (h)->tls_type = tls_type; |
| else |
| elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| } |
| /* Fall through */ |
| |
| case R_386_GOTOFF: |
| case R_386_GOTPC: |
| create_got: |
| if (htab->elf.sgot == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_got_section (htab->elf.dynobj, info)) |
| goto error_return; |
| } |
| if (r_type != R_386_TLS_IE) |
| { |
| if (eh != NULL) |
| eh->has_got_reloc = 1; |
| break; |
| } |
| /* Fall through */ |
| |
| case R_386_TLS_LE_32: |
| case R_386_TLS_LE: |
| if (eh != NULL) |
| eh->has_got_reloc = 1; |
| if (bfd_link_executable (info)) |
| break; |
| info->flags |= DF_STATIC_TLS; |
| goto do_relocation; |
| |
| case R_386_32: |
| case R_386_PC32: |
| if (eh != NULL && (sec->flags & SEC_CODE) != 0) |
| eh->has_non_got_reloc = 1; |
| do_relocation: |
| /* We are called after all symbols have been resolved. Only |
| relocation against STT_GNU_IFUNC symbol must go through |
| PLT. */ |
| if (h != NULL |
| && (bfd_link_executable (info) |
| || h->type == STT_GNU_IFUNC)) |
| { |
| /* If this reloc is in a read-only section, we might |
| need a copy reloc. We can't check reliably at this |
| stage whether the section is read-only, as input |
| sections have not yet been mapped to output sections. |
| Tentatively set the flag for now, and correct in |
| adjust_dynamic_symbol. */ |
| h->non_got_ref = 1; |
| |
| /* We may need a .plt entry if the symbol is a function |
| defined in a shared lib or is a STT_GNU_IFUNC function |
| referenced from the code or read-only section. */ |
| if (!h->def_regular |
| || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0) |
| h->plt.refcount += 1; |
| |
| if (r_type == R_386_PC32) |
| { |
| /* Since something like ".long foo - ." may be used |
| as pointer, make sure that PLT is used if foo is |
| a function defined in a shared library. */ |
| if ((sec->flags & SEC_CODE) == 0) |
| h->pointer_equality_needed = 1; |
| } |
| else |
| { |
| h->pointer_equality_needed = 1; |
| /* R_386_32 can be resolved at run-time. */ |
| if (r_type == R_386_32 |
| && (sec->flags & SEC_READONLY) == 0) |
| eh->func_pointer_refcount += 1; |
| } |
| } |
| |
| size_reloc = FALSE; |
| do_size: |
| /* If we are creating a shared library, and this is a reloc |
| against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc |
| into the shared library. However, if we are linking with |
| -Bsymbolic, we do not need to copy a reloc against a |
| global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). At |
| this point we have not seen all the input files, so it is |
| possible that DEF_REGULAR is not set now but will be set |
| later (it is never cleared). In case of a weak definition, |
| DEF_REGULAR may be cleared later by a strong definition in |
| a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash |
| table entry. A similar situation occurs when creating |
| shared libraries and symbol visibility changes render the |
| symbol local. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. |
| |
| Generate dynamic pointer relocation against STT_GNU_IFUNC |
| symbol in the non-code section. */ |
| if ((bfd_link_pic (info) |
| && (r_type != R_386_PC32 |
| || (h != NULL |
| && (! (bfd_link_pie (info) |
| || SYMBOLIC_BIND (info, h)) |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)))) |
| || (h != NULL |
| && h->type == STT_GNU_IFUNC |
| && r_type == R_386_32 |
| && (sec->flags & SEC_CODE) == 0) |
| || (ELIMINATE_COPY_RELOCS |
| && !bfd_link_pic (info) |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defweak |
| || !h->def_regular))) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* We must copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, 2, abfd, /*rela?*/ FALSE); |
| |
| if (sreloc == NULL) |
| goto error_return; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| { |
| head = &eh->dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| void **vpp; |
| asection *s; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| goto error_return; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_dyn_relocs **)vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| bfd_size_type amt = sizeof *p; |
| p = (struct elf_dyn_relocs *) bfd_alloc (htab->elf.dynobj, |
| amt); |
| if (p == NULL) |
| goto error_return; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| /* Count size relocation as PC-relative relocation. */ |
| if (r_type == R_386_PC32 || size_reloc) |
| p->pc_count += 1; |
| } |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_386_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| goto error_return; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_386_GNU_VTENTRY: |
| BFD_ASSERT (h != NULL); |
| if (h != NULL |
| && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| goto error_return; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (use_plt_got |
| && h != NULL |
| && h->plt.refcount > 0 |
| && (((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed) |
| || h->got.refcount > 0) |
| && htab->plt_got == NULL) |
| { |
| /* Create the GOT procedure linkage table. */ |
| unsigned int plt_got_align; |
| const struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| BFD_ASSERT (sizeof (elf_i386_got_plt_entry) == 8 |
| && (sizeof (elf_i386_got_plt_entry) |
| == sizeof (elf_i386_pic_got_plt_entry))); |
| plt_got_align = 3; |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| htab->plt_got |
| = bfd_make_section_anyway_with_flags (htab->elf.dynobj, |
| ".plt.got", |
| (bed->dynamic_sec_flags |
| | SEC_ALLOC |
| | SEC_CODE |
| | SEC_LOAD |
| | SEC_READONLY)); |
| if (htab->plt_got == NULL |
| || !bfd_set_section_alignment (htab->elf.dynobj, |
| htab->plt_got, |
| plt_got_align)) |
| goto error_return; |
| } |
| |
| if (r_type == R_386_GOT32X |
| && (h == NULL || h->type != STT_GNU_IFUNC)) |
| sec->need_convert_load = 1; |
| } |
| |
| if (elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (!info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| return TRUE; |
| |
| error_return: |
| if (elf_section_data (sec)->this_hdr.contents != contents) |
| free (contents); |
| sec->check_relocs_failed = 1; |
| return FALSE; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| elf_i386_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_386_GNU_VTINHERIT: |
| case R_386_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Remove undefined weak symbol from the dynamic symbol table if it |
| is resolved to 0. */ |
| |
| static bfd_boolean |
| elf_i386_fixup_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| if (h->dynindx != -1 |
| && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, |
| elf_i386_hash_entry (h)->has_got_reloc, |
| elf_i386_hash_entry (h))) |
| { |
| h->dynindx = -1; |
| _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
| h->dynstr_index); |
| } |
| return TRUE; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_i386_link_hash_table *htab; |
| asection *s; |
| struct elf_i386_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (h->type == STT_GNU_IFUNC) |
| { |
| /* All local STT_GNU_IFUNC references must be treate as local |
| calls via local PLT. */ |
| if (h->ref_regular |
| && SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| bfd_size_type pc_count = 0, count = 0; |
| struct elf_dyn_relocs **pp; |
| |
| eh = (struct elf_i386_link_hash_entry *) h; |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| pc_count += p->pc_count; |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| count += p->count; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| |
| if (pc_count || count) |
| { |
| h->non_got_ref = 1; |
| if (pc_count) |
| { |
| /* Increment PLT reference count only for PC-relative |
| references. */ |
| h->needs_plt = 1; |
| if (h->plt.refcount <= 0) |
| h->plt.refcount = 1; |
| else |
| h->plt.refcount += 1; |
| } |
| } |
| } |
| |
| if (h->plt.refcount <= 0) |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| return TRUE; |
| } |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a PLT32 reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In |
| such a case, we don't actually need to build a procedure |
| linkage table, and we can just do a PC32 reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return TRUE; |
| } |
| else |
| /* It's possible that we incorrectly decided a .plt reloc was |
| needed for an R_386_PC32 reloc to a non-function sym in |
| check_relocs. We can't decide accurately between function and |
| non-function syms in check-relocs; Objects loaded later in |
| the link may change h->type. So fix it now. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->u.weakdef != NULL) |
| { |
| BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| || h->u.weakdef->root.type == bfd_link_hash_defweak); |
| h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) |
| h->non_got_ref = h->u.weakdef->non_got_ref; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (!bfd_link_executable (info)) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT nor R_386_GOTOFF relocation, we don't need to generate a copy |
| reloc. */ |
| eh = (struct elf_i386_link_hash_entry *) h; |
| if (!h->non_got_ref && !eh->gotoff_ref) |
| return TRUE; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* If there aren't any dynamic relocs in read-only sections nor |
| R_386_GOTOFF relocation, then we can keep the dynamic relocs and |
| avoid the copy reloc. This doesn't work on VxWorks, where we can |
| not have dynamic relocations (other than copy and jump slot |
| relocations) in an executable. */ |
| if (ELIMINATE_COPY_RELOCS |
| && !eh->gotoff_ref |
| && !get_elf_i386_backend_data (info->output_bfd)->is_vxworks) |
| { |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| s = p->sec->output_section; |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| break; |
| } |
| |
| if (p == NULL) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| /* We must generate a R_386_COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| htab->srelbss->size += sizeof (Elf32_External_Rel); |
| h->needs_copy = 1; |
| } |
| |
| s = htab->sdynbss; |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_i386_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_i386_link_hash_table *htab; |
| struct elf_i386_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| unsigned plt_entry_size; |
| bfd_boolean resolved_to_zero; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| eh = (struct elf_i386_link_hash_entry *) h; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd); |
| |
| resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, |
| eh->has_got_reloc, |
| eh); |
| |
| /* Clear the reference count of function pointer relocations if |
| symbol isn't a normal function. */ |
| if (h->type != STT_FUNC) |
| eh->func_pointer_refcount = 0; |
| |
| /* We can't use the GOT PLT if pointer equality is needed since |
| finish_dynamic_symbol won't clear symbol value and the dynamic |
| linker won't update the GOT slot. We will get into an infinite |
| loop at run-time. */ |
| if (htab->plt_got != NULL |
| && h->type != STT_GNU_IFUNC |
| && !h->pointer_equality_needed |
| && h->plt.refcount > 0 |
| && h->got.refcount > 0) |
| { |
| /* Don't use the regular PLT if there are both GOT and GOTPLT |
| reloctions. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* Use the GOT PLT. */ |
| eh->plt_got.refcount = 1; |
| } |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, &eh->dyn_relocs, |
| &htab->readonly_dynrelocs_against_ifunc, |
| plt_entry_size, |
| plt_entry_size, 4, TRUE); |
| /* Don't create the PLT entry if there are only function pointer |
| relocations which can be resolved at run-time. */ |
| else if (htab->elf.dynamic_sections_created |
| && (h->plt.refcount > eh->func_pointer_refcount |
| || eh->plt_got.refcount > 0)) |
| { |
| bfd_boolean use_plt_got; |
| |
| /* Clear the reference count of function pointer relocations |
| if PLT is used. */ |
| eh->func_pointer_refcount = 0; |
| |
| if ((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed) |
| { |
| /* Don't use the regular PLT for DF_BIND_NOW. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* Use the GOT PLT. */ |
| h->got.refcount = 1; |
| eh->plt_got.refcount = 1; |
| } |
| |
| use_plt_got = eh->plt_got.refcount > 0; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local |
| && !resolved_to_zero) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->elf.splt; |
| asection *got_s = htab->plt_got; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. The .plt section is used by prelink to undo |
| prelinking for dynamic relocations. */ |
| if (s->size == 0) |
| s->size = plt_entry_size; |
| |
| if (use_plt_got) |
| eh->plt_got.offset = got_s->size; |
| else |
| h->plt.offset = s->size; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| if (use_plt_got) |
| { |
| /* We need to make a call to the entry of the GOT PLT |
| instead of regular PLT entry. */ |
| h->root.u.def.section = got_s; |
| h->root.u.def.value = eh->plt_got.offset; |
| } |
| else |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| } |
| |
| /* Make room for this entry. */ |
| if (use_plt_got) |
| got_s->size += sizeof (elf_i386_got_plt_entry); |
| else |
| { |
| s->size += plt_entry_size; |
| |
| /* We also need to make an entry in the .got.plt section, |
| which will be placed in the .got section by the linker |
| script. */ |
| htab->elf.sgotplt->size += 4; |
| |
| /* There should be no PLT relocation against resolved |
| undefined weak symbol in executable. */ |
| if (!resolved_to_zero) |
| { |
| /* We also need to make an entry in the .rel.plt |
| section. */ |
| htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| htab->elf.srelplt->reloc_count++; |
| } |
| } |
| |
| if (get_elf_i386_backend_data (info->output_bfd)->is_vxworks |
| && !bfd_link_pic (info)) |
| { |
| /* VxWorks has a second set of relocations for each PLT entry |
| in executables. They go in a separate relocation section, |
| which is processed by the kernel loader. */ |
| |
| /* There are two relocations for the initial PLT entry: an |
| R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an |
| R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */ |
| |
| if (h->plt.offset == plt_entry_size) |
| htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2); |
| |
| /* There are two extra relocations for each subsequent PLT entry: |
| an R_386_32 relocation for the GOT entry, and an R_386_32 |
| relocation for the PLT entry. */ |
| |
| htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2); |
| } |
| } |
| else |
| { |
| eh->plt_got.offset = (bfd_vma) -1; |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = |