| /* Read ELF (Executable and Linking Format) object files for GDB. |
| |
| Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
| 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 |
| Free Software Foundation, Inc. |
| |
| Written by Fred Fish at Cygnus Support. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "bfd.h" |
| #include "gdb_string.h" |
| #include "elf-bfd.h" |
| #include "elf/common.h" |
| #include "elf/internal.h" |
| #include "elf/mips.h" |
| #include "symtab.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "buildsym.h" |
| #include "stabsread.h" |
| #include "gdb-stabs.h" |
| #include "complaints.h" |
| #include "demangle.h" |
| #include "psympriv.h" |
| |
| extern void _initialize_elfread (void); |
| |
| /* Forward declaration. */ |
| static const struct sym_fns elf_sym_fns_gdb_index; |
| |
| /* The struct elfinfo is available only during ELF symbol table and |
| psymtab reading. It is destroyed at the completion of psymtab-reading. |
| It's local to elf_symfile_read. */ |
| |
| struct elfinfo |
| { |
| asection *stabsect; /* Section pointer for .stab section */ |
| asection *stabindexsect; /* Section pointer for .stab.index section */ |
| asection *mdebugsect; /* Section pointer for .mdebug section */ |
| }; |
| |
| static void free_elfinfo (void *); |
| |
| /* Locate the segments in ABFD. */ |
| |
| static struct symfile_segment_data * |
| elf_symfile_segments (bfd *abfd) |
| { |
| Elf_Internal_Phdr *phdrs, **segments; |
| long phdrs_size; |
| int num_phdrs, num_segments, num_sections, i; |
| asection *sect; |
| struct symfile_segment_data *data; |
| |
| phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); |
| if (phdrs_size == -1) |
| return NULL; |
| |
| phdrs = alloca (phdrs_size); |
| num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); |
| if (num_phdrs == -1) |
| return NULL; |
| |
| num_segments = 0; |
| segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); |
| for (i = 0; i < num_phdrs; i++) |
| if (phdrs[i].p_type == PT_LOAD) |
| segments[num_segments++] = &phdrs[i]; |
| |
| if (num_segments == 0) |
| return NULL; |
| |
| data = XZALLOC (struct symfile_segment_data); |
| data->num_segments = num_segments; |
| data->segment_bases = XCALLOC (num_segments, CORE_ADDR); |
| data->segment_sizes = XCALLOC (num_segments, CORE_ADDR); |
| |
| for (i = 0; i < num_segments; i++) |
| { |
| data->segment_bases[i] = segments[i]->p_vaddr; |
| data->segment_sizes[i] = segments[i]->p_memsz; |
| } |
| |
| num_sections = bfd_count_sections (abfd); |
| data->segment_info = XCALLOC (num_sections, int); |
| |
| for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) |
| { |
| int j; |
| CORE_ADDR vma; |
| |
| if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) |
| continue; |
| |
| vma = bfd_get_section_vma (abfd, sect); |
| |
| for (j = 0; j < num_segments; j++) |
| if (segments[j]->p_memsz > 0 |
| && vma >= segments[j]->p_vaddr |
| && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
| { |
| data->segment_info[i] = j + 1; |
| break; |
| } |
| |
| /* We should have found a segment for every non-empty section. |
| If we haven't, we will not relocate this section by any |
| offsets we apply to the segments. As an exception, do not |
| warn about SHT_NOBITS sections; in normal ELF execution |
| environments, SHT_NOBITS means zero-initialized and belongs |
| in a segment, but in no-OS environments some tools (e.g. ARM |
| RealView) use SHT_NOBITS for uninitialized data. Since it is |
| uninitialized, it doesn't need a program header. Such |
| binaries are not relocatable. */ |
| if (bfd_get_section_size (sect) > 0 && j == num_segments |
| && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) |
| warning (_("Loadable segment \"%s\" outside of ELF segments"), |
| bfd_section_name (abfd, sect)); |
| } |
| |
| return data; |
| } |
| |
| /* We are called once per section from elf_symfile_read. We |
| need to examine each section we are passed, check to see |
| if it is something we are interested in processing, and |
| if so, stash away some access information for the section. |
| |
| For now we recognize the dwarf debug information sections and |
| line number sections from matching their section names. The |
| ELF definition is no real help here since it has no direct |
| knowledge of DWARF (by design, so any debugging format can be |
| used). |
| |
| We also recognize the ".stab" sections used by the Sun compilers |
| released with Solaris 2. |
| |
| FIXME: The section names should not be hardwired strings (what |
| should they be? I don't think most object file formats have enough |
| section flags to specify what kind of debug section it is |
| -kingdon). */ |
| |
| static void |
| elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
| { |
| struct elfinfo *ei; |
| |
| ei = (struct elfinfo *) eip; |
| if (strcmp (sectp->name, ".stab") == 0) |
| { |
| ei->stabsect = sectp; |
| } |
| else if (strcmp (sectp->name, ".stab.index") == 0) |
| { |
| ei->stabindexsect = sectp; |
| } |
| else if (strcmp (sectp->name, ".mdebug") == 0) |
| { |
| ei->mdebugsect = sectp; |
| } |
| } |
| |
| static struct minimal_symbol * |
| record_minimal_symbol (const char *name, int name_len, int copy_name, |
| CORE_ADDR address, |
| enum minimal_symbol_type ms_type, |
| asection *bfd_section, struct objfile *objfile) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| if (ms_type == mst_text || ms_type == mst_file_text) |
| address = gdbarch_smash_text_address (gdbarch, address); |
| |
| return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
| ms_type, bfd_section->index, |
| bfd_section, objfile); |
| } |
| |
| /* |
| |
| LOCAL FUNCTION |
| |
| elf_symtab_read -- read the symbol table of an ELF file |
| |
| SYNOPSIS |
| |
| void elf_symtab_read (struct objfile *objfile, int type, |
| long number_of_symbols, asymbol **symbol_table) |
| |
| DESCRIPTION |
| |
| Given an objfile, a symbol table, and a flag indicating whether the |
| symbol table contains regular, dynamic, or synthetic symbols, add all |
| the global function and data symbols to the minimal symbol table. |
| |
| In stabs-in-ELF, as implemented by Sun, there are some local symbols |
| defined in the ELF symbol table, which can be used to locate |
| the beginnings of sections from each ".o" file that was linked to |
| form the executable objfile. We gather any such info and record it |
| in data structures hung off the objfile's private data. |
| |
| */ |
| |
| #define ST_REGULAR 0 |
| #define ST_DYNAMIC 1 |
| #define ST_SYNTHETIC 2 |
| |
| static void |
| elf_symtab_read (struct objfile *objfile, int type, |
| long number_of_symbols, asymbol **symbol_table, |
| int copy_names) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| asymbol *sym; |
| long i; |
| CORE_ADDR symaddr; |
| CORE_ADDR offset; |
| enum minimal_symbol_type ms_type; |
| /* If sectinfo is nonNULL, it contains section info that should end up |
| filed in the objfile. */ |
| struct stab_section_info *sectinfo = NULL; |
| /* If filesym is nonzero, it points to a file symbol, but we haven't |
| seen any section info for it yet. */ |
| asymbol *filesym = 0; |
| /* Name of filesym. This is either a constant string or is saved on |
| the objfile's obstack. */ |
| char *filesymname = ""; |
| struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info; |
| int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
| |
| for (i = 0; i < number_of_symbols; i++) |
| { |
| sym = symbol_table[i]; |
| if (sym->name == NULL || *sym->name == '\0') |
| { |
| /* Skip names that don't exist (shouldn't happen), or names |
| that are null strings (may happen). */ |
| continue; |
| } |
| |
| /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
| symbols which do not correspond to objects in the symbol table, |
| but have some other target-specific meaning. */ |
| if (bfd_is_target_special_symbol (objfile->obfd, sym)) |
| { |
| if (gdbarch_record_special_symbol_p (gdbarch)) |
| gdbarch_record_special_symbol (gdbarch, objfile, sym); |
| continue; |
| } |
| |
| offset = ANOFFSET (objfile->section_offsets, sym->section->index); |
| if (type == ST_DYNAMIC |
| && sym->section == &bfd_und_section |
| && (sym->flags & BSF_FUNCTION)) |
| { |
| struct minimal_symbol *msym; |
| bfd *abfd = objfile->obfd; |
| asection *sect; |
| |
| /* Symbol is a reference to a function defined in |
| a shared library. |
| If its value is non zero then it is usually the address |
| of the corresponding entry in the procedure linkage table, |
| plus the desired section offset. |
| If its value is zero then the dynamic linker has to resolve |
| the symbol. We are unable to find any meaningful address |
| for this symbol in the executable file, so we skip it. */ |
| symaddr = sym->value; |
| if (symaddr == 0) |
| continue; |
| |
| /* sym->section is the undefined section. However, we want to |
| record the section where the PLT stub resides with the |
| minimal symbol. Search the section table for the one that |
| covers the stub's address. */ |
| for (sect = abfd->sections; sect != NULL; sect = sect->next) |
| { |
| if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) |
| continue; |
| |
| if (symaddr >= bfd_get_section_vma (abfd, sect) |
| && symaddr < bfd_get_section_vma (abfd, sect) |
| + bfd_get_section_size (sect)) |
| break; |
| } |
| if (!sect) |
| continue; |
| |
| symaddr += ANOFFSET (objfile->section_offsets, sect->index); |
| |
| msym = record_minimal_symbol |
| (sym->name, strlen (sym->name), copy_names, |
| symaddr, mst_solib_trampoline, sect, objfile); |
| if (msym != NULL) |
| msym->filename = filesymname; |
| continue; |
| } |
| |
| /* If it is a nonstripped executable, do not enter dynamic |
| symbols, as the dynamic symbol table is usually a subset |
| of the main symbol table. */ |
| if (type == ST_DYNAMIC && !stripped) |
| continue; |
| if (sym->flags & BSF_FILE) |
| { |
| /* STT_FILE debugging symbol that helps stabs-in-elf debugging. |
| Chain any old one onto the objfile; remember new sym. */ |
| if (sectinfo != NULL) |
| { |
| sectinfo->next = dbx->stab_section_info; |
| dbx->stab_section_info = sectinfo; |
| sectinfo = NULL; |
| } |
| filesym = sym; |
| filesymname = |
| obsavestring ((char *) filesym->name, strlen (filesym->name), |
| &objfile->objfile_obstack); |
| } |
| else if (sym->flags & BSF_SECTION_SYM) |
| continue; |
| else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK)) |
| { |
| struct minimal_symbol *msym; |
| |
| /* Select global/local/weak symbols. Note that bfd puts abs |
| symbols in their own section, so all symbols we are |
| interested in will have a section. */ |
| /* Bfd symbols are section relative. */ |
| symaddr = sym->value + sym->section->vma; |
| /* Relocate all non-absolute and non-TLS symbols by the |
| section offset. */ |
| if (sym->section != &bfd_abs_section |
| && !(sym->section->flags & SEC_THREAD_LOCAL)) |
| { |
| symaddr += offset; |
| } |
| /* For non-absolute symbols, use the type of the section |
| they are relative to, to intuit text/data. Bfd provides |
| no way of figuring this out for absolute symbols. */ |
| if (sym->section == &bfd_abs_section) |
| { |
| /* This is a hack to get the minimal symbol type |
| right for Irix 5, which has absolute addresses |
| with special section indices for dynamic symbols. |
| |
| NOTE: uweigand-20071112: Synthetic symbols do not |
| have an ELF-private part, so do not touch those. */ |
| unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
| ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
| |
| switch (shndx) |
| { |
| case SHN_MIPS_TEXT: |
| ms_type = mst_text; |
| break; |
| case SHN_MIPS_DATA: |
| ms_type = mst_data; |
| break; |
| case SHN_MIPS_ACOMMON: |
| ms_type = mst_bss; |
| break; |
| default: |
| ms_type = mst_abs; |
| } |
| |
| /* If it is an Irix dynamic symbol, skip section name |
| symbols, relocate all others by section offset. */ |
| if (ms_type != mst_abs) |
| { |
| if (sym->name[0] == '.') |
| continue; |
| symaddr += offset; |
| } |
| } |
| else if (sym->section->flags & SEC_CODE) |
| { |
| if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) |
| { |
| ms_type = mst_text; |
| } |
| else if ((sym->name[0] == '.' && sym->name[1] == 'L') |
| || ((sym->flags & BSF_LOCAL) |
| && sym->name[0] == '$' |
| && sym->name[1] == 'L')) |
| /* Looks like a compiler-generated label. Skip |
| it. The assembler should be skipping these (to |
| keep executables small), but apparently with |
| gcc on the (deleted) delta m88k SVR4, it loses. |
| So to have us check too should be harmless (but |
| I encourage people to fix this in the assembler |
| instead of adding checks here). */ |
| continue; |
| else |
| { |
| ms_type = mst_file_text; |
| } |
| } |
| else if (sym->section->flags & SEC_ALLOC) |
| { |
| if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) |
| { |
| if (sym->section->flags & SEC_LOAD) |
| { |
| ms_type = mst_data; |
| } |
| else |
| { |
| ms_type = mst_bss; |
| } |
| } |
| else if (sym->flags & BSF_LOCAL) |
| { |
| /* Named Local variable in a Data section. |
| Check its name for stabs-in-elf. */ |
| int special_local_sect; |
| |
| if (strcmp ("Bbss.bss", sym->name) == 0) |
| special_local_sect = SECT_OFF_BSS (objfile); |
| else if (strcmp ("Ddata.data", sym->name) == 0) |
| special_local_sect = SECT_OFF_DATA (objfile); |
| else if (strcmp ("Drodata.rodata", sym->name) == 0) |
| special_local_sect = SECT_OFF_RODATA (objfile); |
| else |
| special_local_sect = -1; |
| if (special_local_sect >= 0) |
| { |
| /* Found a special local symbol. Allocate a |
| sectinfo, if needed, and fill it in. */ |
| if (sectinfo == NULL) |
| { |
| int max_index; |
| size_t size; |
| |
| max_index = SECT_OFF_BSS (objfile); |
| if (objfile->sect_index_data > max_index) |
| max_index = objfile->sect_index_data; |
| if (objfile->sect_index_rodata > max_index) |
| max_index = objfile->sect_index_rodata; |
| |
| /* max_index is the largest index we'll |
| use into this array, so we must |
| allocate max_index+1 elements for it. |
| However, 'struct stab_section_info' |
| already includes one element, so we |
| need to allocate max_index aadditional |
| elements. */ |
| size = (sizeof (struct stab_section_info) |
| + (sizeof (CORE_ADDR) |
| * max_index)); |
| sectinfo = (struct stab_section_info *) |
| xmalloc (size); |
| memset (sectinfo, 0, size); |
| sectinfo->num_sections = max_index; |
| if (filesym == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("elf/stab section information %s without a preceding file symbol"), |
| sym->name); |
| } |
| else |
| { |
| sectinfo->filename = |
| (char *) filesym->name; |
| } |
| } |
| if (sectinfo->sections[special_local_sect] != 0) |
| complaint (&symfile_complaints, |
| _("duplicated elf/stab section information for %s"), |
| sectinfo->filename); |
| /* BFD symbols are section relative. */ |
| symaddr = sym->value + sym->section->vma; |
| /* Relocate non-absolute symbols by the |
| section offset. */ |
| if (sym->section != &bfd_abs_section) |
| symaddr += offset; |
| sectinfo->sections[special_local_sect] = symaddr; |
| /* The special local symbols don't go in the |
| minimal symbol table, so ignore this one. */ |
| continue; |
| } |
| /* Not a special stabs-in-elf symbol, do regular |
| symbol processing. */ |
| if (sym->section->flags & SEC_LOAD) |
| { |
| ms_type = mst_file_data; |
| } |
| else |
| { |
| ms_type = mst_file_bss; |
| } |
| } |
| else |
| { |
| ms_type = mst_unknown; |
| } |
| } |
| else |
| { |
| /* FIXME: Solaris2 shared libraries include lots of |
| odd "absolute" and "undefined" symbols, that play |
| hob with actions like finding what function the PC |
| is in. Ignore them if they aren't text, data, or bss. */ |
| /* ms_type = mst_unknown; */ |
| continue; /* Skip this symbol. */ |
| } |
| msym = record_minimal_symbol |
| (sym->name, strlen (sym->name), copy_names, symaddr, |
| ms_type, sym->section, objfile); |
| |
| if (msym) |
| { |
| /* Pass symbol size field in via BFD. FIXME!!! */ |
| elf_symbol_type *elf_sym; |
| |
| /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
| ELF-private part. However, in some cases (e.g. synthetic |
| 'dot' symbols on ppc64) the udata.p entry is set to point back |
| to the original ELF symbol it was derived from. Get the size |
| from that symbol. */ |
| if (type != ST_SYNTHETIC) |
| elf_sym = (elf_symbol_type *) sym; |
| else |
| elf_sym = (elf_symbol_type *) sym->udata.p; |
| |
| if (elf_sym) |
| MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size; |
| |
| msym->filename = filesymname; |
| gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); |
| } |
| |
| /* For @plt symbols, also record a trampoline to the |
| destination symbol. The @plt symbol will be used in |
| disassembly, and the trampoline will be used when we are |
| trying to find the target. */ |
| if (msym && ms_type == mst_text && type == ST_SYNTHETIC) |
| { |
| int len = strlen (sym->name); |
| |
| if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) |
| { |
| struct minimal_symbol *mtramp; |
| |
| mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
| symaddr, |
| mst_solib_trampoline, |
| sym->section, objfile); |
| if (mtramp) |
| { |
| MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym); |
| mtramp->filename = filesymname; |
| gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| struct build_id |
| { |
| size_t size; |
| gdb_byte data[1]; |
| }; |
| |
| /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */ |
| |
| static struct build_id * |
| build_id_bfd_get (bfd *abfd) |
| { |
| struct build_id *retval; |
| |
| if (!bfd_check_format (abfd, bfd_object) |
| || bfd_get_flavour (abfd) != bfd_target_elf_flavour |
| || elf_tdata (abfd)->build_id == NULL) |
| return NULL; |
| |
| retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size); |
| retval->size = elf_tdata (abfd)->build_id_size; |
| memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size); |
| |
| return retval; |
| } |
| |
| /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */ |
| |
| static int |
| build_id_verify (const char *filename, struct build_id *check) |
| { |
| bfd *abfd; |
| struct build_id *found = NULL; |
| int retval = 0; |
| |
| /* We expect to be silent on the non-existing files. */ |
| abfd = bfd_open_maybe_remote (filename); |
| if (abfd == NULL) |
| return 0; |
| |
| found = build_id_bfd_get (abfd); |
| |
| if (found == NULL) |
| warning (_("File \"%s\" has no build-id, file skipped"), filename); |
| else if (found->size != check->size |
| || memcmp (found->data, check->data, found->size) != 0) |
| warning (_("File \"%s\" has a different build-id, file skipped"), filename); |
| else |
| retval = 1; |
| |
| gdb_bfd_close_or_warn (abfd); |
| |
| xfree (found); |
| |
| return retval; |
| } |
| |
| static char * |
| build_id_to_debug_filename (struct build_id *build_id) |
| { |
| char *link, *debugdir, *retval = NULL; |
| |
| /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */ |
| link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1 |
| + 2 * build_id->size + (sizeof ".debug" - 1) + 1); |
| |
| /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will |
| cause "/.build-id/..." lookups. */ |
| |
| debugdir = debug_file_directory; |
| do |
| { |
| char *s, *debugdir_end; |
| gdb_byte *data = build_id->data; |
| size_t size = build_id->size; |
| |
| while (*debugdir == DIRNAME_SEPARATOR) |
| debugdir++; |
| |
| debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR); |
| if (debugdir_end == NULL) |
| debugdir_end = &debugdir[strlen (debugdir)]; |
| |
| memcpy (link, debugdir, debugdir_end - debugdir); |
| s = &link[debugdir_end - debugdir]; |
| s += sprintf (s, "/.build-id/"); |
| if (size > 0) |
| { |
| size--; |
| s += sprintf (s, "%02x", (unsigned) *data++); |
| } |
| if (size > 0) |
| *s++ = '/'; |
| while (size-- > 0) |
| s += sprintf (s, "%02x", (unsigned) *data++); |
| strcpy (s, ".debug"); |
| |
| /* lrealpath() is expensive even for the usually non-existent files. */ |
| if (access (link, F_OK) == 0) |
| retval = lrealpath (link); |
| |
| if (retval != NULL && !build_id_verify (retval, build_id)) |
| { |
| xfree (retval); |
| retval = NULL; |
| } |
| |
| if (retval != NULL) |
| break; |
| |
| debugdir = debugdir_end; |
| } |
| while (*debugdir != 0); |
| |
| return retval; |
| } |
| |
| static char * |
| find_separate_debug_file_by_buildid (struct objfile *objfile) |
| { |
| struct build_id *build_id; |
| |
| build_id = build_id_bfd_get (objfile->obfd); |
| if (build_id != NULL) |
| { |
| char *build_id_name; |
| |
| build_id_name = build_id_to_debug_filename (build_id); |
| xfree (build_id); |
| /* Prevent looping on a stripped .debug file. */ |
| if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0) |
| { |
| warning (_("\"%s\": separate debug info file has no debug info"), |
| build_id_name); |
| xfree (build_id_name); |
| } |
| else if (build_id_name != NULL) |
| return build_id_name; |
| } |
| return NULL; |
| } |
| |
| /* Scan and build partial symbols for a symbol file. |
| We have been initialized by a call to elf_symfile_init, which |
| currently does nothing. |
| |
| SECTION_OFFSETS is a set of offsets to apply to relocate the symbols |
| in each section. We simplify it down to a single offset for all |
| symbols. FIXME. |
| |
| This function only does the minimum work necessary for letting the |
| user "name" things symbolically; it does not read the entire symtab. |
| Instead, it reads the external and static symbols and puts them in partial |
| symbol tables. When more extensive information is requested of a |
| file, the corresponding partial symbol table is mutated into a full |
| fledged symbol table by going back and reading the symbols |
| for real. |
| |
| We look for sections with specific names, to tell us what debug |
| format to look for: FIXME!!! |
| |
| elfstab_build_psymtabs() handles STABS symbols; |
| mdebug_build_psymtabs() handles ECOFF debugging information. |
| |
| Note that ELF files have a "minimal" symbol table, which looks a lot |
| like a COFF symbol table, but has only the minimal information necessary |
| for linking. We process this also, and use the information to |
| build gdb's minimal symbol table. This gives us some minimal debugging |
| capability even for files compiled without -g. */ |
| |
| static void |
| elf_symfile_read (struct objfile *objfile, int symfile_flags) |
| { |
| bfd *abfd = objfile->obfd; |
| struct elfinfo ei; |
| struct cleanup *back_to; |
| long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
| asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; |
| asymbol *synthsyms; |
| |
| init_minimal_symbol_collection (); |
| back_to = make_cleanup_discard_minimal_symbols (); |
| |
| memset ((char *) &ei, 0, sizeof (ei)); |
| |
| /* Allocate struct to keep track of the symfile */ |
| objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *) |
| xmalloc (sizeof (struct dbx_symfile_info)); |
| memset ((char *) objfile->deprecated_sym_stab_info, 0, sizeof (struct dbx_symfile_info)); |
| make_cleanup (free_elfinfo, (void *) objfile); |
| |
| /* Process the normal ELF symbol table first. This may write some |
| chain of info into the dbx_symfile_info in objfile->deprecated_sym_stab_info, |
| which can later be used by elfstab_offset_sections. */ |
| |
| storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
| if (storage_needed < 0) |
| error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile->obfd), |
| bfd_errmsg (bfd_get_error ())); |
| |
| if (storage_needed > 0) |
| { |
| symbol_table = (asymbol **) xmalloc (storage_needed); |
| make_cleanup (xfree, symbol_table); |
| symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); |
| |
| if (symcount < 0) |
| error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile->obfd), |
| bfd_errmsg (bfd_get_error ())); |
| |
| elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
| } |
| |
| /* Add the dynamic symbols. */ |
| |
| storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
| |
| if (storage_needed > 0) |
| { |
| /* Memory gets permanently referenced from ABFD after |
| bfd_get_synthetic_symtab so it must not get freed before ABFD gets. |
| It happens only in the case when elf_slurp_reloc_table sees |
| asection->relocation NULL. Determining which section is asection is |
| done by _bfd_elf_get_synthetic_symtab which is all a bfd |
| implementation detail, though. */ |
| |
| dyn_symbol_table = bfd_alloc (abfd, storage_needed); |
| dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
| dyn_symbol_table); |
| |
| if (dynsymcount < 0) |
| error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile->obfd), |
| bfd_errmsg (bfd_get_error ())); |
| |
| elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
| } |
| |
| /* Add synthetic symbols - for instance, names for any PLT entries. */ |
| |
| synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table, |
| dynsymcount, dyn_symbol_table, |
| &synthsyms); |
| if (synthcount > 0) |
| { |
| asymbol **synth_symbol_table; |
| long i; |
| |
| make_cleanup (xfree, synthsyms); |
| synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); |
| for (i = 0; i < synthcount; i++) |
| synth_symbol_table[i] = synthsyms + i; |
| make_cleanup (xfree, synth_symbol_table); |
| elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, synth_symbol_table, 1); |
| } |
| |
| /* Install any minimal symbols that have been collected as the current |
| minimal symbols for this objfile. The debug readers below this point |
| should not generate new minimal symbols; if they do it's their |
| responsibility to install them. "mdebug" appears to be the only one |
| which will do this. */ |
| |
| install_minimal_symbols (objfile); |
| do_cleanups (back_to); |
| |
| /* Now process debugging information, which is contained in |
| special ELF sections. */ |
| |
| /* We first have to find them... */ |
| bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
| |
| /* ELF debugging information is inserted into the psymtab in the |
| order of least informative first - most informative last. Since |
| the psymtab table is searched `most recent insertion first' this |
| increases the probability that more detailed debug information |
| for a section is found. |
| |
| For instance, an object file might contain both .mdebug (XCOFF) |
| and .debug_info (DWARF2) sections then .mdebug is inserted first |
| (searched last) and DWARF2 is inserted last (searched first). If |
| we don't do this then the XCOFF info is found first - for code in |
| an included file XCOFF info is useless. */ |
| |
| if (ei.mdebugsect) |
| { |
| const struct ecoff_debug_swap *swap; |
| |
| /* .mdebug section, presumably holding ECOFF debugging |
| information. */ |
| swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| if (swap) |
| elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
| } |
| if (ei.stabsect) |
| { |
| asection *str_sect; |
| |
| /* Stab sections have an associated string table that looks like |
| a separate section. */ |
| str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
| |
| /* FIXME should probably warn about a stab section without a stabstr. */ |
| if (str_sect) |
| elfstab_build_psymtabs (objfile, |
| ei.stabsect, |
| str_sect->filepos, |
| bfd_section_size (abfd, str_sect)); |
| } |
| |
| if (dwarf2_has_info (objfile) && dwarf2_initialize_objfile (objfile)) |
| objfile->sf = &elf_sym_fns_gdb_index; |
| |
| /* If the file has its own symbol tables it has no separate debug info. |
| `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS. |
| `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */ |
| if (!objfile_has_partial_symbols (objfile)) |
| { |
| char *debugfile; |
| |
| debugfile = find_separate_debug_file_by_buildid (objfile); |
| |
| if (debugfile == NULL) |
| debugfile = find_separate_debug_file_by_debuglink (objfile); |
| |
| if (debugfile) |
| { |
| bfd *abfd = symfile_bfd_open (debugfile); |
| |
| symbol_file_add_separate (abfd, symfile_flags, objfile); |
| xfree (debugfile); |
| } |
| } |
| } |
| |
| /* This cleans up the objfile's deprecated_sym_stab_info pointer, and |
| the chain of stab_section_info's, that might be dangling from |
| it. */ |
| |
| static void |
| free_elfinfo (void *objp) |
| { |
| struct objfile *objfile = (struct objfile *) objp; |
| struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info; |
| struct stab_section_info *ssi, *nssi; |
| |
| ssi = dbxinfo->stab_section_info; |
| while (ssi) |
| { |
| nssi = ssi->next; |
| xfree (ssi); |
| ssi = nssi; |
| } |
| |
| dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */ |
| } |
| |
| |
| /* Initialize anything that needs initializing when a completely new symbol |
| file is specified (not just adding some symbols from another file, e.g. a |
| shared library). |
| |
| We reinitialize buildsym, since we may be reading stabs from an ELF file. */ |
| |
| static void |
| elf_new_init (struct objfile *ignore) |
| { |
| stabsread_new_init (); |
| buildsym_new_init (); |
| } |
| |
| /* Perform any local cleanups required when we are done with a particular |
| objfile. I.E, we are in the process of discarding all symbol information |
| for an objfile, freeing up all memory held for it, and unlinking the |
| objfile struct from the global list of known objfiles. */ |
| |
| static void |
| elf_symfile_finish (struct objfile *objfile) |
| { |
| if (objfile->deprecated_sym_stab_info != NULL) |
| { |
| xfree (objfile->deprecated_sym_stab_info); |
| } |
| |
| dwarf2_free_objfile (objfile); |
| } |
| |
| /* ELF specific initialization routine for reading symbols. |
| |
| It is passed a pointer to a struct sym_fns which contains, among other |
| things, the BFD for the file whose symbols are being read, and a slot for |
| a pointer to "private data" which we can fill with goodies. |
| |
| For now at least, we have nothing in particular to do, so this function is |
| just a stub. */ |
| |
| static void |
| elf_symfile_init (struct objfile *objfile) |
| { |
| /* ELF objects may be reordered, so set OBJF_REORDERED. If we |
| find this causes a significant slowdown in gdb then we could |
| set it in the debug symbol readers only when necessary. */ |
| objfile->flags |= OBJF_REORDERED; |
| } |
| |
| /* When handling an ELF file that contains Sun STABS debug info, |
| some of the debug info is relative to the particular chunk of the |
| section that was generated in its individual .o file. E.g. |
| offsets to static variables are relative to the start of the data |
| segment *for that module before linking*. This information is |
| painfully squirreled away in the ELF symbol table as local symbols |
| with wierd names. Go get 'em when needed. */ |
| |
| void |
| elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst) |
| { |
| const char *filename = pst->filename; |
| struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info; |
| struct stab_section_info *maybe = dbx->stab_section_info; |
| struct stab_section_info *questionable = 0; |
| int i; |
| char *p; |
| |
| /* The ELF symbol info doesn't include path names, so strip the path |
| (if any) from the psymtab filename. */ |
| while (0 != (p = strchr (filename, '/'))) |
| filename = p + 1; |
| |
| /* FIXME: This linear search could speed up significantly |
| if it was chained in the right order to match how we search it, |
| and if we unchained when we found a match. */ |
| for (; maybe; maybe = maybe->next) |
| { |
| if (filename[0] == maybe->filename[0] |
| && strcmp (filename, maybe->filename) == 0) |
| { |
| /* We found a match. But there might be several source files |
| (from different directories) with the same name. */ |
| if (0 == maybe->found) |
| break; |
| questionable = maybe; /* Might use it later. */ |
| } |
| } |
| |
| if (maybe == 0 && questionable != 0) |
| { |
| complaint (&symfile_complaints, |
| _("elf/stab section information questionable for %s"), filename); |
| maybe = questionable; |
| } |
| |
| if (maybe) |
| { |
| /* Found it! Allocate a new psymtab struct, and fill it in. */ |
| maybe->found++; |
| pst->section_offsets = (struct section_offsets *) |
| obstack_alloc (&objfile->objfile_obstack, |
| SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
| for (i = 0; i < maybe->num_sections; i++) |
| (pst->section_offsets)->offsets[i] = maybe->sections[i]; |
| return; |
| } |
| |
| /* We were unable to find any offsets for this file. Complain. */ |
| if (dbx->stab_section_info) /* If there *is* any info, */ |
| complaint (&symfile_complaints, |
| _("elf/stab section information missing for %s"), filename); |
| } |
| |
| /* Register that we are able to handle ELF object file formats. */ |
| |
| static const struct sym_fns elf_sym_fns = |
| { |
| bfd_target_elf_flavour, |
| elf_new_init, /* sym_new_init: init anything gbl to entire symtab */ |
| elf_symfile_init, /* sym_init: read initial info, setup for sym_read() */ |
| elf_symfile_read, /* sym_read: read a symbol file into symtab */ |
| elf_symfile_finish, /* sym_finish: finished with file, cleanup */ |
| default_symfile_offsets, /* sym_offsets: Translate ext. to int. relocation */ |
| elf_symfile_segments, /* sym_segments: Get segment information from |
| a file. */ |
| NULL, /* sym_read_linetable */ |
| default_symfile_relocate, /* sym_relocate: Relocate a debug section. */ |
| &psym_functions |
| }; |
| |
| /* The same as elf_sym_fns, but not registered and uses the |
| DWARF-specific GNU index rather than psymtab. */ |
| static const struct sym_fns elf_sym_fns_gdb_index = |
| { |
| bfd_target_elf_flavour, |
| elf_new_init, /* sym_new_init: init anything gbl to entire symab */ |
| elf_symfile_init, /* sym_init: read initial info, setup for sym_red() */ |
| elf_symfile_read, /* sym_read: read a symbol file into symtab */ |
| elf_symfile_finish, /* sym_finish: finished with file, cleanup */ |
| default_symfile_offsets, /* sym_offsets: Translate ext. to int. relocatin */ |
| elf_symfile_segments, /* sym_segments: Get segment information from |
| a file. */ |
| NULL, /* sym_read_linetable */ |
| default_symfile_relocate, /* sym_relocate: Relocate a debug section. */ |
| &dwarf2_gdb_index_functions |
| }; |
| |
| void |
| _initialize_elfread (void) |
| { |
| add_symtab_fns (&elf_sym_fns); |
| } |