blob: 76d5695ca0a095f452ddd05166a2e379a75b2dd9 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "installed"
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <unistd.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <cutils/properties.h>
#include <cutils/sched_policy.h>
#include <log/log.h> // TODO: Move everything to base/logging.
#include <private/android_filesystem_config.h>
#include <system/thread_defs.h>
#include "dexopt.h"
#include "installd_deps.h"
#include "otapreopt_utils.h"
#include "utils.h"
using android::base::StringPrintf;
using android::base::EndsWith;
namespace android {
namespace installd {
static const char* parse_null(const char* arg) {
if (strcmp(arg, "!") == 0) {
return nullptr;
} else {
return arg;
}
}
static bool clear_profile(const std::string& profile) {
base::unique_fd ufd(open(profile.c_str(), O_WRONLY | O_NOFOLLOW | O_CLOEXEC));
if (ufd.get() < 0) {
if (errno != ENOENT) {
PLOG(WARNING) << "Could not open profile " << profile;
return false;
} else {
// Nothing to clear. That's ok.
return true;
}
}
if (flock(ufd.get(), LOCK_EX | LOCK_NB) != 0) {
if (errno != EWOULDBLOCK) {
PLOG(WARNING) << "Error locking profile " << profile;
}
// This implies that the app owning this profile is running
// (and has acquired the lock).
//
// If we can't acquire the lock bail out since clearing is useless anyway
// (the app will write again to the profile).
//
// Note:
// This does not impact the this is not an issue for the profiling correctness.
// In case this is needed because of an app upgrade, profiles will still be
// eventually cleared by the app itself due to checksum mismatch.
// If this is needed because profman advised, then keeping the data around
// until the next run is again not an issue.
//
// If the app attempts to acquire a lock while we've held one here,
// it will simply skip the current write cycle.
return false;
}
bool truncated = ftruncate(ufd.get(), 0) == 0;
if (!truncated) {
PLOG(WARNING) << "Could not truncate " << profile;
}
if (flock(ufd.get(), LOCK_UN) != 0) {
PLOG(WARNING) << "Error unlocking profile " << profile;
}
return truncated;
}
bool clear_reference_profile(const char* pkgname) {
std::string reference_profile_dir = create_data_ref_profile_package_path(pkgname);
std::string reference_profile = create_primary_profile(reference_profile_dir);
return clear_profile(reference_profile);
}
bool clear_current_profile(const char* pkgname, userid_t user) {
std::string profile_dir = create_data_user_profile_package_path(user, pkgname);
std::string profile = create_primary_profile(profile_dir);
return clear_profile(profile);
}
bool clear_current_profiles(const char* pkgname) {
bool success = true;
std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr);
for (auto user : users) {
success &= clear_current_profile(pkgname, user);
}
return success;
}
static int split_count(const char *str)
{
char *ctx;
int count = 0;
char buf[kPropertyValueMax];
strncpy(buf, str, sizeof(buf));
char *pBuf = buf;
while(strtok_r(pBuf, " ", &ctx) != NULL) {
count++;
pBuf = NULL;
}
return count;
}
static int split(char *buf, const char **argv)
{
char *ctx;
int count = 0;
char *tok;
char *pBuf = buf;
while((tok = strtok_r(pBuf, " ", &ctx)) != NULL) {
argv[count++] = tok;
pBuf = NULL;
}
return count;
}
static void run_dex2oat(int zip_fd, int oat_fd, int input_vdex_fd, int output_vdex_fd, int image_fd,
const char* input_file_name, const char* output_file_name, int swap_fd,
const char *instruction_set, const char* compiler_filter, bool vm_safe_mode,
bool debuggable, bool post_bootcomplete, int profile_fd, const char* shared_libraries) {
static const unsigned int MAX_INSTRUCTION_SET_LEN = 7;
if (strlen(instruction_set) >= MAX_INSTRUCTION_SET_LEN) {
ALOGE("Instruction set %s longer than max length of %d",
instruction_set, MAX_INSTRUCTION_SET_LEN);
return;
}
char dex2oat_Xms_flag[kPropertyValueMax];
bool have_dex2oat_Xms_flag = get_property("dalvik.vm.dex2oat-Xms", dex2oat_Xms_flag, NULL) > 0;
char dex2oat_Xmx_flag[kPropertyValueMax];
bool have_dex2oat_Xmx_flag = get_property("dalvik.vm.dex2oat-Xmx", dex2oat_Xmx_flag, NULL) > 0;
char dex2oat_threads_buf[kPropertyValueMax];
bool have_dex2oat_threads_flag = get_property(post_bootcomplete
? "dalvik.vm.dex2oat-threads"
: "dalvik.vm.boot-dex2oat-threads",
dex2oat_threads_buf,
NULL) > 0;
char dex2oat_threads_arg[kPropertyValueMax + 2];
if (have_dex2oat_threads_flag) {
sprintf(dex2oat_threads_arg, "-j%s", dex2oat_threads_buf);
}
char dex2oat_isa_features_key[kPropertyKeyMax];
sprintf(dex2oat_isa_features_key, "dalvik.vm.isa.%s.features", instruction_set);
char dex2oat_isa_features[kPropertyValueMax];
bool have_dex2oat_isa_features = get_property(dex2oat_isa_features_key,
dex2oat_isa_features, NULL) > 0;
char dex2oat_isa_variant_key[kPropertyKeyMax];
sprintf(dex2oat_isa_variant_key, "dalvik.vm.isa.%s.variant", instruction_set);
char dex2oat_isa_variant[kPropertyValueMax];
bool have_dex2oat_isa_variant = get_property(dex2oat_isa_variant_key,
dex2oat_isa_variant, NULL) > 0;
const char *dex2oat_norelocation = "-Xnorelocate";
bool have_dex2oat_relocation_skip_flag = false;
char dex2oat_flags[kPropertyValueMax];
int dex2oat_flags_count = get_property("dalvik.vm.dex2oat-flags",
dex2oat_flags, NULL) <= 0 ? 0 : split_count(dex2oat_flags);
ALOGV("dalvik.vm.dex2oat-flags=%s\n", dex2oat_flags);
// If we booting without the real /data, don't spend time compiling.
char vold_decrypt[kPropertyValueMax];
bool have_vold_decrypt = get_property("vold.decrypt", vold_decrypt, "") > 0;
bool skip_compilation = (have_vold_decrypt &&
(strcmp(vold_decrypt, "trigger_restart_min_framework") == 0 ||
(strcmp(vold_decrypt, "1") == 0)));
bool generate_debug_info = property_get_bool("debug.generate-debug-info", false);
char app_image_format[kPropertyValueMax];
char image_format_arg[strlen("--image-format=") + kPropertyValueMax];
bool have_app_image_format =
image_fd >= 0 && get_property("dalvik.vm.appimageformat", app_image_format, NULL) > 0;
if (have_app_image_format) {
sprintf(image_format_arg, "--image-format=%s", app_image_format);
}
char dex2oat_large_app_threshold[kPropertyValueMax];
bool have_dex2oat_large_app_threshold =
get_property("dalvik.vm.dex2oat-very-large", dex2oat_large_app_threshold, NULL) > 0;
char dex2oat_large_app_threshold_arg[strlen("--very-large-app-threshold=") + kPropertyValueMax];
if (have_dex2oat_large_app_threshold) {
sprintf(dex2oat_large_app_threshold_arg,
"--very-large-app-threshold=%s",
dex2oat_large_app_threshold);
}
static const char* DEX2OAT_BIN = "/system/bin/dex2oat";
static const char* RUNTIME_ARG = "--runtime-arg";
static const int MAX_INT_LEN = 12; // '-'+10dig+'\0' -OR- 0x+8dig
char zip_fd_arg[strlen("--zip-fd=") + MAX_INT_LEN];
char zip_location_arg[strlen("--zip-location=") + PKG_PATH_MAX];
char input_vdex_fd_arg[strlen("--input-vdex-fd=") + MAX_INT_LEN];
char output_vdex_fd_arg[strlen("--output-vdex-fd=") + MAX_INT_LEN];
char oat_fd_arg[strlen("--oat-fd=") + MAX_INT_LEN];
char oat_location_arg[strlen("--oat-location=") + PKG_PATH_MAX];
char instruction_set_arg[strlen("--instruction-set=") + MAX_INSTRUCTION_SET_LEN];
char instruction_set_variant_arg[strlen("--instruction-set-variant=") + kPropertyValueMax];
char instruction_set_features_arg[strlen("--instruction-set-features=") + kPropertyValueMax];
char dex2oat_Xms_arg[strlen("-Xms") + kPropertyValueMax];
char dex2oat_Xmx_arg[strlen("-Xmx") + kPropertyValueMax];
char dex2oat_compiler_filter_arg[strlen("--compiler-filter=") + kPropertyValueMax];
bool have_dex2oat_swap_fd = false;
char dex2oat_swap_fd[strlen("--swap-fd=") + MAX_INT_LEN];
bool have_dex2oat_image_fd = false;
char dex2oat_image_fd[strlen("--app-image-fd=") + MAX_INT_LEN];
sprintf(zip_fd_arg, "--zip-fd=%d", zip_fd);
sprintf(zip_location_arg, "--zip-location=%s", input_file_name);
sprintf(input_vdex_fd_arg, "--input-vdex-fd=%d", input_vdex_fd);
sprintf(output_vdex_fd_arg, "--output-vdex-fd=%d", output_vdex_fd);
sprintf(oat_fd_arg, "--oat-fd=%d", oat_fd);
sprintf(oat_location_arg, "--oat-location=%s", output_file_name);
sprintf(instruction_set_arg, "--instruction-set=%s", instruction_set);
sprintf(instruction_set_variant_arg, "--instruction-set-variant=%s", dex2oat_isa_variant);
sprintf(instruction_set_features_arg, "--instruction-set-features=%s", dex2oat_isa_features);
if (swap_fd >= 0) {
have_dex2oat_swap_fd = true;
sprintf(dex2oat_swap_fd, "--swap-fd=%d", swap_fd);
}
if (image_fd >= 0) {
have_dex2oat_image_fd = true;
sprintf(dex2oat_image_fd, "--app-image-fd=%d", image_fd);
}
if (have_dex2oat_Xms_flag) {
sprintf(dex2oat_Xms_arg, "-Xms%s", dex2oat_Xms_flag);
}
if (have_dex2oat_Xmx_flag) {
sprintf(dex2oat_Xmx_arg, "-Xmx%s", dex2oat_Xmx_flag);
}
// Compute compiler filter.
bool have_dex2oat_compiler_filter_flag;
if (skip_compilation) {
strcpy(dex2oat_compiler_filter_arg, "--compiler-filter=verify-none");
have_dex2oat_compiler_filter_flag = true;
have_dex2oat_relocation_skip_flag = true;
} else if (vm_safe_mode) {
strcpy(dex2oat_compiler_filter_arg, "--compiler-filter=interpret-only");
have_dex2oat_compiler_filter_flag = true;
} else if (compiler_filter != nullptr &&
strlen(compiler_filter) + strlen("--compiler-filter=") <
arraysize(dex2oat_compiler_filter_arg)) {
sprintf(dex2oat_compiler_filter_arg, "--compiler-filter=%s", compiler_filter);
have_dex2oat_compiler_filter_flag = true;
} else {
char dex2oat_compiler_filter_flag[kPropertyValueMax];
have_dex2oat_compiler_filter_flag = get_property("dalvik.vm.dex2oat-filter",
dex2oat_compiler_filter_flag, NULL) > 0;
if (have_dex2oat_compiler_filter_flag) {
sprintf(dex2oat_compiler_filter_arg,
"--compiler-filter=%s",
dex2oat_compiler_filter_flag);
}
}
// Check whether all apps should be compiled debuggable.
if (!debuggable) {
char prop_buf[kPropertyValueMax];
debuggable =
(get_property("dalvik.vm.always_debuggable", prop_buf, "0") > 0) &&
(prop_buf[0] == '1');
}
char profile_arg[strlen("--profile-file-fd=") + MAX_INT_LEN];
if (profile_fd != -1) {
sprintf(profile_arg, "--profile-file-fd=%d", profile_fd);
}
ALOGV("Running %s in=%s out=%s\n", DEX2OAT_BIN, input_file_name, output_file_name);
const char* argv[9 // program name, mandatory arguments and the final NULL
+ (have_dex2oat_isa_variant ? 1 : 0)
+ (have_dex2oat_isa_features ? 1 : 0)
+ (have_dex2oat_Xms_flag ? 2 : 0)
+ (have_dex2oat_Xmx_flag ? 2 : 0)
+ (have_dex2oat_compiler_filter_flag ? 1 : 0)
+ (have_dex2oat_threads_flag ? 1 : 0)
+ (have_dex2oat_swap_fd ? 1 : 0)
+ (have_dex2oat_image_fd ? 1 : 0)
+ (have_dex2oat_relocation_skip_flag ? 2 : 0)
+ (generate_debug_info ? 1 : 0)
+ (debuggable ? 1 : 0)
+ (have_app_image_format ? 1 : 0)
+ dex2oat_flags_count
+ (profile_fd == -1 ? 0 : 1)
+ (shared_libraries != nullptr ? 4 : 0)
+ (have_dex2oat_large_app_threshold ? 1 : 0)];
int i = 0;
argv[i++] = DEX2OAT_BIN;
argv[i++] = zip_fd_arg;
argv[i++] = zip_location_arg;
argv[i++] = input_vdex_fd_arg;
argv[i++] = output_vdex_fd_arg;
argv[i++] = oat_fd_arg;
argv[i++] = oat_location_arg;
argv[i++] = instruction_set_arg;
if (have_dex2oat_isa_variant) {
argv[i++] = instruction_set_variant_arg;
}
if (have_dex2oat_isa_features) {
argv[i++] = instruction_set_features_arg;
}
if (have_dex2oat_Xms_flag) {
argv[i++] = RUNTIME_ARG;
argv[i++] = dex2oat_Xms_arg;
}
if (have_dex2oat_Xmx_flag) {
argv[i++] = RUNTIME_ARG;
argv[i++] = dex2oat_Xmx_arg;
}
if (have_dex2oat_compiler_filter_flag) {
argv[i++] = dex2oat_compiler_filter_arg;
}
if (have_dex2oat_threads_flag) {
argv[i++] = dex2oat_threads_arg;
}
if (have_dex2oat_swap_fd) {
argv[i++] = dex2oat_swap_fd;
}
if (have_dex2oat_image_fd) {
argv[i++] = dex2oat_image_fd;
}
if (generate_debug_info) {
argv[i++] = "--generate-debug-info";
}
if (debuggable) {
argv[i++] = "--debuggable";
}
if (have_app_image_format) {
argv[i++] = image_format_arg;
}
if (have_dex2oat_large_app_threshold) {
argv[i++] = dex2oat_large_app_threshold_arg;
}
if (dex2oat_flags_count) {
i += split(dex2oat_flags, argv + i);
}
if (have_dex2oat_relocation_skip_flag) {
argv[i++] = RUNTIME_ARG;
argv[i++] = dex2oat_norelocation;
}
if (profile_fd != -1) {
argv[i++] = profile_arg;
}
if (shared_libraries != nullptr) {
argv[i++] = RUNTIME_ARG;
argv[i++] = "-classpath";
argv[i++] = RUNTIME_ARG;
argv[i++] = shared_libraries;
}
// Do not add after dex2oat_flags, they should override others for debugging.
argv[i] = NULL;
execv(DEX2OAT_BIN, (char * const *)argv);
ALOGE("execv(%s) failed: %s\n", DEX2OAT_BIN, strerror(errno));
}
/*
* Whether dexopt should use a swap file when compiling an APK.
*
* If kAlwaysProvideSwapFile, do this on all devices (dex2oat will make a more informed decision
* itself, anyways).
*
* Otherwise, read "dalvik.vm.dex2oat-swap". If the property exists, return whether it is "true".
*
* Otherwise, return true if this is a low-mem device.
*
* Otherwise, return default value.
*/
static bool kAlwaysProvideSwapFile = false;
static bool kDefaultProvideSwapFile = true;
static bool ShouldUseSwapFileForDexopt() {
if (kAlwaysProvideSwapFile) {
return true;
}
// Check the "override" property. If it exists, return value == "true".
char dex2oat_prop_buf[kPropertyValueMax];
if (get_property("dalvik.vm.dex2oat-swap", dex2oat_prop_buf, "") > 0) {
if (strcmp(dex2oat_prop_buf, "true") == 0) {
return true;
} else {
return false;
}
}
// Shortcut for default value. This is an implementation optimization for the process sketched
// above. If the default value is true, we can avoid to check whether this is a low-mem device,
// as low-mem is never returning false. The compiler will optimize this away if it can.
if (kDefaultProvideSwapFile) {
return true;
}
bool is_low_mem = property_get_bool("ro.config.low_ram", false);
if (is_low_mem) {
return true;
}
// Default value must be false here.
return kDefaultProvideSwapFile;
}
static void SetDex2OatScheduling(bool set_to_bg) {
if (set_to_bg) {
if (set_sched_policy(0, SP_BACKGROUND) < 0) {
ALOGE("set_sched_policy failed: %s\n", strerror(errno));
exit(70);
}
if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) {
ALOGE("setpriority failed: %s\n", strerror(errno));
exit(71);
}
}
}
static void close_all_fds(const std::vector<fd_t>& fds, const char* description) {
for (size_t i = 0; i < fds.size(); i++) {
if (close(fds[i]) != 0) {
PLOG(WARNING) << "Failed to close fd for " << description << " at index " << i;
}
}
}
static fd_t open_profile_dir(const std::string& profile_dir) {
fd_t profile_dir_fd = TEMP_FAILURE_RETRY(open(profile_dir.c_str(),
O_PATH | O_CLOEXEC | O_DIRECTORY | O_NOFOLLOW));
if (profile_dir_fd < 0) {
// In a multi-user environment, these directories can be created at
// different points and it's possible we'll attempt to open a profile
// dir before it exists.
if (errno != ENOENT) {
PLOG(ERROR) << "Failed to open profile_dir: " << profile_dir;
}
}
return profile_dir_fd;
}
static fd_t open_primary_profile_file_from_dir(const std::string& profile_dir, mode_t open_mode) {
fd_t profile_dir_fd = open_profile_dir(profile_dir);
if (profile_dir_fd < 0) {
return -1;
}
fd_t profile_fd = -1;
std::string profile_file = create_primary_profile(profile_dir);
profile_fd = TEMP_FAILURE_RETRY(open(profile_file.c_str(), open_mode | O_NOFOLLOW));
if (profile_fd == -1) {
// It's not an error if the profile file does not exist.
if (errno != ENOENT) {
PLOG(ERROR) << "Failed to lstat profile_dir: " << profile_dir;
}
}
// TODO(calin): use AutoCloseFD instead of closing the fd manually.
if (close(profile_dir_fd) != 0) {
PLOG(WARNING) << "Could not close profile dir " << profile_dir;
}
return profile_fd;
}
static fd_t open_primary_profile_file(userid_t user, const char* pkgname) {
std::string profile_dir = create_data_user_profile_package_path(user, pkgname);
return open_primary_profile_file_from_dir(profile_dir, O_RDONLY);
}
static fd_t open_reference_profile(uid_t uid, const char* pkgname, bool read_write) {
std::string reference_profile_dir = create_data_ref_profile_package_path(pkgname);
int flags = read_write ? O_RDWR | O_CREAT : O_RDONLY;
fd_t fd = open_primary_profile_file_from_dir(reference_profile_dir, flags);
if (fd < 0) {
return -1;
}
if (read_write) {
// Fix the owner.
if (fchown(fd, uid, uid) < 0) {
close(fd);
return -1;
}
}
return fd;
}
static void open_profile_files(uid_t uid, const char* pkgname,
/*out*/ std::vector<fd_t>* profiles_fd, /*out*/ fd_t* reference_profile_fd) {
// Open the reference profile in read-write mode as profman might need to save the merge.
*reference_profile_fd = open_reference_profile(uid, pkgname, /*read_write*/ true);
if (*reference_profile_fd < 0) {
// We can't access the reference profile file.
return;
}
std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr);
for (auto user : users) {
fd_t profile_fd = open_primary_profile_file(user, pkgname);
// Add to the lists only if both fds are valid.
if (profile_fd >= 0) {
profiles_fd->push_back(profile_fd);
}
}
}
static void drop_capabilities(uid_t uid) {
if (setgid(uid) != 0) {
ALOGE("setgid(%d) failed in installd during dexopt\n", uid);
exit(64);
}
if (setuid(uid) != 0) {
ALOGE("setuid(%d) failed in installd during dexopt\n", uid);
exit(65);
}
// drop capabilities
struct __user_cap_header_struct capheader;
struct __user_cap_data_struct capdata[2];
memset(&capheader, 0, sizeof(capheader));
memset(&capdata, 0, sizeof(capdata));
capheader.version = _LINUX_CAPABILITY_VERSION_3;
if (capset(&capheader, &capdata[0]) < 0) {
ALOGE("capset failed: %s\n", strerror(errno));
exit(66);
}
}
static constexpr int PROFMAN_BIN_RETURN_CODE_COMPILE = 0;
static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION = 1;
static constexpr int PROFMAN_BIN_RETURN_CODE_BAD_PROFILES = 2;
static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_IO = 3;
static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING = 4;
static void run_profman_merge(const std::vector<fd_t>& profiles_fd, fd_t reference_profile_fd) {
static const size_t MAX_INT_LEN = 32;
static const char* PROFMAN_BIN = "/system/bin/profman";
std::vector<std::string> profile_args(profiles_fd.size());
char profile_buf[strlen("--profile-file-fd=") + MAX_INT_LEN];
for (size_t k = 0; k < profiles_fd.size(); k++) {
sprintf(profile_buf, "--profile-file-fd=%d", profiles_fd[k]);
profile_args[k].assign(profile_buf);
}
char reference_profile_arg[strlen("--reference-profile-file-fd=") + MAX_INT_LEN];
sprintf(reference_profile_arg, "--reference-profile-file-fd=%d", reference_profile_fd);
// program name, reference profile fd, the final NULL and the profile fds
const char* argv[3 + profiles_fd.size()];
int i = 0;
argv[i++] = PROFMAN_BIN;
argv[i++] = reference_profile_arg;
for (size_t k = 0; k < profile_args.size(); k++) {
argv[i++] = profile_args[k].c_str();
}
// Do not add after dex2oat_flags, they should override others for debugging.
argv[i] = NULL;
execv(PROFMAN_BIN, (char * const *)argv);
ALOGE("execv(%s) failed: %s\n", PROFMAN_BIN, strerror(errno));
exit(68); /* only get here on exec failure */
}
// Decides if profile guided compilation is needed or not based on existing profiles.
// Returns true if there is enough information in the current profiles that worth
// a re-compilation of the package.
// If the return value is true all the current profiles would have been merged into
// the reference profiles accessible with open_reference_profile().
bool analyse_profiles(uid_t uid, const char* pkgname) {
std::vector<fd_t> profiles_fd;
fd_t reference_profile_fd = -1;
open_profile_files(uid, pkgname, &profiles_fd, &reference_profile_fd);
if (profiles_fd.empty() || (reference_profile_fd == -1)) {
// Skip profile guided compilation because no profiles were found.
// Or if the reference profile info couldn't be opened.
close_all_fds(profiles_fd, "profiles_fd");
if ((reference_profile_fd != - 1) && (close(reference_profile_fd) != 0)) {
PLOG(WARNING) << "Failed to close fd for reference profile";
}
return false;
}
ALOGV("PROFMAN (MERGE): --- BEGIN '%s' ---\n", pkgname);
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(uid);
run_profman_merge(profiles_fd, reference_profile_fd);
exit(68); /* only get here on exec failure */
}
/* parent */
int return_code = wait_child(pid);
bool need_to_compile = false;
bool should_clear_current_profiles = false;
bool should_clear_reference_profile = false;
if (!WIFEXITED(return_code)) {
LOG(WARNING) << "profman failed for package " << pkgname << ": " << return_code;
} else {
return_code = WEXITSTATUS(return_code);
switch (return_code) {
case PROFMAN_BIN_RETURN_CODE_COMPILE:
need_to_compile = true;
should_clear_current_profiles = true;
should_clear_reference_profile = false;
break;
case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION:
need_to_compile = false;
should_clear_current_profiles = false;
should_clear_reference_profile = false;
break;
case PROFMAN_BIN_RETURN_CODE_BAD_PROFILES:
LOG(WARNING) << "Bad profiles for package " << pkgname;
need_to_compile = false;
should_clear_current_profiles = true;
should_clear_reference_profile = true;
break;
case PROFMAN_BIN_RETURN_CODE_ERROR_IO: // fall-through
case PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING:
// Temporary IO problem (e.g. locking). Ignore but log a warning.
LOG(WARNING) << "IO error while reading profiles for package " << pkgname;
need_to_compile = false;
should_clear_current_profiles = false;
should_clear_reference_profile = false;
break;
default:
// Unknown return code or error. Unlink profiles.
LOG(WARNING) << "Unknown error code while processing profiles for package " << pkgname
<< ": " << return_code;
need_to_compile = false;
should_clear_current_profiles = true;
should_clear_reference_profile = true;
break;
}
}
close_all_fds(profiles_fd, "profiles_fd");
if (close(reference_profile_fd) != 0) {
PLOG(WARNING) << "Failed to close fd for reference profile";
}
if (should_clear_current_profiles) {
clear_current_profiles(pkgname);
}
if (should_clear_reference_profile) {
clear_reference_profile(pkgname);
}
return need_to_compile;
}
static void run_profman_dump(const std::vector<fd_t>& profile_fds,
fd_t reference_profile_fd,
const std::vector<std::string>& dex_locations,
const std::vector<fd_t>& apk_fds,
fd_t output_fd) {
std::vector<std::string> profman_args;
static const char* PROFMAN_BIN = "/system/bin/profman";
profman_args.push_back(PROFMAN_BIN);
profman_args.push_back("--dump-only");
profman_args.push_back(StringPrintf("--dump-output-to-fd=%d", output_fd));
if (reference_profile_fd != -1) {
profman_args.push_back(StringPrintf("--reference-profile-file-fd=%d",
reference_profile_fd));
}
for (fd_t profile_fd : profile_fds) {
profman_args.push_back(StringPrintf("--profile-file-fd=%d", profile_fd));
}
for (const std::string& dex_location : dex_locations) {
profman_args.push_back(StringPrintf("--dex-location=%s", dex_location.c_str()));
}
for (fd_t apk_fd : apk_fds) {
profman_args.push_back(StringPrintf("--apk-fd=%d", apk_fd));
}
const char **argv = new const char*[profman_args.size() + 1];
size_t i = 0;
for (const std::string& profman_arg : profman_args) {
argv[i++] = profman_arg.c_str();
}
argv[i] = NULL;
execv(PROFMAN_BIN, (char * const *)argv);
ALOGE("execv(%s) failed: %s\n", PROFMAN_BIN, strerror(errno));
exit(68); /* only get here on exec failure */
}
static const char* get_location_from_path(const char* path) {
static constexpr char kLocationSeparator = '/';
const char *location = strrchr(path, kLocationSeparator);
if (location == NULL) {
return path;
} else {
// Skip the separator character.
return location + 1;
}
}
bool dump_profiles(int32_t uid, const char* pkgname, const char* code_paths) {
std::vector<fd_t> profile_fds;
fd_t reference_profile_fd = -1;
std::string out_file_name = StringPrintf("/data/misc/profman/%s.txt", pkgname);
ALOGV("PROFMAN (DUMP): --- BEGIN '%s' ---\n", pkgname);
open_profile_files(uid, pkgname, &profile_fds, &reference_profile_fd);
const bool has_reference_profile = (reference_profile_fd != -1);
const bool has_profiles = !profile_fds.empty();
if (!has_reference_profile && !has_profiles) {
ALOGE("profman dump: no profiles to dump for '%s'", pkgname);
return false;
}
fd_t output_fd = open(out_file_name.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW);
if (fchmod(output_fd, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0) {
ALOGE("installd cannot chmod '%s' dump_profile\n", out_file_name.c_str());
return false;
}
std::vector<std::string> code_full_paths = base::Split(code_paths, ";");
std::vector<std::string> dex_locations;
std::vector<fd_t> apk_fds;
for (const std::string& code_full_path : code_full_paths) {
const char* full_path = code_full_path.c_str();
fd_t apk_fd = open(full_path, O_RDONLY | O_NOFOLLOW);
if (apk_fd == -1) {
ALOGE("installd cannot open '%s'\n", full_path);
return false;
}
dex_locations.push_back(get_location_from_path(full_path));
apk_fds.push_back(apk_fd);
}
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(uid);
run_profman_dump(profile_fds, reference_profile_fd, dex_locations,
apk_fds, output_fd);
exit(68); /* only get here on exec failure */
}
/* parent */
close_all_fds(apk_fds, "apk_fds");
close_all_fds(profile_fds, "profile_fds");
if (close(reference_profile_fd) != 0) {
PLOG(WARNING) << "Failed to close fd for reference profile";
}
int return_code = wait_child(pid);
if (!WIFEXITED(return_code)) {
LOG(WARNING) << "profman failed for package " << pkgname << ": "
<< return_code;
return false;
}
return true;
}
static std::string replace_file_extension(const std::string& oat_path, const std::string& new_ext) {
// A standard dalvik-cache entry. Replace ".dex" with `new_ext`.
if (EndsWith(oat_path, ".dex")) {
std::string new_path = oat_path;
new_path.replace(new_path.length() - strlen(".dex"), strlen(".dex"), new_ext);
CHECK(EndsWith(new_path, new_ext.c_str()));
return new_path;
}
// An odex entry. Not that this may not be an extension, e.g., in the OTA
// case (where the base name will have an extension for the B artifact).
size_t odex_pos = oat_path.rfind(".odex");
if (odex_pos != std::string::npos) {
std::string new_path = oat_path;
new_path.replace(odex_pos, strlen(".odex"), new_ext);
CHECK_NE(new_path.find(new_ext), std::string::npos);
return new_path;
}
// Don't know how to handle this.
return "";
}
// Translate the given oat path to an art (app image) path. An empty string
// denotes an error.
static std::string create_image_filename(const std::string& oat_path) {
return replace_file_extension(oat_path, ".art");
}
// Translate the given oat path to a vdex path. An empty string denotes an error.
static std::string create_vdex_filename(const std::string& oat_path) {
return replace_file_extension(oat_path, ".vdex");
}
static bool add_extension_to_file_name(char* file_name, const char* extension) {
if (strlen(file_name) + strlen(extension) + 1 > PKG_PATH_MAX) {
return false;
}
strcat(file_name, extension);
return true;
}
static int open_output_file(const char* file_name, bool recreate, int permissions) {
int flags = O_RDWR | O_CREAT;
if (recreate) {
if (unlink(file_name) < 0) {
if (errno != ENOENT) {
PLOG(ERROR) << "open_output_file: Couldn't unlink " << file_name;
}
}
flags |= O_EXCL;
}
return open(file_name, flags, permissions);
}
static bool set_permissions_and_ownership(int fd, bool is_public, int uid, const char* path) {
if (fchmod(fd,
S_IRUSR|S_IWUSR|S_IRGRP |
(is_public ? S_IROTH : 0)) < 0) {
ALOGE("installd cannot chmod '%s' during dexopt\n", path);
return false;
} else if (fchown(fd, AID_SYSTEM, uid) < 0) {
ALOGE("installd cannot chown '%s' during dexopt\n", path);
return false;
}
return true;
}
static bool IsOutputDalvikCache(const char* oat_dir) {
// InstallerConnection.java (which invokes installd) transforms Java null arguments
// into '!'. Play it safe by handling it both.
// TODO: ensure we never get null.
// TODO: pass a flag instead of inferring if the output is dalvik cache.
return oat_dir == nullptr || oat_dir[0] == '!';
}
static bool create_oat_out_path(const char* apk_path, const char* instruction_set,
const char* oat_dir, /*out*/ char* out_oat_path) {
// Early best-effort check whether we can fit the the path into our buffers.
// Note: the cache path will require an additional 5 bytes for ".swap", but we'll try to run
// without a swap file, if necessary. Reference profiles file also add an extra ".prof"
// extension to the cache path (5 bytes).
if (strlen(apk_path) >= (PKG_PATH_MAX - 8)) {
ALOGE("apk_path too long '%s'\n", apk_path);
return false;
}
if (!IsOutputDalvikCache(oat_dir)) {
if (validate_apk_path(oat_dir)) {
ALOGE("cannot validate apk path with oat_dir '%s'\n", oat_dir);
return false;
}
if (!calculate_oat_file_path(out_oat_path, oat_dir, apk_path, instruction_set)) {
return false;
}
} else {
if (!create_cache_path(out_oat_path, apk_path, instruction_set)) {
return false;
}
}
return true;
}
// Helper for fd management. This is similar to a unique_fd in that it closes the file descriptor
// on destruction. It will also run the given cleanup (unless told not to) after closing.
//
// Usage example:
//
// Dex2oatFileWrapper<std::function<void ()>> file(open(...),
// [name]() {
// unlink(name.c_str());
// });
// // Note: care needs to be taken about name, as it needs to have a lifetime longer than the
// wrapper if captured as a reference.
//
// if (file.get() == -1) {
// // Error opening...
// }
//
// ...
// if (error) {
// // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will run
// // and delete the file (after the fd is closed).
// return -1;
// }
//
// (Success case)
// file.SetCleanup(false);
// // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will not run
// // (leaving the file around; after the fd is closed).
//
template <typename Cleanup>
class Dex2oatFileWrapper {
public:
Dex2oatFileWrapper() : value_(-1), cleanup_(), do_cleanup_(true) {
}
Dex2oatFileWrapper(int value, Cleanup cleanup)
: value_(value), cleanup_(cleanup), do_cleanup_(true) {}
~Dex2oatFileWrapper() {
reset(-1);
}
int get() {
return value_;
}
void SetCleanup(bool cleanup) {
do_cleanup_ = cleanup;
}
void reset(int new_value) {
if (value_ >= 0) {
close(value_);
}
if (do_cleanup_ && cleanup_ != nullptr) {
cleanup_();
}
value_ = new_value;
}
void reset(int new_value, Cleanup new_cleanup) {
if (value_ >= 0) {
close(value_);
}
if (do_cleanup_ && cleanup_ != nullptr) {
cleanup_();
}
value_ = new_value;
cleanup_ = new_cleanup;
}
private:
int value_;
Cleanup cleanup_;
bool do_cleanup_;
};
int dexopt(const char* apk_path, uid_t uid, const char* pkgname, const char* instruction_set,
int dexopt_needed, const char* oat_dir, int dexopt_flags,const char* compiler_filter,
const char* volume_uuid ATTRIBUTE_UNUSED, const char* shared_libraries) {
bool is_public = ((dexopt_flags & DEXOPT_PUBLIC) != 0);
bool vm_safe_mode = (dexopt_flags & DEXOPT_SAFEMODE) != 0;
bool debuggable = (dexopt_flags & DEXOPT_DEBUGGABLE) != 0;
bool boot_complete = (dexopt_flags & DEXOPT_BOOTCOMPLETE) != 0;
bool profile_guided = (dexopt_flags & DEXOPT_PROFILE_GUIDED) != 0;
CHECK(pkgname != nullptr);
CHECK(pkgname[0] != 0);
// Public apps should not be compiled with profile information ever. Same goes for the special
// package '*' used for the system server.
Dex2oatFileWrapper<std::function<void ()>> reference_profile_fd;
if (!is_public && pkgname[0] != '*') {
// Open reference profile in read only mode as dex2oat does not get write permissions.
const std::string pkgname_str(pkgname);
reference_profile_fd.reset(open_reference_profile(uid, pkgname, /*read_write*/ false),
[pkgname_str]() {
clear_reference_profile(pkgname_str.c_str());
});
// Note: it's OK to not find a profile here.
}
if ((dexopt_flags & ~DEXOPT_MASK) != 0) {
LOG_FATAL("dexopt flags contains unknown fields\n");
}
char out_oat_path[PKG_PATH_MAX];
if (!create_oat_out_path(apk_path, instruction_set, oat_dir, out_oat_path)) {
return false;
}
const char *input_file = apk_path;
struct stat input_stat;
memset(&input_stat, 0, sizeof(input_stat));
stat(input_file, &input_stat);
// Open the input file.
base::unique_fd input_fd(open(input_file, O_RDONLY, 0));
if (input_fd.get() < 0) {
ALOGE("installd cannot open '%s' for input during dexopt\n", input_file);
return -1;
}
// Create the output OAT file.
const std::string out_oat_path_str(out_oat_path);
Dex2oatFileWrapper<std::function<void ()>> out_oat_fd(
open_output_file(out_oat_path, /*recreate*/true, /*permissions*/0644),
[out_oat_path_str]() { unlink(out_oat_path_str.c_str()); });
if (out_oat_fd.get() < 0) {
ALOGE("installd cannot open '%s' for output during dexopt\n", out_oat_path);
return -1;
}
if (!set_permissions_and_ownership(out_oat_fd.get(), is_public, uid, out_oat_path)) {
return -1;
}
// Open the existing VDEX. We do this before creating the new output VDEX, which will
// unlink the old one.
char in_odex_path[PKG_PATH_MAX];
int dexopt_action = abs(dexopt_needed);
bool is_odex_location = dexopt_needed < 0;
base::unique_fd in_vdex_fd;
std::string in_vdex_path_str;
if (dexopt_action != DEX2OAT_FROM_SCRATCH) {
// Open the possibly existing vdex. If none exist, we pass -1 to dex2oat for input-vdex-fd.
const char* path = nullptr;
if (is_odex_location) {
if (calculate_odex_file_path(in_odex_path, apk_path, instruction_set)) {
path = in_odex_path;
} else {
ALOGE("installd cannot compute input vdex location for '%s'\n", apk_path);
return -1;
}
} else {
path = out_oat_path;
}
in_vdex_path_str = create_vdex_filename(path);
if (in_vdex_path_str.empty()) {
ALOGE("installd cannot compute input vdex location for '%s'\n", path);
return -1;
}
if (dexopt_action == DEX2OAT_FOR_BOOT_IMAGE) {
// When we dex2oat because iof boot image change, we are going to update
// in-place the vdex file.
in_vdex_fd.reset(open(in_vdex_path_str.c_str(), O_RDWR, 0));
} else {
in_vdex_fd.reset(open(in_vdex_path_str.c_str(), O_RDONLY, 0));
}
}
// Infer the name of the output VDEX and create it.
const std::string out_vdex_path_str = create_vdex_filename(out_oat_path_str);
if (out_vdex_path_str.empty()) {
return -1;
}
Dex2oatFileWrapper<std::function<void ()>> out_vdex_wrapper_fd;
int out_vdex_fd = -1;
// If we are compiling because the boot image is out of date, we do not
// need to recreate a vdex, and can use the same existing one.
if (dexopt_action == DEX2OAT_FOR_BOOT_IMAGE &&
in_vdex_fd != -1 &&
in_vdex_path_str == out_vdex_path_str) {
out_vdex_fd = in_vdex_fd;
} else {
out_vdex_wrapper_fd.reset(
open_output_file(out_vdex_path_str.c_str(), /*recreate*/true, /*permissions*/0644),
[out_vdex_path_str]() { unlink(out_vdex_path_str.c_str()); });
out_vdex_fd = out_vdex_wrapper_fd.get();
if (out_vdex_fd < 0) {
ALOGE("installd cannot open '%s' for output during dexopt\n", out_vdex_path_str.c_str());
return -1;
}
}
if (!set_permissions_and_ownership(out_vdex_fd, is_public,
uid, out_vdex_path_str.c_str())) {
return -1;
}
// Create a swap file if necessary.
base::unique_fd swap_fd;
if (ShouldUseSwapFileForDexopt()) {
// Make sure there really is enough space.
char swap_file_name[PKG_PATH_MAX];
strcpy(swap_file_name, out_oat_path);
if (add_extension_to_file_name(swap_file_name, ".swap")) {
swap_fd.reset(open_output_file(swap_file_name, /*recreate*/true, /*permissions*/0600));
}
if (swap_fd.get() < 0) {
// Could not create swap file. Optimistically go on and hope that we can compile
// without it.
ALOGE("installd could not create '%s' for swap during dexopt\n", swap_file_name);
} else {
// Immediately unlink. We don't really want to hit flash.
if (unlink(swap_file_name) < 0) {
PLOG(ERROR) << "Couldn't unlink swap file " << swap_file_name;
}
}
}
// Avoid generating an app image for extract only since it will not contain any classes.
Dex2oatFileWrapper<std::function<void ()>> image_fd;
const std::string image_path = create_image_filename(out_oat_path);
if (!image_path.empty()) {
char app_image_format[kPropertyValueMax];
bool have_app_image_format =
get_property("dalvik.vm.appimageformat", app_image_format, NULL) > 0;
// Use app images only if it is enabled (by a set image format) and we are compiling
// profile-guided (so the app image doesn't conservatively contain all classes).
if (profile_guided && have_app_image_format) {
// Recreate is true since we do not want to modify a mapped image. If the app is
// already running and we modify the image file, it can cause crashes (b/27493510).
image_fd.reset(open_output_file(image_path.c_str(),
true /*recreate*/,
0600 /*permissions*/),
[image_path]() { unlink(image_path.c_str()); }
);
if (image_fd.get() < 0) {
// Could not create application image file. Go on since we can compile without
// it.
LOG(ERROR) << "installd could not create '"
<< image_path
<< "' for image file during dexopt";
} else if (!set_permissions_and_ownership(image_fd.get(),
is_public,
uid,
image_path.c_str())) {
image_fd.reset(-1);
}
}
// If we have a valid image file path but no image fd, explicitly erase the image file.
if (image_fd.get() < 0) {
if (unlink(image_path.c_str()) < 0) {
if (errno != ENOENT) {
PLOG(ERROR) << "Couldn't unlink image file " << image_path;
}
}
}
}
ALOGV("DexInv: --- BEGIN '%s' ---\n", input_file);
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(uid);
SetDex2OatScheduling(boot_complete);
if (flock(out_oat_fd.get(), LOCK_EX | LOCK_NB) != 0) {
ALOGE("flock(%s) failed: %s\n", out_oat_path, strerror(errno));
_exit(67);
}
// Pass dex2oat the relative path to the input file.
const char *input_file_name = get_location_from_path(input_file);
run_dex2oat(input_fd.get(),
out_oat_fd.get(),
in_vdex_fd.get(),
out_vdex_fd,
image_fd.get(),
input_file_name,
out_oat_path,
swap_fd.get(),
instruction_set,
compiler_filter,
vm_safe_mode,
debuggable,
boot_complete,
reference_profile_fd.get(),
shared_libraries);
_exit(68); /* only get here on exec failure */
} else {
int res = wait_child(pid);
if (res == 0) {
ALOGV("DexInv: --- END '%s' (success) ---\n", input_file);
} else {
ALOGE("DexInv: --- END '%s' --- status=0x%04x, process failed\n", input_file, res);
return -1;
}
}
struct utimbuf ut;
ut.actime = input_stat.st_atime;
ut.modtime = input_stat.st_mtime;
utime(out_oat_path, &ut);
// We've been successful, don't delete output.
out_oat_fd.SetCleanup(false);
out_vdex_wrapper_fd.SetCleanup(false);
image_fd.SetCleanup(false);
reference_profile_fd.SetCleanup(false);
return 0;
}
// Helper for move_ab, so that we can have common failure-case cleanup.
static bool unlink_and_rename(const char* from, const char* to) {
// Check whether "from" exists, and if so whether it's regular. If it is, unlink. Otherwise,
// return a failure.
struct stat s;
if (stat(to, &s) == 0) {
if (!S_ISREG(s.st_mode)) {
LOG(ERROR) << from << " is not a regular file to replace for A/B.";
return false;
}
if (unlink(to) != 0) {
LOG(ERROR) << "Could not unlink " << to << " to move A/B.";
return false;
}
} else {
// This may be a permission problem. We could investigate the error code, but we'll just
// let the rename failure do the work for us.
}
// Try to rename "to" to "from."
if (rename(from, to) != 0) {
PLOG(ERROR) << "Could not rename " << from << " to " << to;
return false;
}
return true;
}
// Move/rename a B artifact (from) to an A artifact (to).
static bool move_ab_path(const std::string& b_path, const std::string& a_path) {
// Check whether B exists.
{
struct stat s;
if (stat(b_path.c_str(), &s) != 0) {
// Silently ignore for now. The service calling this isn't smart enough to understand
// lack of artifacts at the moment.
return false;
}
if (!S_ISREG(s.st_mode)) {
LOG(ERROR) << "A/B artifact " << b_path << " is not a regular file.";
// Try to unlink, but swallow errors.
unlink(b_path.c_str());
return false;
}
}
// Rename B to A.
if (!unlink_and_rename(b_path.c_str(), a_path.c_str())) {
// Delete the b_path so we don't try again (or fail earlier).
if (unlink(b_path.c_str()) != 0) {
PLOG(ERROR) << "Could not unlink " << b_path;
}
return false;
}
return true;
}
bool move_ab(const char* apk_path, const char* instruction_set, const char* oat_dir) {
// Get the current slot suffix. No suffix, no A/B.
std::string slot_suffix;
{
char buf[kPropertyValueMax];
if (get_property("ro.boot.slot_suffix", buf, nullptr) <= 0) {
return false;
}
slot_suffix = buf;
if (!ValidateTargetSlotSuffix(slot_suffix)) {
LOG(ERROR) << "Target slot suffix not legal: " << slot_suffix;
return false;
}
}
// Validate other inputs.
if (validate_apk_path(apk_path) != 0) {
LOG(ERROR) << "Invalid apk_path: " << apk_path;
return false;
}
if (validate_apk_path(oat_dir) != 0) {
LOG(ERROR) << "Invalid oat_dir: " << oat_dir;
return false;
}
char a_path[PKG_PATH_MAX];
if (!calculate_oat_file_path(a_path, oat_dir, apk_path, instruction_set)) {
return false;
}
const std::string a_vdex_path = create_vdex_filename(a_path);
const std::string a_image_path = create_image_filename(a_path);
// B path = A path + slot suffix.
const std::string b_path = StringPrintf("%s.%s", a_path, slot_suffix.c_str());
const std::string b_vdex_path = StringPrintf("%s.%s", a_vdex_path.c_str(), slot_suffix.c_str());
const std::string b_image_path = StringPrintf("%s.%s",
a_image_path.c_str(),
slot_suffix.c_str());
bool success = true;
if (move_ab_path(b_path, a_path)) {
if (move_ab_path(b_vdex_path, a_vdex_path)) {
// Note: we can live without an app image. As such, ignore failure to move the image file.
// If we decide to require the app image, or the app image being moved correctly,
// then change accordingly.
constexpr bool kIgnoreAppImageFailure = true;
if (!a_image_path.empty()) {
if (!move_ab_path(b_image_path, a_image_path)) {
unlink(a_image_path.c_str());
if (!kIgnoreAppImageFailure) {
success = false;
}
}
}
} else {
// Cleanup: delete B image, ignore errors.
unlink(b_image_path.c_str());
success = false;
}
} else {
// Cleanup: delete B image, ignore errors.
unlink(b_vdex_path.c_str());
unlink(b_image_path.c_str());
success = false;
}
return success;
}
bool delete_odex(const char* apk_path, const char* instruction_set, const char* oat_dir) {
// Delete the oat/odex file.
char out_path[PKG_PATH_MAX];
if (!create_oat_out_path(apk_path, instruction_set, oat_dir, out_path)) {
return false;
}
// In case of a permission failure report the issue. Otherwise just print a warning.
auto unlink_and_check = [](const char* path) -> bool {
int result = unlink(path);
if (result != 0) {
if (errno == EACCES || errno == EPERM) {
PLOG(ERROR) << "Could not unlink " << path;
return false;
}
PLOG(WARNING) << "Could not unlink " << path;
}
return true;
};
// Delete the oat/odex file.
bool return_value_oat = unlink_and_check(out_path);
// Derive and delete the app image.
bool return_value_art = unlink_and_check(create_image_filename(out_path).c_str());
// Report success.
return return_value_oat && return_value_art;
}
int dexopt(const char* const params[DEXOPT_PARAM_COUNT]) {
return dexopt(params[0], // apk_path
atoi(params[1]), // uid
params[2], // pkgname
params[3], // instruction_set
atoi(params[4]), // dexopt_needed
params[5], // oat_dir
atoi(params[6]), // dexopt_flags
params[7], // compiler_filter
parse_null(params[8]), // volume_uuid
parse_null(params[9])); // shared_libraries
static_assert(DEXOPT_PARAM_COUNT == 10U, "Unexpected dexopt param count");
}
} // namespace installd
} // namespace android