blob: a938d9d370256112fc1421d16f5686513a2e2841 [file] [log] [blame]
//
// detail/reactive_socket_service_base.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2015 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP
#define ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_IOCP) \
&& !defined(ASIO_WINDOWS_RUNTIME)
#include "asio/buffer.hpp"
#include "asio/error.hpp"
#include "asio/io_context.hpp"
#include "asio/socket_base.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/reactive_null_buffers_op.hpp"
#include "asio/detail/reactive_socket_recv_op.hpp"
#include "asio/detail/reactive_socket_recvmsg_op.hpp"
#include "asio/detail/reactive_socket_send_op.hpp"
#include "asio/detail/reactive_wait_op.hpp"
#include "asio/detail/reactor.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/socket_holder.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class reactive_socket_service_base
{
public:
// The native type of a socket.
typedef socket_type native_handle_type;
// The implementation type of the socket.
struct base_implementation_type
{
// The native socket representation.
socket_type socket_;
// The current state of the socket.
socket_ops::state_type state_;
// Per-descriptor data used by the reactor.
reactor::per_descriptor_data reactor_data_;
};
// Constructor.
ASIO_DECL reactive_socket_service_base(
asio::io_context& io_context);
// Destroy all user-defined handler objects owned by the service.
ASIO_DECL void shutdown();
// Construct a new socket implementation.
ASIO_DECL void construct(base_implementation_type& impl);
// Move-construct a new socket implementation.
ASIO_DECL void base_move_construct(base_implementation_type& impl,
base_implementation_type& other_impl);
// Move-assign from another socket implementation.
ASIO_DECL void base_move_assign(base_implementation_type& impl,
reactive_socket_service_base& other_service,
base_implementation_type& other_impl);
// Destroy a socket implementation.
ASIO_DECL void destroy(base_implementation_type& impl);
// Determine whether the socket is open.
bool is_open(const base_implementation_type& impl) const
{
return impl.socket_ != invalid_socket;
}
// Destroy a socket implementation.
ASIO_DECL asio::error_code close(
base_implementation_type& impl, asio::error_code& ec);
// Get the native socket representation.
native_handle_type native_handle(base_implementation_type& impl)
{
return impl.socket_;
}
// Cancel all operations associated with the socket.
ASIO_DECL asio::error_code cancel(
base_implementation_type& impl, asio::error_code& ec);
// Determine whether the socket is at the out-of-band data mark.
bool at_mark(const base_implementation_type& impl,
asio::error_code& ec) const
{
return socket_ops::sockatmark(impl.socket_, ec);
}
// Determine the number of bytes available for reading.
std::size_t available(const base_implementation_type& impl,
asio::error_code& ec) const
{
return socket_ops::available(impl.socket_, ec);
}
// Place the socket into the state where it will listen for new connections.
asio::error_code listen(base_implementation_type& impl,
int backlog, asio::error_code& ec)
{
socket_ops::listen(impl.socket_, backlog, ec);
return ec;
}
// Perform an IO control command on the socket.
template <typename IO_Control_Command>
asio::error_code io_control(base_implementation_type& impl,
IO_Control_Command& command, asio::error_code& ec)
{
socket_ops::ioctl(impl.socket_, impl.state_, command.name(),
static_cast<ioctl_arg_type*>(command.data()), ec);
return ec;
}
// Gets the non-blocking mode of the socket.
bool non_blocking(const base_implementation_type& impl) const
{
return (impl.state_ & socket_ops::user_set_non_blocking) != 0;
}
// Sets the non-blocking mode of the socket.
asio::error_code non_blocking(base_implementation_type& impl,
bool mode, asio::error_code& ec)
{
socket_ops::set_user_non_blocking(impl.socket_, impl.state_, mode, ec);
return ec;
}
// Gets the non-blocking mode of the native socket implementation.
bool native_non_blocking(const base_implementation_type& impl) const
{
return (impl.state_ & socket_ops::internal_non_blocking) != 0;
}
// Sets the non-blocking mode of the native socket implementation.
asio::error_code native_non_blocking(base_implementation_type& impl,
bool mode, asio::error_code& ec)
{
socket_ops::set_internal_non_blocking(impl.socket_, impl.state_, mode, ec);
return ec;
}
// Disable sends or receives on the socket.
asio::error_code shutdown(base_implementation_type& impl,
socket_base::shutdown_type what, asio::error_code& ec)
{
socket_ops::shutdown(impl.socket_, what, ec);
return ec;
}
// Wait for the socket to become ready to read, ready to write, or to have
// pending error conditions.
asio::error_code wait(base_implementation_type& impl,
socket_base::wait_type w, asio::error_code& ec)
{
switch (w)
{
case socket_base::wait_read:
socket_ops::poll_read(impl.socket_, impl.state_, ec);
break;
case socket_base::wait_write:
socket_ops::poll_write(impl.socket_, impl.state_, ec);
break;
case socket_base::wait_error:
socket_ops::poll_error(impl.socket_, impl.state_, ec);
break;
default:
ec = asio::error::invalid_argument;
break;
}
return ec;
}
// Asynchronously wait for the socket to become ready to read, ready to
// write, or to have pending error conditions.
template <typename Handler>
void async_wait(base_implementation_type& impl,
socket_base::wait_type w, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_wait_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_wait"));
int op_type;
switch (w)
{
case socket_base::wait_read:
op_type = reactor::read_op;
break;
case socket_base::wait_write:
op_type = reactor::write_op;
break;
case socket_base::wait_error:
op_type = reactor::except_op;
break;
default:
p.p->ec_ = asio::error::invalid_argument;
reactor_.post_immediate_completion(p.p, is_continuation);
p.v = p.p = 0;
return;
}
start_op(impl, op_type, p.p, is_continuation, false, false);
p.v = p.p = 0;
}
// Send the given data to the peer.
template <typename ConstBufferSequence>
size_t send(base_implementation_type& impl,
const ConstBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
buffer_sequence_adapter<asio::const_buffer,
ConstBufferSequence> bufs(buffers);
return socket_ops::sync_send(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), flags, bufs.all_empty(), ec);
}
// Wait until data can be sent without blocking.
size_t send(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags, asio::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, impl.state_, ec);
return 0;
}
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_send(base_implementation_type& impl,
const ConstBufferSequence& buffers,
socket_base::message_flags flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_send_op<ConstBufferSequence, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl.socket_, buffers, flags, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_send"));
start_op(impl, reactor::write_op, p.p, is_continuation, true,
((impl.state_ & socket_ops::stream_oriented)
&& buffer_sequence_adapter<asio::const_buffer,
ConstBufferSequence>::all_empty(buffers)));
p.v = p.p = 0;
}
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler>
void async_send(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_send(null_buffers)"));
start_op(impl, reactor::write_op, p.p, is_continuation, false, false);
p.v = p.p = 0;
}
// Receive some data from the peer. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t receive(base_implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence> bufs(buffers);
return socket_ops::sync_recv(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), flags, bufs.all_empty(), ec);
}
// Wait until data can be received without blocking.
size_t receive(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags, asio::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, impl.state_, ec);
return 0;
}
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive(base_implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_recv_op<MutableBufferSequence, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl.socket_, impl.state_, buffers, flags, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive"));
start_op(impl,
(flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation,
(flags & socket_base::message_out_of_band) == 0,
((impl.state_ & socket_ops::stream_oriented)
&& buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence>::all_empty(buffers)));
p.v = p.p = 0;
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive(null_buffers)"));
start_op(impl,
(flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation, false, false);
p.v = p.p = 0;
}
// Receive some data with associated flags. Returns the number of bytes
// received.
template <typename MutableBufferSequence>
size_t receive_with_flags(base_implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, asio::error_code& ec)
{
buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence> bufs(buffers);
return socket_ops::sync_recvmsg(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), in_flags, out_flags, ec);
}
// Wait until data can be received without blocking.
size_t receive_with_flags(base_implementation_type& impl,
const null_buffers&, socket_base::message_flags,
socket_base::message_flags& out_flags, asio::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, impl.state_, ec);
// Clear out_flags, since we cannot give it any other sensible value when
// performing a null_buffers operation.
out_flags = 0;
return 0;
}
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive_with_flags(base_implementation_type& impl,
const MutableBufferSequence& buffers, socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_recvmsg_op<MutableBufferSequence, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl.socket_, buffers, in_flags, out_flags, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive_with_flags"));
start_op(impl,
(in_flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation,
(in_flags & socket_base::message_out_of_band) == 0, false);
p.v = p.p = 0;
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive_with_flags(base_implementation_type& impl,
const null_buffers&, socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive_with_flags(null_buffers)"));
// Clear out_flags, since we cannot give it any other sensible value when
// performing a null_buffers operation.
out_flags = 0;
start_op(impl,
(in_flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation, false, false);
p.v = p.p = 0;
}
protected:
// Open a new socket implementation.
ASIO_DECL asio::error_code do_open(
base_implementation_type& impl, int af,
int type, int protocol, asio::error_code& ec);
// Assign a native socket to a socket implementation.
ASIO_DECL asio::error_code do_assign(
base_implementation_type& impl, int type,
const native_handle_type& native_socket, asio::error_code& ec);
// Start the asynchronous read or write operation.
ASIO_DECL void start_op(base_implementation_type& impl, int op_type,
reactor_op* op, bool is_continuation, bool is_non_blocking, bool noop);
// Start the asynchronous accept operation.
ASIO_DECL void start_accept_op(base_implementation_type& impl,
reactor_op* op, bool is_continuation, bool peer_is_open);
// Start the asynchronous connect operation.
ASIO_DECL void start_connect_op(base_implementation_type& impl,
reactor_op* op, bool is_continuation,
const socket_addr_type* addr, size_t addrlen);
// The io_context that owns this socket service.
io_context& io_context_;
// The selector that performs event demultiplexing for the service.
reactor& reactor_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/reactive_socket_service_base.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // !defined(ASIO_HAS_IOCP)
// && !defined(ASIO_WINDOWS_RUNTIME)
#endif // ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP