blob: 796952580455523fcde76aec5114184d23fab668 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Unicode_test"
#include <sys/mman.h>
#include <unistd.h>
#include <log/log.h>
#include <utils/Unicode.h>
#include <gtest/gtest.h>
namespace android {
class UnicodeTest : public testing::Test {
protected:
virtual void SetUp() {
}
virtual void TearDown() {
}
char16_t const * const kSearchString = u"I am a leaf on the wind.";
constexpr static size_t BUFSIZE = 64; // large enough for all tests
void TestUTF8toUTF16(std::initializer_list<uint8_t> input,
std::initializer_list<char16_t> expect,
const char* err_msg_length = "",
ssize_t expected_length = 0) {
uint8_t empty_str[] = {};
char16_t output[BUFSIZE];
const size_t inlen = input.size(), outlen = expect.size();
ASSERT_LT(outlen, BUFSIZE);
const uint8_t *input_data = inlen ? std::data(input) : empty_str;
ssize_t measured = utf8_to_utf16_length(input_data, inlen);
EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length;
utf8_to_utf16(input_data, inlen, output, outlen + 1);
for (size_t i = 0; i < outlen; i++) {
EXPECT_EQ(std::data(expect)[i], output[i]);
}
EXPECT_EQ(0, output[outlen]) << "should be null terminated";
}
void TestUTF16toUTF8(std::initializer_list<char16_t> input,
std::initializer_list<char> expect,
const char* err_msg_length = "",
ssize_t expected_length = 0) {
char16_t empty_str[] = {};
char output[BUFSIZE];
const size_t inlen = input.size(), outlen = expect.size();
ASSERT_LT(outlen, BUFSIZE);
const char16_t *input_data = inlen ? std::data(input) : empty_str;
ssize_t measured = utf16_to_utf8_length(input_data, inlen);
EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length;
utf16_to_utf8(input_data, inlen, output, outlen + 1);
for (size_t i = 0; i < outlen; i++) {
EXPECT_EQ(std::data(expect)[i], output[i]);
}
EXPECT_EQ(0, output[outlen]) << "should be null terminated";
}
};
TEST_F(UnicodeTest, UTF8toUTF16ZeroLength) {
TestUTF8toUTF16({}, {},
"Zero length input should return zero length output.");
}
TEST_F(UnicodeTest, UTF8toUTF16ASCII) {
TestUTF8toUTF16(
{ 0x30 }, // U+0030 or ASCII '0'
{ 0x0030 },
"ASCII codepoints should have a length of 1 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16Plane1) {
TestUTF8toUTF16(
{ 0xE2, 0x8C, 0xA3 }, // U+2323 SMILE
{ 0x2323 },
"Plane 1 codepoints should have a length of 1 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16Surrogate) {
TestUTF8toUTF16(
{ 0xF0, 0x90, 0x80, 0x80 }, // U+10000
{ 0xD800, 0xDC00 },
"Surrogate pairs should have a length of 2 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16TruncatedUTF8) {
TestUTF8toUTF16(
{ 0xE2, 0x8C }, // Truncated U+2323 SMILE
{ }, // Conversion should still work but produce nothing
"Truncated UTF-8 should return -1 to indicate invalid",
-1);
}
TEST_F(UnicodeTest, UTF8toUTF16Normal) {
TestUTF8toUTF16({
0x30, // U+0030, 1 UTF-16 character
0xC4, 0x80, // U+0100, 1 UTF-16 character
0xE2, 0x8C, 0xA3, // U+2323, 1 UTF-16 character
0xF0, 0x90, 0x80, 0x80, // U+10000, 2 UTF-16 character
}, {
0x0030,
0x0100,
0x2323,
0xD800, 0xDC00
});
}
TEST_F(UnicodeTest, UTF8toUTF16Invalid) {
// TODO: The current behavior of utf8_to_utf16 is to treat invalid
// leading byte (>= 0xf8) as a 4-byte UTF8 sequence, and to treat
// invalid trailing byte(s) (i.e. bytes not having MSB set) as if
// they are valid and do the normal conversion. However, a better
// handling would be to treat invalid sequences as errors, such
// cases need to be reported and invalid characters (e.g. U+FFFD)
// could be produced at the place of error. Until a fix is ready
// and compatibility is not an issue, we will keep testing the
// current behavior
TestUTF8toUTF16({
0xf8, // invalid leading byte
0xc4, 0x00, // U+0100 with invalid trailing byte
0xe2, 0x0c, 0xa3, // U+2323 with invalid trailing bytes
0xf0, 0x10, 0x00, 0x00, // U+10000 with invalid trailing bytes
}, {
0x4022, // invalid leading byte (>=0xfc) is treated
// as valid for 4-byte UTF8 sequence
0x000C,
0x00A3, // invalid leadnig byte (b'10xxxxxx) is
// treated as valid single UTF-8 byte
0xD800, // invalid trailing bytes are treated
0xDC00, // as valid bytes and follow normal
});
}
TEST_F(UnicodeTest, UTF16toUTF8ZeroLength) {
// TODO: The current behavior of utf16_to_utf8_length() is that
// it returns -1 if the input is a zero length UTF16 string.
// This is inconsistent with utf8_to_utf16_length() where a zero
// length string returns 0. However, to fix the current behavior,
// we could have compatibility issue. Until then, we will keep
// testing the current behavior
TestUTF16toUTF8({}, {},
"Zero length UTF16 input should return length of -1.", -1);
}
TEST_F(UnicodeTest, UTF16toUTF8ASCII) {
TestUTF16toUTF8(
{ 0x0030 }, // U+0030 or ASCII '0'
{ '\x30' },
"ASCII codepoints in UTF16 should give a length of 1 in UTF8");
}
TEST_F(UnicodeTest, UTF16toUTF8Plane1) {
TestUTF16toUTF8(
{ 0x2323 }, // U+2323 SMILE
{ '\xE2', '\x8C', '\xA3' },
"Plane 1 codepoints should have a length of 3 char in UTF-8");
}
TEST_F(UnicodeTest, UTF16toUTF8Surrogate) {
TestUTF16toUTF8(
{ 0xD800, 0xDC00 }, // U+10000
{ '\xF0', '\x90', '\x80', '\x80' },
"Surrogate pairs should have a length of 4 chars");
}
TEST_F(UnicodeTest, UTF16toUTF8UnpairedSurrogate) {
TestUTF16toUTF8(
{ 0xD800 }, // U+10000 with high surrogate pair only
{ }, // Unpaired surrogate should be ignored
"A single unpaired high surrogate should have a length of 0 chars");
TestUTF16toUTF8(
{ 0xDC00 }, // U+10000 with low surrogate pair only
{ }, // Unpaired surrogate should be ignored
"A single unpaired low surrogate should have a length of 0 chars");
TestUTF16toUTF8(
// U+0030, U+0100, U+10000 with high surrogate pair only, U+2323
{ 0x0030, 0x0100, 0xDC00, 0x2323 },
{ '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' },
"Unpaired high surrogate should be skipped in the middle");
TestUTF16toUTF8(
// U+0030, U+0100, U+10000 with high surrogate pair only, U+2323
{ 0x0030, 0x0100, 0xDC00, 0x2323 },
{ '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' },
"Unpaired low surrogate should be skipped in the middle");
}
TEST_F(UnicodeTest, UTF16toUTF8CorrectInvalidSurrogate) {
// http://b/29250543
// d841d8 is an invalid start for a surrogate pair. Make sure this is handled by ignoring the
// first character in the pair and handling the rest correctly.
TestUTF16toUTF8(
{ 0xD841, 0xD841, 0xDC41 }, // U+20441
{ '\xF0', '\xA0', '\x91', '\x81' },
"Invalid start for a surrogate pair should be ignored");
}
TEST_F(UnicodeTest, UTF16toUTF8Normal) {
TestUTF16toUTF8({
0x0024, // U+0024 ($) --> 0x24, 1 UTF-8 byte
0x00A3, // U+00A3 (£) --> 0xC2 0xA3, 2 UTF-8 bytes
0x0939, // U+0939 (ह) --> 0xE0 0xA4 0xB9, 3 UTF-8 bytes
0x20AC, // U+20AC (€) --> 0xE2 0x82 0xAC, 3 UTF-8 bytes
0xD55C, // U+D55C (한)--> 0xED 0x95 0x9C, 3 UTF-8 bytes
0xD801, 0xDC37, // U+10437 (𐐷) --> 0xF0 0x90 0x90 0xB7, 4 UTF-8 bytes
}, {
'\x24',
'\xC2', '\xA3',
'\xE0', '\xA4', '\xB9',
'\xE2', '\x82', '\xAC',
'\xED', '\x95', '\x9C',
'\xF0', '\x90', '\x90', '\xB7',
});
}
TEST_F(UnicodeTest, strstr16EmptyTarget) {
EXPECT_EQ(strstr16(kSearchString, u""), kSearchString)
<< "should return the original pointer";
}
TEST_F(UnicodeTest, strstr16EmptyTarget_bug) {
// In the original code when target is an empty string strlen16() would
// start reading the memory until a "terminating null" (that is, zero)
// character is found. This happens because "*target++" in the original
// code would increment the pointer beyond the actual string.
void* memptr;
const size_t alignment = sysconf(_SC_PAGESIZE);
const size_t size = 2 * alignment;
ASSERT_EQ(posix_memalign(&memptr, alignment, size), 0);
// Fill allocated memory.
memset(memptr, 'A', size);
// Create a pointer to an "empty" string on the first page.
char16_t* const emptyString = (char16_t* const)((char*)memptr + alignment - 4);
*emptyString = (char16_t)0;
// Protect the second page to show that strstr16() violates that.
ASSERT_EQ(mprotect((char*)memptr + alignment, alignment, PROT_NONE), 0);
// Test strstr16(): when bug is present a segmentation fault is raised.
ASSERT_EQ(strstr16((char16_t*)memptr, emptyString), (char16_t*)memptr)
<< "should not read beyond the first char16_t.";
// Reset protection of the second page
ASSERT_EQ(mprotect((char*)memptr + alignment, alignment, PROT_READ | PROT_WRITE), 0);
// Free allocated memory.
free(memptr);
}
TEST_F(UnicodeTest, strstr16SameString) {
const char16_t* result = strstr16(kSearchString, kSearchString);
EXPECT_EQ(kSearchString, result)
<< "should return the original pointer";
}
TEST_F(UnicodeTest, strstr16TargetStartOfString) {
const char16_t* result = strstr16(kSearchString, u"I am");
EXPECT_EQ(kSearchString, result)
<< "should return the original pointer";
}
TEST_F(UnicodeTest, strstr16TargetEndOfString) {
const char16_t* result = strstr16(kSearchString, u"wind.");
EXPECT_EQ(kSearchString+19, result);
}
TEST_F(UnicodeTest, strstr16TargetWithinString) {
const char16_t* result = strstr16(kSearchString, u"leaf");
EXPECT_EQ(kSearchString+7, result);
}
TEST_F(UnicodeTest, strstr16TargetNotPresent) {
const char16_t* result = strstr16(kSearchString, u"soar");
EXPECT_EQ(nullptr, result);
}
// http://b/29267949
// Test that overreading in utf8_to_utf16_length is detected
TEST_F(UnicodeTest, InvalidUtf8OverreadDetected) {
// An utf8 char starting with \xc4 is two bytes long.
// Add extra zeros so no extra memory is read in case the code doesn't
// work as expected.
static char utf8[] = "\xc4\x00\x00\x00";
ASSERT_DEATH(utf8_to_utf16_length((uint8_t *) utf8, strlen(utf8),
true /* overreadIsFatal */), "" /* regex for ASSERT_DEATH */);
}
}