| /* armcopro.c -- co-processor interface: ARM6 Instruction Emulator. |
| Copyright (C) 1994, 2000 Advanced RISC Machines Ltd. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
| |
| #include "armdefs.h" |
| #include "armos.h" |
| #include "armemu.h" |
| #include "ansidecl.h" |
| #include "iwmmxt.h" |
| |
| /* Dummy Co-processors. */ |
| |
| static unsigned |
| NoCoPro3R (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned a ATTRIBUTE_UNUSED, |
| ARMword b ATTRIBUTE_UNUSED) |
| { |
| return ARMul_CANT; |
| } |
| |
| static unsigned |
| NoCoPro4R (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned a ATTRIBUTE_UNUSED, |
| ARMword b ATTRIBUTE_UNUSED, |
| ARMword c ATTRIBUTE_UNUSED) |
| { |
| return ARMul_CANT; |
| } |
| |
| static unsigned |
| NoCoPro4W (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned a ATTRIBUTE_UNUSED, |
| ARMword b ATTRIBUTE_UNUSED, |
| ARMword * c ATTRIBUTE_UNUSED) |
| { |
| return ARMul_CANT; |
| } |
| |
| /* The XScale Co-processors. */ |
| |
| /* Coprocessor 15: System Control. */ |
| static void write_cp14_reg (unsigned, ARMword); |
| static ARMword read_cp14_reg (unsigned); |
| |
| /* There are two sets of registers for copro 15. |
| One set is available when opcode_2 is 0 and |
| the other set when opcode_2 >= 1. */ |
| static ARMword XScale_cp15_opcode_2_is_0_Regs[16]; |
| static ARMword XScale_cp15_opcode_2_is_not_0_Regs[16]; |
| /* There are also a set of breakpoint registers |
| which are accessed via CRm instead of opcode_2. */ |
| static ARMword XScale_cp15_DBR1; |
| static ARMword XScale_cp15_DBCON; |
| static ARMword XScale_cp15_IBCR0; |
| static ARMword XScale_cp15_IBCR1; |
| |
| static unsigned |
| XScale_cp15_init (ARMul_State * state ATTRIBUTE_UNUSED) |
| { |
| int i; |
| |
| for (i = 16; i--;) |
| { |
| XScale_cp15_opcode_2_is_0_Regs[i] = 0; |
| XScale_cp15_opcode_2_is_not_0_Regs[i] = 0; |
| } |
| |
| /* Initialise the processor ID. */ |
| XScale_cp15_opcode_2_is_0_Regs[0] = 0x69052000; |
| |
| /* Initialise the cache type. */ |
| XScale_cp15_opcode_2_is_not_0_Regs[0] = 0x0B1AA1AA; |
| |
| /* Initialise the ARM Control Register. */ |
| XScale_cp15_opcode_2_is_0_Regs[1] = 0x00000078; |
| } |
| |
| /* Check an access to a register. */ |
| |
| static unsigned |
| check_cp15_access (ARMul_State * state, |
| unsigned reg, |
| unsigned CRm, |
| unsigned opcode_1, |
| unsigned opcode_2) |
| { |
| /* Do not allow access to these register in USER mode. */ |
| if (state->Mode == USER26MODE || state->Mode == USER32MODE) |
| return ARMul_CANT; |
| |
| /* Opcode_1should be zero. */ |
| if (opcode_1 != 0) |
| return ARMul_CANT; |
| |
| /* Different register have different access requirements. */ |
| switch (reg) |
| { |
| case 0: |
| case 1: |
| /* CRm must be 0. Opcode_2 can be anything. */ |
| if (CRm != 0) |
| return ARMul_CANT; |
| break; |
| case 2: |
| case 3: |
| /* CRm must be 0. Opcode_2 must be zero. */ |
| if ((CRm != 0) || (opcode_2 != 0)) |
| return ARMul_CANT; |
| break; |
| case 4: |
| /* Access not allowed. */ |
| return ARMul_CANT; |
| case 5: |
| case 6: |
| /* Opcode_2 must be zero. CRm must be 0. */ |
| if ((CRm != 0) || (opcode_2 != 0)) |
| return ARMul_CANT; |
| break; |
| case 7: |
| /* Permissable combinations: |
| Opcode_2 CRm |
| 0 5 |
| 0 6 |
| 0 7 |
| 1 5 |
| 1 6 |
| 1 10 |
| 4 10 |
| 5 2 |
| 6 5 */ |
| switch (opcode_2) |
| { |
| default: return ARMul_CANT; |
| case 6: if (CRm != 5) return ARMul_CANT; break; |
| case 5: if (CRm != 2) return ARMul_CANT; break; |
| case 4: if (CRm != 10) return ARMul_CANT; break; |
| case 1: if ((CRm != 5) && (CRm != 6) && (CRm != 10)) return ARMul_CANT; break; |
| case 0: if ((CRm < 5) || (CRm > 7)) return ARMul_CANT; break; |
| } |
| break; |
| |
| case 8: |
| /* Permissable combinations: |
| Opcode_2 CRm |
| 0 5 |
| 0 6 |
| 0 7 |
| 1 5 |
| 1 6 */ |
| if (opcode_2 > 1) |
| return ARMul_CANT; |
| if ((CRm < 5) || (CRm > 7)) |
| return ARMul_CANT; |
| if (opcode_2 == 1 && CRm == 7) |
| return ARMul_CANT; |
| break; |
| case 9: |
| /* Opcode_2 must be zero or one. CRm must be 1 or 2. */ |
| if ( ((CRm != 0) && (CRm != 1)) |
| || ((opcode_2 != 1) && (opcode_2 != 2))) |
| return ARMul_CANT; |
| break; |
| case 10: |
| /* Opcode_2 must be zero or one. CRm must be 4 or 8. */ |
| if ( ((CRm != 0) && (CRm != 1)) |
| || ((opcode_2 != 4) && (opcode_2 != 8))) |
| return ARMul_CANT; |
| break; |
| case 11: |
| /* Access not allowed. */ |
| return ARMul_CANT; |
| case 12: |
| /* Access not allowed. */ |
| return ARMul_CANT; |
| case 13: |
| /* Opcode_2 must be zero. CRm must be 0. */ |
| if ((CRm != 0) || (opcode_2 != 0)) |
| return ARMul_CANT; |
| break; |
| case 14: |
| /* Opcode_2 must be 0. CRm must be 0, 3, 4, 8 or 9. */ |
| if (opcode_2 != 0) |
| return ARMul_CANT; |
| |
| if ((CRm != 0) && (CRm != 3) && (CRm != 4) && (CRm != 8) && (CRm != 9)) |
| return ARMul_CANT; |
| break; |
| case 15: |
| /* Opcode_2 must be zero. CRm must be 1. */ |
| if ((CRm != 1) || (opcode_2 != 0)) |
| return ARMul_CANT; |
| break; |
| default: |
| /* Should never happen. */ |
| return ARMul_CANT; |
| } |
| |
| return ARMul_DONE; |
| } |
| |
| /* Store a value into one of coprocessor 15's registers. */ |
| |
| static void |
| write_cp15_reg (ARMul_State * state, |
| unsigned reg, |
| unsigned opcode_2, |
| unsigned CRm, |
| ARMword value) |
| { |
| if (opcode_2) |
| { |
| switch (reg) |
| { |
| case 0: /* Cache Type. */ |
| /* Writes are not allowed. */ |
| return; |
| |
| case 1: /* Auxillary Control. */ |
| /* Only BITS (5, 4) and BITS (1, 0) can be written. */ |
| value &= 0x33; |
| break; |
| |
| default: |
| return; |
| } |
| |
| XScale_cp15_opcode_2_is_not_0_Regs [reg] = value; |
| } |
| else |
| { |
| switch (reg) |
| { |
| case 0: /* ID. */ |
| /* Writes are not allowed. */ |
| return; |
| |
| case 1: /* ARM Control. */ |
| /* Only BITS (13, 11), BITS (9, 7) and BITS (2, 0) can be written. |
| BITS (31, 14) and BIT (10) write as zero, BITS (6, 3) write as one. */ |
| value &= 0x00003b87; |
| value |= 0x00000078; |
| |
| /* Change the endianness if necessary. */ |
| if ((value & ARMul_CP15_R1_ENDIAN) != |
| (XScale_cp15_opcode_2_is_0_Regs [reg] & ARMul_CP15_R1_ENDIAN)) |
| { |
| state->bigendSig = value & ARMul_CP15_R1_ENDIAN; |
| /* Force ARMulator to notice these now. */ |
| state->Emulate = CHANGEMODE; |
| } |
| break; |
| |
| case 2: /* Translation Table Base. */ |
| /* Only BITS (31, 14) can be written. */ |
| value &= 0xffffc000; |
| break; |
| |
| case 3: /* Domain Access Control. */ |
| /* All bits writable. */ |
| break; |
| |
| case 5: /* Fault Status Register. */ |
| /* BITS (10, 9) and BITS (7, 0) can be written. */ |
| value &= 0x000006ff; |
| break; |
| |
| case 6: /* Fault Address Register. */ |
| /* All bits writable. */ |
| break; |
| |
| case 7: /* Cache Functions. */ |
| case 8: /* TLB Operations. */ |
| case 10: /* TLB Lock Down. */ |
| /* Ignore writes. */ |
| return; |
| |
| case 9: /* Data Cache Lock. */ |
| /* Only BIT (0) can be written. */ |
| value &= 0x1; |
| break; |
| |
| case 13: /* Process ID. */ |
| /* Only BITS (31, 25) are writable. */ |
| value &= 0xfe000000; |
| break; |
| |
| case 14: /* DBR0, DBR1, DBCON, IBCR0, IBCR1 */ |
| /* All bits can be written. Which register is accessed is |
| dependent upon CRm. */ |
| switch (CRm) |
| { |
| case 0: /* DBR0 */ |
| break; |
| case 3: /* DBR1 */ |
| XScale_cp15_DBR1 = value; |
| break; |
| case 4: /* DBCON */ |
| XScale_cp15_DBCON = value; |
| break; |
| case 8: /* IBCR0 */ |
| XScale_cp15_IBCR0 = value; |
| break; |
| case 9: /* IBCR1 */ |
| XScale_cp15_IBCR1 = value; |
| break; |
| default: |
| return; |
| } |
| break; |
| |
| case 15: /* Coprpcessor Access Register. */ |
| /* Access is only valid if CRm == 1. */ |
| if (CRm != 1) |
| return; |
| |
| /* Only BITS (13, 0) may be written. */ |
| value &= 0x00003fff; |
| break; |
| |
| default: |
| return; |
| } |
| |
| XScale_cp15_opcode_2_is_0_Regs [reg] = value; |
| } |
| |
| return; |
| } |
| |
| /* Return the value in a cp15 register. */ |
| |
| ARMword |
| read_cp15_reg (unsigned reg, unsigned opcode_2, unsigned CRm) |
| { |
| if (opcode_2 == 0) |
| { |
| if (reg == 15 && CRm != 1) |
| return 0; |
| |
| if (reg == 14) |
| { |
| switch (CRm) |
| { |
| case 3: return XScale_cp15_DBR1; |
| case 4: return XScale_cp15_DBCON; |
| case 8: return XScale_cp15_IBCR0; |
| case 9: return XScale_cp15_IBCR1; |
| default: |
| break; |
| } |
| } |
| |
| return XScale_cp15_opcode_2_is_0_Regs [reg]; |
| } |
| else |
| return XScale_cp15_opcode_2_is_not_0_Regs [reg]; |
| |
| return 0; |
| } |
| |
| static unsigned |
| XScale_cp15_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data) |
| { |
| unsigned reg = BITS (12, 15); |
| unsigned result; |
| |
| result = check_cp15_access (state, reg, 0, 0, 0); |
| |
| if (result == ARMul_DONE && type == ARMul_DATA) |
| write_cp15_reg (state, reg, 0, 0, data); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp15_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data) |
| { |
| unsigned reg = BITS (12, 15); |
| unsigned result; |
| |
| result = check_cp15_access (state, reg, 0, 0, 0); |
| |
| if (result == ARMul_DONE && type == ARMul_DATA) |
| * data = read_cp15_reg (reg, 0, 0); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp15_MRC (ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword * value) |
| { |
| unsigned opcode_2 = BITS (5, 7); |
| unsigned CRm = BITS (0, 3); |
| unsigned reg = BITS (16, 19); |
| unsigned result; |
| |
| result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2); |
| |
| if (result == ARMul_DONE) |
| * value = read_cp15_reg (reg, opcode_2, CRm); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp15_MCR (ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword value) |
| { |
| unsigned opcode_2 = BITS (5, 7); |
| unsigned CRm = BITS (0, 3); |
| unsigned reg = BITS (16, 19); |
| unsigned result; |
| |
| result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2); |
| |
| if (result == ARMul_DONE) |
| write_cp15_reg (state, reg, opcode_2, CRm, value); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp15_read_reg (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned reg, |
| ARMword * value) |
| { |
| /* FIXME: Not sure what to do about the alternative register set |
| here. For now default to just accessing CRm == 0 registers. */ |
| * value = read_cp15_reg (reg, 0, 0); |
| |
| return TRUE; |
| } |
| |
| static unsigned |
| XScale_cp15_write_reg (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned reg, |
| ARMword value) |
| { |
| /* FIXME: Not sure what to do about the alternative register set |
| here. For now default to just accessing CRm == 0 registers. */ |
| write_cp15_reg (state, reg, 0, 0, value); |
| |
| return TRUE; |
| } |
| |
| /* Check for special XScale memory access features. */ |
| |
| void |
| XScale_check_memacc (ARMul_State * state, ARMword * address, int store) |
| { |
| ARMword dbcon, r0, r1; |
| int e1, e0; |
| |
| if (!state->is_XScale) |
| return; |
| |
| /* Check for PID-ification. |
| XXX BTB access support will require this test failing. */ |
| r0 = (read_cp15_reg (13, 0, 0) & 0xfe000000); |
| if (r0 && (* address & 0xfe000000) == 0) |
| * address |= r0; |
| |
| /* Check alignment fault enable/disable. */ |
| if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN) && (* address & 3)) |
| { |
| /* Set the FSR and FAR. |
| Do not use XScale_set_fsr_far as this checks the DCSR register. */ |
| write_cp15_reg (state, 5, 0, 0, ARMul_CP15_R5_MMU_EXCPT); |
| write_cp15_reg (state, 6, 0, 0, * address); |
| |
| ARMul_Abort (state, ARMul_DataAbortV); |
| } |
| |
| if (XScale_debug_moe (state, -1)) |
| return; |
| |
| /* Check the data breakpoint registers. */ |
| dbcon = read_cp15_reg (14, 0, 4); |
| r0 = read_cp15_reg (14, 0, 0); |
| r1 = read_cp15_reg (14, 0, 3); |
| e0 = dbcon & ARMul_CP15_DBCON_E0; |
| |
| if (dbcon & ARMul_CP15_DBCON_M) |
| { |
| /* r1 is a inverse mask. */ |
| if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1)) |
| && ((* address & ~r1) == (r0 & ~r1))) |
| { |
| XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB); |
| ARMul_OSHandleSWI (state, SWI_Breakpoint); |
| } |
| } |
| else |
| { |
| if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1)) |
| && ((* address & ~3) == (r0 & ~3))) |
| { |
| XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB); |
| ARMul_OSHandleSWI (state, SWI_Breakpoint); |
| } |
| |
| e1 = (dbcon & ARMul_CP15_DBCON_E1) >> 2; |
| if (e1 != 0 && ((store && e1 != 3) || (!store && e1 != 1)) |
| && ((* address & ~3) == (r1 & ~3))) |
| { |
| XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB); |
| ARMul_OSHandleSWI (state, SWI_Breakpoint); |
| } |
| } |
| } |
| |
| /* Set the XScale FSR and FAR registers. */ |
| |
| void |
| XScale_set_fsr_far (ARMul_State * state, ARMword fsr, ARMword far) |
| { |
| if (!state->is_XScale || (read_cp14_reg (10) & (1UL << 31)) == 0) |
| return; |
| |
| write_cp15_reg (state, 5, 0, 0, fsr); |
| write_cp15_reg (state, 6, 0, 0, far); |
| } |
| |
| /* Set the XScale debug `method of entry' if it is enabled. */ |
| |
| int |
| XScale_debug_moe (ARMul_State * state, int moe) |
| { |
| ARMword value; |
| |
| if (!state->is_XScale) |
| return 1; |
| |
| value = read_cp14_reg (10); |
| if (value & (1UL << 31)) |
| { |
| if (moe != -1) |
| { |
| value &= ~0x1c; |
| value |= moe; |
| |
| write_cp14_reg (10, value); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Coprocessor 13: Interrupt Controller and Bus Controller. */ |
| |
| /* There are two sets of registers for copro 13. |
| One set (of three registers) is available when CRm is 0 |
| and the other set (of six registers) when CRm is 1. */ |
| |
| static ARMword XScale_cp13_CR0_Regs[16]; |
| static ARMword XScale_cp13_CR1_Regs[16]; |
| |
| static unsigned |
| XScale_cp13_init (ARMul_State * state ATTRIBUTE_UNUSED) |
| { |
| int i; |
| |
| for (i = 16; i--;) |
| { |
| XScale_cp13_CR0_Regs[i] = 0; |
| XScale_cp13_CR1_Regs[i] = 0; |
| } |
| } |
| |
| /* Check an access to a register. */ |
| |
| static unsigned |
| check_cp13_access (ARMul_State * state, |
| unsigned reg, |
| unsigned CRm, |
| unsigned opcode_1, |
| unsigned opcode_2) |
| { |
| /* Do not allow access to these registers in USER mode. */ |
| if (state->Mode == USER26MODE || state->Mode == USER32MODE) |
| return ARMul_CANT; |
| |
| /* The opcodes should be zero. */ |
| if ((opcode_1 != 0) || (opcode_2 != 0)) |
| return ARMul_CANT; |
| |
| /* Do not allow access to these register if bit |
| 13 of coprocessor 15's register 15 is zero. */ |
| if (! CP_ACCESS_ALLOWED (state, 13)) |
| return ARMul_CANT; |
| |
| /* Registers 0, 4 and 8 are defined when CRm == 0. |
| Registers 0, 1, 4, 5, 6, 7, 8 are defined when CRm == 1. |
| For all other CRm values undefined behaviour results. */ |
| if (CRm == 0) |
| { |
| if (reg == 0 || reg == 4 || reg == 8) |
| return ARMul_DONE; |
| } |
| else if (CRm == 1) |
| { |
| if (reg == 0 || reg == 1 || (reg >= 4 && reg <= 8)) |
| return ARMul_DONE; |
| } |
| |
| return ARMul_CANT; |
| } |
| |
| /* Store a value into one of coprocessor 13's registers. */ |
| |
| static void |
| write_cp13_reg (unsigned reg, unsigned CRm, ARMword value) |
| { |
| switch (CRm) |
| { |
| case 0: |
| switch (reg) |
| { |
| case 0: /* INTCTL */ |
| /* Only BITS (3:0) can be written. */ |
| value &= 0xf; |
| break; |
| |
| case 4: /* INTSRC */ |
| /* No bits may be written. */ |
| return; |
| |
| case 8: /* INTSTR */ |
| /* Only BITS (1:0) can be written. */ |
| value &= 0x3; |
| break; |
| |
| default: |
| /* Should not happen. Ignore any writes to unimplemented registers. */ |
| return; |
| } |
| |
| XScale_cp13_CR0_Regs [reg] = value; |
| break; |
| |
| case 1: |
| switch (reg) |
| { |
| case 0: /* BCUCTL */ |
| /* Only BITS (30:28) and BITS (3:0) can be written. |
| BIT(31) is write ignored. */ |
| value &= 0x7000000f; |
| value |= XScale_cp13_CR1_Regs[0] & (1UL << 31); |
| break; |
| |
| case 1: /* BCUMOD */ |
| /* Only bit 0 is accecssible. */ |
| value &= 1; |
| value |= XScale_cp13_CR1_Regs[1] & ~ 1; |
| break; |
| |
| case 4: /* ELOG0 */ |
| case 5: /* ELOG1 */ |
| case 6: /* ECAR0 */ |
| case 7: /* ECAR1 */ |
| /* No bits can be written. */ |
| return; |
| |
| case 8: /* ECTST */ |
| /* Only BITS (7:0) can be written. */ |
| value &= 0xff; |
| break; |
| |
| default: |
| /* Should not happen. Ignore any writes to unimplemented registers. */ |
| return; |
| } |
| |
| XScale_cp13_CR1_Regs [reg] = value; |
| break; |
| |
| default: |
| /* Should not happen. */ |
| break; |
| } |
| |
| return; |
| } |
| |
| /* Return the value in a cp13 register. */ |
| |
| static ARMword |
| read_cp13_reg (unsigned reg, unsigned CRm) |
| { |
| if (CRm == 0) |
| return XScale_cp13_CR0_Regs [reg]; |
| else if (CRm == 1) |
| return XScale_cp13_CR1_Regs [reg]; |
| |
| return 0; |
| } |
| |
| static unsigned |
| XScale_cp13_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data) |
| { |
| unsigned reg = BITS (12, 15); |
| unsigned result; |
| |
| result = check_cp13_access (state, reg, 0, 0, 0); |
| |
| if (result == ARMul_DONE && type == ARMul_DATA) |
| write_cp13_reg (reg, 0, data); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp13_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data) |
| { |
| unsigned reg = BITS (12, 15); |
| unsigned result; |
| |
| result = check_cp13_access (state, reg, 0, 0, 0); |
| |
| if (result == ARMul_DONE && type == ARMul_DATA) |
| * data = read_cp13_reg (reg, 0); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp13_MRC (ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword * value) |
| { |
| unsigned CRm = BITS (0, 3); |
| unsigned reg = BITS (16, 19); |
| unsigned result; |
| |
| result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7)); |
| |
| if (result == ARMul_DONE) |
| * value = read_cp13_reg (reg, CRm); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp13_MCR (ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword value) |
| { |
| unsigned CRm = BITS (0, 3); |
| unsigned reg = BITS (16, 19); |
| unsigned result; |
| |
| result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7)); |
| |
| if (result == ARMul_DONE) |
| write_cp13_reg (reg, CRm, value); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp13_read_reg (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned reg, |
| ARMword * value) |
| { |
| /* FIXME: Not sure what to do about the alternative register set |
| here. For now default to just accessing CRm == 0 registers. */ |
| * value = read_cp13_reg (reg, 0); |
| |
| return TRUE; |
| } |
| |
| static unsigned |
| XScale_cp13_write_reg (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned reg, |
| ARMword value) |
| { |
| /* FIXME: Not sure what to do about the alternative register set |
| here. For now default to just accessing CRm == 0 registers. */ |
| write_cp13_reg (reg, 0, value); |
| |
| return TRUE; |
| } |
| |
| /* Coprocessor 14: Performance Monitoring, Clock and Power management, |
| Software Debug. */ |
| |
| static ARMword XScale_cp14_Regs[16]; |
| |
| static unsigned |
| XScale_cp14_init (ARMul_State * state ATTRIBUTE_UNUSED) |
| { |
| int i; |
| |
| for (i = 16; i--;) |
| XScale_cp14_Regs[i] = 0; |
| } |
| |
| /* Check an access to a register. */ |
| |
| static unsigned |
| check_cp14_access (ARMul_State * state, |
| unsigned reg, |
| unsigned CRm, |
| unsigned opcode1, |
| unsigned opcode2) |
| { |
| /* Not allowed to access these register in USER mode. */ |
| if (state->Mode == USER26MODE || state->Mode == USER32MODE) |
| return ARMul_CANT; |
| |
| /* CRm should be zero. */ |
| if (CRm != 0) |
| return ARMul_CANT; |
| |
| /* OPcodes should be zero. */ |
| if (opcode1 != 0 || opcode2 != 0) |
| return ARMul_CANT; |
| |
| /* Accessing registers 4 or 5 has unpredicatable results. */ |
| if (reg >= 4 && reg <= 5) |
| return ARMul_CANT; |
| |
| return ARMul_DONE; |
| } |
| |
| /* Store a value into one of coprocessor 14's registers. */ |
| |
| static void |
| write_cp14_reg (unsigned reg, ARMword value) |
| { |
| switch (reg) |
| { |
| case 0: /* PMNC */ |
| /* Only BITS (27:12), BITS (10:8) and BITS (6:0) can be written. */ |
| value &= 0x0ffff77f; |
| |
| /* Reset the clock counter if necessary. */ |
| if (value & ARMul_CP14_R0_CLKRST) |
| XScale_cp14_Regs [1] = 0; |
| break; |
| |
| case 4: |
| case 5: |
| /* We should not normally reach this code. The debugger interface |
| can bypass the normal checks though, so it could happen. */ |
| value = 0; |
| break; |
| |
| case 6: /* CCLKCFG */ |
| /* Only BITS (3:0) can be written. */ |
| value &= 0xf; |
| break; |
| |
| case 7: /* PWRMODE */ |
| /* Although BITS (1:0) can be written with non-zero values, this would |
| have the side effect of putting the processor to sleep. Thus in |
| order for the register to be read again, it would have to go into |
| ACTIVE mode, which means that any read will see these bits as zero. |
| |
| Rather than trying to implement complex reset-to-zero-upon-read logic |
| we just override the write value with zero. */ |
| value = 0; |
| break; |
| |
| case 10: /* DCSR */ |
| /* Only BITS (31:30), BITS (23:22), BITS (20:16) and BITS (5:0) can |
| be written. */ |
| value &= 0xc0df003f; |
| break; |
| |
| case 11: /* TBREG */ |
| /* No writes are permitted. */ |
| value = 0; |
| break; |
| |
| case 14: /* TXRXCTRL */ |
| /* Only BITS (31:30) can be written. */ |
| value &= 0xc0000000; |
| break; |
| |
| default: |
| /* All bits can be written. */ |
| break; |
| } |
| |
| XScale_cp14_Regs [reg] = value; |
| } |
| |
| /* Return the value in a cp14 register. Not a static function since |
| it is used by the code to emulate the BKPT instruction in armemu.c. */ |
| |
| ARMword |
| read_cp14_reg (unsigned reg) |
| { |
| return XScale_cp14_Regs [reg]; |
| } |
| |
| static unsigned |
| XScale_cp14_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data) |
| { |
| unsigned reg = BITS (12, 15); |
| unsigned result; |
| |
| result = check_cp14_access (state, reg, 0, 0, 0); |
| |
| if (result == ARMul_DONE && type == ARMul_DATA) |
| write_cp14_reg (reg, data); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp14_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data) |
| { |
| unsigned reg = BITS (12, 15); |
| unsigned result; |
| |
| result = check_cp14_access (state, reg, 0, 0, 0); |
| |
| if (result == ARMul_DONE && type == ARMul_DATA) |
| * data = read_cp14_reg (reg); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp14_MRC |
| ( |
| ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword * value |
| ) |
| { |
| unsigned reg = BITS (16, 19); |
| unsigned result; |
| |
| result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7)); |
| |
| if (result == ARMul_DONE) |
| * value = read_cp14_reg (reg); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp14_MCR |
| ( |
| ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword value |
| ) |
| { |
| unsigned reg = BITS (16, 19); |
| unsigned result; |
| |
| result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7)); |
| |
| if (result == ARMul_DONE) |
| write_cp14_reg (reg, value); |
| |
| return result; |
| } |
| |
| static unsigned |
| XScale_cp14_read_reg |
| ( |
| ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned reg, |
| ARMword * value |
| ) |
| { |
| * value = read_cp14_reg (reg); |
| |
| return TRUE; |
| } |
| |
| static unsigned |
| XScale_cp14_write_reg |
| ( |
| ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned reg, |
| ARMword value |
| ) |
| { |
| write_cp14_reg (reg, value); |
| |
| return TRUE; |
| } |
| |
| /* Here's ARMulator's MMU definition. A few things to note: |
| 1) It has eight registers, but only two are defined. |
| 2) You can only access its registers with MCR and MRC. |
| 3) MMU Register 0 (ID) returns 0x41440110 |
| 4) Register 1 only has 4 bits defined. Bits 0 to 3 are unused, bit 4 |
| controls 32/26 bit program space, bit 5 controls 32/26 bit data space, |
| bit 6 controls late abort timimg and bit 7 controls big/little endian. */ |
| |
| static ARMword MMUReg[8]; |
| |
| static unsigned |
| MMUInit (ARMul_State * state) |
| { |
| MMUReg[1] = state->prog32Sig << 4 | |
| state->data32Sig << 5 | state->lateabtSig << 6 | state->bigendSig << 7; |
| |
| ARMul_ConsolePrint (state, ", MMU present"); |
| |
| return TRUE; |
| } |
| |
| static unsigned |
| MMUMRC (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword * value) |
| { |
| int reg = BITS (16, 19) & 7; |
| |
| if (reg == 0) |
| *value = 0x41440110; |
| else |
| *value = MMUReg[reg]; |
| |
| return ARMul_DONE; |
| } |
| |
| static unsigned |
| MMUMCR (ARMul_State * state, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword value) |
| { |
| int reg = BITS (16, 19) & 7; |
| |
| MMUReg[reg] = value; |
| |
| if (reg == 1) |
| { |
| ARMword p,d,l,b; |
| |
| p = state->prog32Sig; |
| d = state->data32Sig; |
| l = state->lateabtSig; |
| b = state->bigendSig; |
| |
| state->prog32Sig = value >> 4 & 1; |
| state->data32Sig = value >> 5 & 1; |
| state->lateabtSig = value >> 6 & 1; |
| state->bigendSig = value >> 7 & 1; |
| |
| if ( p != state->prog32Sig |
| || d != state->data32Sig |
| || l != state->lateabtSig |
| || b != state->bigendSig) |
| /* Force ARMulator to notice these now. */ |
| state->Emulate = CHANGEMODE; |
| } |
| |
| return ARMul_DONE; |
| } |
| |
| static unsigned |
| MMURead (ARMul_State * state ATTRIBUTE_UNUSED, unsigned reg, ARMword * value) |
| { |
| if (reg == 0) |
| *value = 0x41440110; |
| else if (reg < 8) |
| *value = MMUReg[reg]; |
| |
| return TRUE; |
| } |
| |
| static unsigned |
| MMUWrite (ARMul_State * state, unsigned reg, ARMword value) |
| { |
| if (reg < 8) |
| MMUReg[reg] = value; |
| |
| if (reg == 1) |
| { |
| ARMword p,d,l,b; |
| |
| p = state->prog32Sig; |
| d = state->data32Sig; |
| l = state->lateabtSig; |
| b = state->bigendSig; |
| |
| state->prog32Sig = value >> 4 & 1; |
| state->data32Sig = value >> 5 & 1; |
| state->lateabtSig = value >> 6 & 1; |
| state->bigendSig = value >> 7 & 1; |
| |
| if ( p != state->prog32Sig |
| || d != state->data32Sig |
| || l != state->lateabtSig |
| || b != state->bigendSig) |
| /* Force ARMulator to notice these now. */ |
| state->Emulate = CHANGEMODE; |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* What follows is the Validation Suite Coprocessor. It uses two |
| co-processor numbers (4 and 5) and has the follwing functionality. |
| Sixteen registers. Both co-processor nuimbers can be used in an MCR |
| and MRC to access these registers. CP 4 can LDC and STC to and from |
| the registers. CP 4 and CP 5 CDP 0 will busy wait for the number of |
| cycles specified by a CP register. CP 5 CDP 1 issues a FIQ after a |
| number of cycles (specified in a CP register), CDP 2 issues an IRQW |
| in the same way, CDP 3 and 4 turn of the FIQ and IRQ source, and CDP 5 |
| stores a 32 bit time value in a CP register (actually it's the total |
| number of N, S, I, C and F cyles). */ |
| |
| static ARMword ValReg[16]; |
| |
| static unsigned |
| ValLDC (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned type, |
| ARMword instr, |
| ARMword data) |
| { |
| static unsigned words; |
| |
| if (type != ARMul_DATA) |
| words = 0; |
| else |
| { |
| ValReg[BITS (12, 15)] = data; |
| |
| if (BIT (22)) |
| /* It's a long access, get two words. */ |
| if (words++ != 4) |
| return ARMul_INC; |
| } |
| |
| return ARMul_DONE; |
| } |
| |
| static unsigned |
| ValSTC (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned type, |
| ARMword instr, |
| ARMword * data) |
| { |
| static unsigned words; |
| |
| if (type != ARMul_DATA) |
| words = 0; |
| else |
| { |
| * data = ValReg[BITS (12, 15)]; |
| |
| if (BIT (22)) |
| /* It's a long access, get two words. */ |
| if (words++ != 4) |
| return ARMul_INC; |
| } |
| |
| return ARMul_DONE; |
| } |
| |
| static unsigned |
| ValMRC (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword * value) |
| { |
| *value = ValReg[BITS (16, 19)]; |
| |
| return ARMul_DONE; |
| } |
| |
| static unsigned |
| ValMCR (ARMul_State * state ATTRIBUTE_UNUSED, |
| unsigned type ATTRIBUTE_UNUSED, |
| ARMword instr, |
| ARMword value) |
| { |
| ValReg[BITS (16, 19)] = value; |
| |
| return ARMul_DONE; |
| } |
| |
| static unsigned |
| ValCDP (ARMul_State * state, unsigned type, ARMword instr) |
| { |
| static unsigned long finish = 0; |
| |
| if (BITS (20, 23) != 0) |
| return ARMul_CANT; |
| |
| if (type == ARMul_FIRST) |
| { |
| ARMword howlong; |
| |
| howlong = ValReg[BITS (0, 3)]; |
| |
| /* First cycle of a busy wait. */ |
| finish = ARMul_Time (state) + howlong; |
| |
| return howlong == 0 ? ARMul_DONE : ARMul_BUSY; |
| } |
| else if (type == ARMul_BUSY) |
| { |
| if (ARMul_Time (state) >= finish) |
| return ARMul_DONE; |
| else |
| return ARMul_BUSY; |
| } |
| |
| return ARMul_CANT; |
| } |
| |
| static unsigned |
| DoAFIQ (ARMul_State * state) |
| { |
| state->NfiqSig = LOW; |
| state->Exception++; |
| return 0; |
| } |
| |
| static unsigned |
| DoAIRQ (ARMul_State * state) |
| { |
| state->NirqSig = LOW; |
| state->Exception++; |
| return 0; |
| } |
| |
| static unsigned |
| IntCDP (ARMul_State * state, unsigned type, ARMword instr) |
| { |
| static unsigned long finish; |
| ARMword howlong; |
| |
| howlong = ValReg[BITS (0, 3)]; |
| |
| switch ((int) BITS (20, 23)) |
| { |
| case 0: |
| if (type == ARMul_FIRST) |
| { |
| /* First cycle of a busy wait. */ |
| finish = ARMul_Time (state) + howlong; |
| |
| return howlong == 0 ? ARMul_DONE : ARMul_BUSY; |
| } |
| else if (type == ARMul_BUSY) |
| { |
| if (ARMul_Time (state) >= finish) |
| return ARMul_DONE; |
| else |
| return ARMul_BUSY; |
| } |
| return ARMul_DONE; |
| |
| case 1: |
| if (howlong == 0) |
| ARMul_Abort (state, ARMul_FIQV); |
| else |
| ARMul_ScheduleEvent (state, howlong, DoAFIQ); |
| return ARMul_DONE; |
| |
| case 2: |
| if (howlong == 0) |
| ARMul_Abort (state, ARMul_IRQV); |
| else |
| ARMul_ScheduleEvent (state, howlong, DoAIRQ); |
| return ARMul_DONE; |
| |
| case 3: |
| state->NfiqSig = HIGH; |
| state->Exception--; |
| return ARMul_DONE; |
| |
| case 4: |
| state->NirqSig = HIGH; |
| state->Exception--; |
| return ARMul_DONE; |
| |
| case 5: |
| ValReg[BITS (0, 3)] = ARMul_Time (state); |
| return ARMul_DONE; |
| } |
| |
| return ARMul_CANT; |
| } |
| |
| /* Install co-processor instruction handlers in this routine. */ |
| |
| unsigned |
| ARMul_CoProInit (ARMul_State * state) |
| { |
| unsigned int i; |
| |
| /* Initialise tham all first. */ |
| for (i = 0; i < 16; i++) |
| ARMul_CoProDetach (state, i); |
| |
| /* Install CoPro Instruction handlers here. |
| The format is: |
| ARMul_CoProAttach (state, CP Number, Init routine, Exit routine |
| LDC routine, STC routine, MRC routine, MCR routine, |
| CDP routine, Read Reg routine, Write Reg routine). */ |
| if (state->is_ep9312) |
| { |
| ARMul_CoProAttach (state, 4, NULL, NULL, DSPLDC4, DSPSTC4, |
| DSPMRC4, DSPMCR4, DSPCDP4, NULL, NULL); |
| ARMul_CoProAttach (state, 5, NULL, NULL, DSPLDC5, DSPSTC5, |
| DSPMRC5, DSPMCR5, DSPCDP5, NULL, NULL); |
| ARMul_CoProAttach (state, 6, NULL, NULL, NULL, NULL, |
| DSPMRC6, DSPMCR6, DSPCDP6, NULL, NULL); |
| } |
| else |
| { |
| ARMul_CoProAttach (state, 4, NULL, NULL, ValLDC, ValSTC, |
| ValMRC, ValMCR, ValCDP, NULL, NULL); |
| |
| ARMul_CoProAttach (state, 5, NULL, NULL, NULL, NULL, |
| ValMRC, ValMCR, IntCDP, NULL, NULL); |
| } |
| |
| if (state->is_XScale) |
| { |
| ARMul_CoProAttach (state, 13, XScale_cp13_init, NULL, |
| XScale_cp13_LDC, XScale_cp13_STC, XScale_cp13_MRC, |
| XScale_cp13_MCR, NULL, XScale_cp13_read_reg, |
| XScale_cp13_write_reg); |
| |
| ARMul_CoProAttach (state, 14, XScale_cp14_init, NULL, |
| XScale_cp14_LDC, XScale_cp14_STC, XScale_cp14_MRC, |
| XScale_cp14_MCR, NULL, XScale_cp14_read_reg, |
| XScale_cp14_write_reg); |
| |
| ARMul_CoProAttach (state, 15, XScale_cp15_init, NULL, |
| NULL, NULL, XScale_cp15_MRC, XScale_cp15_MCR, |
| NULL, XScale_cp15_read_reg, XScale_cp15_write_reg); |
| } |
| else |
| { |
| ARMul_CoProAttach (state, 15, MMUInit, NULL, NULL, NULL, |
| MMUMRC, MMUMCR, NULL, MMURead, MMUWrite); |
| } |
| |
| if (state->is_iWMMXt) |
| { |
| ARMul_CoProAttach (state, 0, NULL, NULL, IwmmxtLDC, IwmmxtSTC, |
| NULL, NULL, IwmmxtCDP, NULL, NULL); |
| |
| ARMul_CoProAttach (state, 1, NULL, NULL, NULL, NULL, |
| IwmmxtMRC, IwmmxtMCR, IwmmxtCDP, NULL, NULL); |
| } |
| |
| /* No handlers below here. */ |
| |
| /* Call all the initialisation routines. */ |
| for (i = 0; i < 16; i++) |
| if (state->CPInit[i]) |
| (state->CPInit[i]) (state); |
| |
| return TRUE; |
| } |
| |
| /* Install co-processor finalisation routines in this routine. */ |
| |
| void |
| ARMul_CoProExit (ARMul_State * state) |
| { |
| register unsigned i; |
| |
| for (i = 0; i < 16; i++) |
| if (state->CPExit[i]) |
| (state->CPExit[i]) (state); |
| |
| for (i = 0; i < 16; i++) /* Detach all handlers. */ |
| ARMul_CoProDetach (state, i); |
| } |
| |
| /* Routines to hook Co-processors into ARMulator. */ |
| |
| void |
| ARMul_CoProAttach (ARMul_State * state, |
| unsigned number, |
| ARMul_CPInits * init, |
| ARMul_CPExits * exit, |
| ARMul_LDCs * ldc, |
| ARMul_STCs * stc, |
| ARMul_MRCs * mrc, |
| ARMul_MCRs * mcr, |
| ARMul_CDPs * cdp, |
| ARMul_CPReads * read, |
| ARMul_CPWrites * write) |
| { |
| if (init != NULL) |
| state->CPInit[number] = init; |
| if (exit != NULL) |
| state->CPExit[number] = exit; |
| if (ldc != NULL) |
| state->LDC[number] = ldc; |
| if (stc != NULL) |
| state->STC[number] = stc; |
| if (mrc != NULL) |
| state->MRC[number] = mrc; |
| if (mcr != NULL) |
| state->MCR[number] = mcr; |
| if (cdp != NULL) |
| state->CDP[number] = cdp; |
| if (read != NULL) |
| state->CPRead[number] = read; |
| if (write != NULL) |
| state->CPWrite[number] = write; |
| } |
| |
| void |
| ARMul_CoProDetach (ARMul_State * state, unsigned number) |
| { |
| ARMul_CoProAttach (state, number, NULL, NULL, |
| NoCoPro4R, NoCoPro4W, NoCoPro4W, NoCoPro4R, |
| NoCoPro3R, NULL, NULL); |
| |
| state->CPInit[number] = NULL; |
| state->CPExit[number] = NULL; |
| state->CPRead[number] = NULL; |
| state->CPWrite[number] = NULL; |
| } |