| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "DummyConsumer.h" |
| |
| #include <gtest/gtest.h> |
| |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <binder/ProcessState.h> |
| #include <configstore/Utils.h> |
| #include <cutils/properties.h> |
| #include <gui/BufferItemConsumer.h> |
| #include <gui/IDisplayEventConnection.h> |
| #include <gui/IProducerListener.h> |
| #include <gui/ISurfaceComposer.h> |
| #include <gui/Surface.h> |
| #include <gui/SurfaceComposerClient.h> |
| #include <private/gui/ComposerService.h> |
| #include <ui/Rect.h> |
| #include <utils/String8.h> |
| |
| #include <limits> |
| #include <thread> |
| |
| namespace android { |
| |
| using namespace std::chrono_literals; |
| // retrieve wide-color and hdr settings from configstore |
| using namespace android::hardware::configstore; |
| using namespace android::hardware::configstore::V1_0; |
| |
| static bool hasWideColorDisplay = |
| getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false); |
| |
| class FakeSurfaceComposer; |
| class FakeProducerFrameEventHistory; |
| |
| static constexpr uint64_t NO_FRAME_INDEX = std::numeric_limits<uint64_t>::max(); |
| |
| class SurfaceTest : public ::testing::Test { |
| protected: |
| |
| SurfaceTest() { |
| ProcessState::self()->startThreadPool(); |
| } |
| |
| virtual void SetUp() { |
| mComposerClient = new SurfaceComposerClient; |
| ASSERT_EQ(NO_ERROR, mComposerClient->initCheck()); |
| |
| // TODO(brianderson): The following sometimes fails and is a source of |
| // test flakiness. |
| mSurfaceControl = mComposerClient->createSurface( |
| String8("Test Surface"), 32, 32, PIXEL_FORMAT_RGBA_8888, 0); |
| |
| ASSERT_TRUE(mSurfaceControl != NULL); |
| ASSERT_TRUE(mSurfaceControl->isValid()); |
| |
| SurfaceComposerClient::openGlobalTransaction(); |
| ASSERT_EQ(NO_ERROR, mSurfaceControl->setLayer(0x7fffffff)); |
| ASSERT_EQ(NO_ERROR, mSurfaceControl->show()); |
| SurfaceComposerClient::closeGlobalTransaction(); |
| |
| mSurface = mSurfaceControl->getSurface(); |
| ASSERT_TRUE(mSurface != NULL); |
| } |
| |
| virtual void TearDown() { |
| mComposerClient->dispose(); |
| } |
| |
| sp<Surface> mSurface; |
| sp<SurfaceComposerClient> mComposerClient; |
| sp<SurfaceControl> mSurfaceControl; |
| }; |
| |
| TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenVisible) { |
| sp<ANativeWindow> anw(mSurface); |
| int result = -123; |
| int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, |
| &result); |
| EXPECT_EQ(NO_ERROR, err); |
| EXPECT_EQ(1, result); |
| } |
| |
| TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenPurgatorized) { |
| mSurfaceControl.clear(); |
| // Wait for the async clean-up to complete. |
| std::this_thread::sleep_for(50ms); |
| |
| sp<ANativeWindow> anw(mSurface); |
| int result = -123; |
| int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, |
| &result); |
| EXPECT_EQ(NO_ERROR, err); |
| EXPECT_EQ(1, result); |
| } |
| |
| // This test probably doesn't belong here. |
| TEST_F(SurfaceTest, ScreenshotsOfProtectedBuffersSucceed) { |
| sp<ANativeWindow> anw(mSurface); |
| |
| // Verify the screenshot works with no protected buffers. |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1); |
| sp<ISurfaceComposer> sf(ComposerService::getComposerService()); |
| sp<IBinder> display(sf->getBuiltInDisplay( |
| ISurfaceComposer::eDisplayIdMain)); |
| ASSERT_EQ(NO_ERROR, sf->captureScreen(display, producer, Rect(), |
| 64, 64, 0, 0x7fffffff, false)); |
| |
| ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(), |
| NATIVE_WINDOW_API_CPU)); |
| // Set the PROTECTED usage bit and verify that the screenshot fails. Note |
| // that we need to dequeue a buffer in order for it to actually get |
| // allocated in SurfaceFlinger. |
| ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(), |
| GRALLOC_USAGE_PROTECTED)); |
| ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(anw.get(), 3)); |
| ANativeWindowBuffer* buf = 0; |
| |
| status_t err = native_window_dequeue_buffer_and_wait(anw.get(), &buf); |
| if (err) { |
| // we could fail if GRALLOC_USAGE_PROTECTED is not supported. |
| // that's okay as long as this is the reason for the failure. |
| // try again without the GRALLOC_USAGE_PROTECTED bit. |
| ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(), 0)); |
| ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(), |
| &buf)); |
| return; |
| } |
| ASSERT_EQ(NO_ERROR, anw->cancelBuffer(anw.get(), buf, -1)); |
| |
| for (int i = 0; i < 4; i++) { |
| // Loop to make sure SurfaceFlinger has retired a protected buffer. |
| ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(), |
| &buf)); |
| ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf, -1)); |
| } |
| ASSERT_EQ(NO_ERROR, sf->captureScreen(display, producer, Rect(), |
| 64, 64, 0, 0x7fffffff, false)); |
| } |
| |
| TEST_F(SurfaceTest, ConcreteTypeIsSurface) { |
| sp<ANativeWindow> anw(mSurface); |
| int result = -123; |
| int err = anw->query(anw.get(), NATIVE_WINDOW_CONCRETE_TYPE, &result); |
| EXPECT_EQ(NO_ERROR, err); |
| EXPECT_EQ(NATIVE_WINDOW_SURFACE, result); |
| } |
| |
| TEST_F(SurfaceTest, LayerCountIsOne) { |
| sp<ANativeWindow> anw(mSurface); |
| int result = -123; |
| int err = anw->query(anw.get(), NATIVE_WINDOW_LAYER_COUNT, &result); |
| EXPECT_EQ(NO_ERROR, err); |
| EXPECT_EQ(1, result); |
| } |
| |
| TEST_F(SurfaceTest, QueryConsumerUsage) { |
| const int TEST_USAGE_FLAGS = |
| GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER; |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| sp<BufferItemConsumer> c = new BufferItemConsumer(consumer, |
| TEST_USAGE_FLAGS); |
| sp<Surface> s = new Surface(producer); |
| |
| sp<ANativeWindow> anw(s); |
| |
| int flags = -1; |
| int err = anw->query(anw.get(), NATIVE_WINDOW_CONSUMER_USAGE_BITS, &flags); |
| |
| ASSERT_EQ(NO_ERROR, err); |
| ASSERT_EQ(TEST_USAGE_FLAGS, flags); |
| } |
| |
| TEST_F(SurfaceTest, QueryDefaultBuffersDataSpace) { |
| const android_dataspace TEST_DATASPACE = HAL_DATASPACE_SRGB; |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1); |
| |
| cpuConsumer->setDefaultBufferDataSpace(TEST_DATASPACE); |
| |
| sp<Surface> s = new Surface(producer); |
| |
| sp<ANativeWindow> anw(s); |
| |
| android_dataspace dataSpace; |
| |
| int err = anw->query(anw.get(), NATIVE_WINDOW_DEFAULT_DATASPACE, |
| reinterpret_cast<int*>(&dataSpace)); |
| |
| ASSERT_EQ(NO_ERROR, err); |
| ASSERT_EQ(TEST_DATASPACE, dataSpace); |
| } |
| |
| TEST_F(SurfaceTest, SettingGenerationNumber) { |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1); |
| sp<Surface> surface = new Surface(producer); |
| sp<ANativeWindow> window(surface); |
| |
| // Allocate a buffer with a generation number of 0 |
| ANativeWindowBuffer* buffer; |
| int fenceFd; |
| ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(), |
| NATIVE_WINDOW_API_CPU)); |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd)); |
| ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, fenceFd)); |
| |
| // Detach the buffer and check its generation number |
| sp<GraphicBuffer> graphicBuffer; |
| sp<Fence> fence; |
| ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&graphicBuffer, &fence)); |
| ASSERT_EQ(0U, graphicBuffer->getGenerationNumber()); |
| |
| ASSERT_EQ(NO_ERROR, surface->setGenerationNumber(1)); |
| buffer = static_cast<ANativeWindowBuffer*>(graphicBuffer.get()); |
| |
| // This should change the generation number of the GraphicBuffer |
| ASSERT_EQ(NO_ERROR, surface->attachBuffer(buffer)); |
| |
| // Check that the new generation number sticks with the buffer |
| ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, -1)); |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd)); |
| graphicBuffer = static_cast<GraphicBuffer*>(buffer); |
| ASSERT_EQ(1U, graphicBuffer->getGenerationNumber()); |
| } |
| |
| TEST_F(SurfaceTest, GetConsumerName) { |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| |
| sp<DummyConsumer> dummyConsumer(new DummyConsumer); |
| consumer->consumerConnect(dummyConsumer, false); |
| consumer->setConsumerName(String8("TestConsumer")); |
| |
| sp<Surface> surface = new Surface(producer); |
| sp<ANativeWindow> window(surface); |
| native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU); |
| |
| EXPECT_STREQ("TestConsumer", surface->getConsumerName().string()); |
| } |
| |
| TEST_F(SurfaceTest, GetWideColorSupport) { |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| |
| sp<DummyConsumer> dummyConsumer(new DummyConsumer); |
| consumer->consumerConnect(dummyConsumer, false); |
| consumer->setConsumerName(String8("TestConsumer")); |
| |
| sp<Surface> surface = new Surface(producer); |
| sp<ANativeWindow> window(surface); |
| native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU); |
| |
| bool supported; |
| surface->getWideColorSupport(&supported); |
| |
| // NOTE: This test assumes that device that supports |
| // wide-color (as indicated by BoardConfig) must also |
| // have a wide-color primary display. |
| // That assumption allows this test to cover devices |
| // that advertised a wide-color color mode without |
| // actually supporting wide-color to pass this test |
| // as well as the case of a device that does support |
| // wide-color (via BoardConfig) and has a wide-color |
| // primary display. |
| // NOT covered at this time is a device that supports |
| // wide color in the BoardConfig but does not support |
| // a wide-color color mode on the primary display. |
| ASSERT_EQ(hasWideColorDisplay, supported); |
| } |
| |
| TEST_F(SurfaceTest, DynamicSetBufferCount) { |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| |
| sp<DummyConsumer> dummyConsumer(new DummyConsumer); |
| consumer->consumerConnect(dummyConsumer, false); |
| consumer->setConsumerName(String8("TestConsumer")); |
| |
| sp<Surface> surface = new Surface(producer); |
| sp<ANativeWindow> window(surface); |
| |
| ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(), |
| NATIVE_WINDOW_API_CPU)); |
| native_window_set_buffer_count(window.get(), 4); |
| |
| int fence; |
| ANativeWindowBuffer* buffer; |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence)); |
| native_window_set_buffer_count(window.get(), 3); |
| ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence)); |
| native_window_set_buffer_count(window.get(), 2); |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence)); |
| ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence)); |
| } |
| |
| TEST_F(SurfaceTest, GetAndFlushRemovedBuffers) { |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| |
| sp<DummyConsumer> dummyConsumer(new DummyConsumer); |
| consumer->consumerConnect(dummyConsumer, false); |
| consumer->setConsumerName(String8("TestConsumer")); |
| |
| sp<Surface> surface = new Surface(producer); |
| sp<ANativeWindow> window(surface); |
| sp<DummyProducerListener> listener = new DummyProducerListener(); |
| ASSERT_EQ(OK, surface->connect( |
| NATIVE_WINDOW_API_CPU, |
| /*listener*/listener, |
| /*reportBufferRemoval*/true)); |
| const int BUFFER_COUNT = 4; |
| ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(window.get(), BUFFER_COUNT)); |
| |
| sp<GraphicBuffer> detachedBuffer; |
| sp<Fence> outFence; |
| int fences[BUFFER_COUNT]; |
| ANativeWindowBuffer* buffers[BUFFER_COUNT]; |
| // Allocate buffers because detachNextBuffer requires allocated buffers |
| for (int i = 0; i < BUFFER_COUNT; i++) { |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i])); |
| } |
| for (int i = 0; i < BUFFER_COUNT; i++) { |
| ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i])); |
| } |
| |
| // Test detached buffer is correctly reported |
| ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); |
| std::vector<sp<GraphicBuffer>> removedBuffers; |
| ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); |
| ASSERT_EQ(1u, removedBuffers.size()); |
| ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle); |
| // Test the list is flushed one getAndFlushRemovedBuffers returns |
| ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); |
| ASSERT_EQ(0u, removedBuffers.size()); |
| |
| |
| // Test removed buffer list is cleanup after next dequeueBuffer call |
| ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[0], &fences[0])); |
| ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); |
| ASSERT_EQ(0u, removedBuffers.size()); |
| ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[0], fences[0])); |
| |
| // Test removed buffer list is cleanup after next detachNextBuffer call |
| ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); |
| ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); |
| ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); |
| ASSERT_EQ(1u, removedBuffers.size()); |
| ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle); |
| |
| // Re-allocate buffers since all buffers are detached up to now |
| for (int i = 0; i < BUFFER_COUNT; i++) { |
| ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i])); |
| } |
| for (int i = 0; i < BUFFER_COUNT; i++) { |
| ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i])); |
| } |
| |
| ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence)); |
| ASSERT_EQ(NO_ERROR, surface->attachBuffer(detachedBuffer.get())); |
| ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers)); |
| // Depends on which slot GraphicBufferProducer impl pick, the attach call might |
| // get 0 or 1 buffer removed. |
| ASSERT_LE(removedBuffers.size(), 1u); |
| } |
| |
| TEST_F(SurfaceTest, TestGetLastDequeueStartTime) { |
| sp<ANativeWindow> anw(mSurface); |
| ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(), NATIVE_WINDOW_API_CPU)); |
| |
| ANativeWindowBuffer* buffer = nullptr; |
| int32_t fenceFd = -1; |
| |
| nsecs_t before = systemTime(CLOCK_MONOTONIC); |
| anw->dequeueBuffer(anw.get(), &buffer, &fenceFd); |
| nsecs_t after = systemTime(CLOCK_MONOTONIC); |
| |
| nsecs_t lastDequeueTime = mSurface->getLastDequeueStartTime(); |
| ASSERT_LE(before, lastDequeueTime); |
| ASSERT_GE(after, lastDequeueTime); |
| } |
| |
| class FakeConsumer : public BnConsumerListener { |
| public: |
| void onFrameAvailable(const BufferItem& /*item*/) override {} |
| void onBuffersReleased() override {} |
| void onSidebandStreamChanged() override {} |
| |
| void addAndGetFrameTimestamps( |
| const NewFrameEventsEntry* newTimestamps, |
| FrameEventHistoryDelta* outDelta) override { |
| if (newTimestamps) { |
| if (mGetFrameTimestampsEnabled) { |
| EXPECT_GT(mNewFrameEntryOverride.frameNumber, 0u) << |
| "Test should set mNewFrameEntryOverride before queuing " |
| "a frame."; |
| EXPECT_EQ(newTimestamps->frameNumber, |
| mNewFrameEntryOverride.frameNumber) << |
| "Test attempting to add NewFrameEntryOverride with " |
| "incorrect frame number."; |
| mFrameEventHistory.addQueue(mNewFrameEntryOverride); |
| mNewFrameEntryOverride.frameNumber = 0; |
| } |
| mAddFrameTimestampsCount++; |
| mLastAddedFrameNumber = newTimestamps->frameNumber; |
| } |
| if (outDelta) { |
| mFrameEventHistory.getAndResetDelta(outDelta); |
| mGetFrameTimestampsCount++; |
| } |
| mAddAndGetFrameTimestampsCallCount++; |
| } |
| |
| bool mGetFrameTimestampsEnabled = false; |
| |
| ConsumerFrameEventHistory mFrameEventHistory; |
| int mAddAndGetFrameTimestampsCallCount = 0; |
| int mAddFrameTimestampsCount = 0; |
| int mGetFrameTimestampsCount = 0; |
| uint64_t mLastAddedFrameNumber = NO_FRAME_INDEX; |
| |
| NewFrameEventsEntry mNewFrameEntryOverride = { 0, 0, 0, nullptr }; |
| }; |
| |
| |
| class FakeSurfaceComposer : public ISurfaceComposer{ |
| public: |
| ~FakeSurfaceComposer() override {} |
| |
| void setSupportsPresent(bool supportsPresent) { |
| mSupportsPresent = supportsPresent; |
| } |
| |
| sp<ISurfaceComposerClient> createConnection() override { return nullptr; } |
| sp<ISurfaceComposerClient> createScopedConnection( |
| const sp<IGraphicBufferProducer>& /* parent */) override { |
| return nullptr; |
| } |
| sp<IDisplayEventConnection> createDisplayEventConnection(ISurfaceComposer::VsyncSource) |
| override { |
| return nullptr; |
| } |
| sp<IBinder> createDisplay(const String8& /*displayName*/, |
| bool /*secure*/) override { return nullptr; } |
| void destroyDisplay(const sp<IBinder>& /*display */) override {} |
| sp<IBinder> getBuiltInDisplay(int32_t /*id*/) override { return nullptr; } |
| void setTransactionState(const Vector<ComposerState>& /*state*/, |
| const Vector<DisplayState>& /*displays*/, uint32_t /*flags*/) |
| override {} |
| void bootFinished() override {} |
| bool authenticateSurfaceTexture( |
| const sp<IGraphicBufferProducer>& /*surface*/) const override { |
| return false; |
| } |
| |
| status_t getSupportedFrameTimestamps(std::vector<FrameEvent>* outSupported) |
| const override { |
| *outSupported = { |
| FrameEvent::REQUESTED_PRESENT, |
| FrameEvent::ACQUIRE, |
| FrameEvent::LATCH, |
| FrameEvent::FIRST_REFRESH_START, |
| FrameEvent::LAST_REFRESH_START, |
| FrameEvent::GPU_COMPOSITION_DONE, |
| FrameEvent::DEQUEUE_READY, |
| FrameEvent::RELEASE |
| }; |
| if (mSupportsPresent) { |
| outSupported->push_back( |
| FrameEvent::DISPLAY_PRESENT); |
| } |
| return NO_ERROR; |
| } |
| |
| void setPowerMode(const sp<IBinder>& /*display*/, int /*mode*/) override {} |
| status_t getDisplayConfigs(const sp<IBinder>& /*display*/, |
| Vector<DisplayInfo>* /*configs*/) override { return NO_ERROR; } |
| status_t getDisplayStats(const sp<IBinder>& /*display*/, |
| DisplayStatInfo* /*stats*/) override { return NO_ERROR; } |
| int getActiveConfig(const sp<IBinder>& /*display*/) override { return 0; } |
| status_t setActiveConfig(const sp<IBinder>& /*display*/, int /*id*/) |
| override { |
| return NO_ERROR; |
| } |
| status_t getDisplayColorModes(const sp<IBinder>& /*display*/, |
| Vector<android_color_mode_t>* /*outColorModes*/) override { |
| return NO_ERROR; |
| } |
| android_color_mode_t getActiveColorMode(const sp<IBinder>& /*display*/) |
| override { |
| return HAL_COLOR_MODE_NATIVE; |
| } |
| status_t setActiveColorMode(const sp<IBinder>& /*display*/, |
| android_color_mode_t /*colorMode*/) override { return NO_ERROR; } |
| status_t captureScreen(const sp<IBinder>& /*display*/, |
| const sp<IGraphicBufferProducer>& /*producer*/, |
| Rect /*sourceCrop*/, uint32_t /*reqWidth*/, uint32_t /*reqHeight*/, |
| int32_t /*minLayerZ*/, int32_t /*maxLayerZ*/, |
| bool /*useIdentityTransform*/, |
| Rotation /*rotation*/) override { return NO_ERROR; } |
| status_t clearAnimationFrameStats() override { return NO_ERROR; } |
| status_t getAnimationFrameStats(FrameStats* /*outStats*/) const override { |
| return NO_ERROR; |
| } |
| status_t getHdrCapabilities(const sp<IBinder>& /*display*/, |
| HdrCapabilities* /*outCapabilities*/) const override { |
| return NO_ERROR; |
| } |
| status_t enableVSyncInjections(bool /*enable*/) override { |
| return NO_ERROR; |
| } |
| status_t injectVSync(nsecs_t /*when*/) override { return NO_ERROR; } |
| |
| protected: |
| IBinder* onAsBinder() override { return nullptr; } |
| |
| private: |
| bool mSupportsPresent{true}; |
| }; |
| |
| class FakeProducerFrameEventHistory : public ProducerFrameEventHistory { |
| public: |
| FakeProducerFrameEventHistory(FenceToFenceTimeMap* fenceMap) |
| : mFenceMap(fenceMap) {} |
| |
| ~FakeProducerFrameEventHistory() {} |
| |
| void updateAcquireFence(uint64_t frameNumber, |
| std::shared_ptr<FenceTime>&& acquire) override { |
| // Verify the acquire fence being added isn't the one from the consumer. |
| EXPECT_NE(mConsumerAcquireFence, acquire); |
| // Override the fence, so we can verify this was called by the |
| // producer after the frame is queued. |
| ProducerFrameEventHistory::updateAcquireFence(frameNumber, |
| std::shared_ptr<FenceTime>(mAcquireFenceOverride)); |
| } |
| |
| void setAcquireFenceOverride( |
| const std::shared_ptr<FenceTime>& acquireFenceOverride, |
| const std::shared_ptr<FenceTime>& consumerAcquireFence) { |
| mAcquireFenceOverride = acquireFenceOverride; |
| mConsumerAcquireFence = consumerAcquireFence; |
| } |
| |
| protected: |
| std::shared_ptr<FenceTime> createFenceTime(const sp<Fence>& fence) |
| const override { |
| return mFenceMap->createFenceTimeForTest(fence); |
| } |
| |
| FenceToFenceTimeMap* mFenceMap{nullptr}; |
| |
| std::shared_ptr<FenceTime> mAcquireFenceOverride{FenceTime::NO_FENCE}; |
| std::shared_ptr<FenceTime> mConsumerAcquireFence{FenceTime::NO_FENCE}; |
| }; |
| |
| |
| class TestSurface : public Surface { |
| public: |
| TestSurface(const sp<IGraphicBufferProducer>& bufferProducer, |
| FenceToFenceTimeMap* fenceMap) |
| : Surface(bufferProducer), |
| mFakeSurfaceComposer(new FakeSurfaceComposer) { |
| mFakeFrameEventHistory = new FakeProducerFrameEventHistory(fenceMap); |
| mFrameEventHistory.reset(mFakeFrameEventHistory); |
| } |
| |
| ~TestSurface() override {} |
| |
| sp<ISurfaceComposer> composerService() const override { |
| return mFakeSurfaceComposer; |
| } |
| |
| nsecs_t now() const override { |
| return mNow; |
| } |
| |
| void setNow(nsecs_t now) { |
| mNow = now; |
| } |
| |
| public: |
| sp<FakeSurfaceComposer> mFakeSurfaceComposer; |
| nsecs_t mNow = 0; |
| |
| // mFrameEventHistory owns the instance of FakeProducerFrameEventHistory, |
| // but this raw pointer gives access to test functionality. |
| FakeProducerFrameEventHistory* mFakeFrameEventHistory; |
| }; |
| |
| |
| class GetFrameTimestampsTest : public ::testing::Test { |
| protected: |
| struct FenceAndFenceTime { |
| explicit FenceAndFenceTime(FenceToFenceTimeMap& fenceMap) |
| : mFence(new Fence), |
| mFenceTime(fenceMap.createFenceTimeForTest(mFence)) {} |
| sp<Fence> mFence { nullptr }; |
| std::shared_ptr<FenceTime> mFenceTime { nullptr }; |
| }; |
| |
| struct RefreshEvents { |
| RefreshEvents(FenceToFenceTimeMap& fenceMap, nsecs_t refreshStart) |
| : mFenceMap(fenceMap), |
| kCompositorTiming( |
| {refreshStart, refreshStart + 1, refreshStart + 2 }), |
| kStartTime(refreshStart + 3), |
| kGpuCompositionDoneTime(refreshStart + 4), |
| kPresentTime(refreshStart + 5) {} |
| |
| void signalPostCompositeFences() { |
| mFenceMap.signalAllForTest( |
| mGpuCompositionDone.mFence, kGpuCompositionDoneTime); |
| mFenceMap.signalAllForTest(mPresent.mFence, kPresentTime); |
| } |
| |
| FenceToFenceTimeMap& mFenceMap; |
| |
| FenceAndFenceTime mGpuCompositionDone { mFenceMap }; |
| FenceAndFenceTime mPresent { mFenceMap }; |
| |
| const CompositorTiming kCompositorTiming; |
| |
| const nsecs_t kStartTime; |
| const nsecs_t kGpuCompositionDoneTime; |
| const nsecs_t kPresentTime; |
| }; |
| |
| struct FrameEvents { |
| FrameEvents(FenceToFenceTimeMap& fenceMap, nsecs_t frameStartTime) |
| : mFenceMap(fenceMap), |
| kPostedTime(frameStartTime + 100), |
| kRequestedPresentTime(frameStartTime + 200), |
| kProducerAcquireTime(frameStartTime + 300), |
| kConsumerAcquireTime(frameStartTime + 301), |
| kLatchTime(frameStartTime + 500), |
| kDequeueReadyTime(frameStartTime + 600), |
| kReleaseTime(frameStartTime + 700), |
| mRefreshes { |
| { mFenceMap, frameStartTime + 410 }, |
| { mFenceMap, frameStartTime + 420 }, |
| { mFenceMap, frameStartTime + 430 } } {} |
| |
| void signalQueueFences() { |
| mFenceMap.signalAllForTest( |
| mAcquireConsumer.mFence, kConsumerAcquireTime); |
| mFenceMap.signalAllForTest( |
| mAcquireProducer.mFence, kProducerAcquireTime); |
| } |
| |
| void signalRefreshFences() { |
| for (auto& re : mRefreshes) { |
| re.signalPostCompositeFences(); |
| } |
| } |
| |
| void signalReleaseFences() { |
| mFenceMap.signalAllForTest(mRelease.mFence, kReleaseTime); |
| } |
| |
| FenceToFenceTimeMap& mFenceMap; |
| |
| FenceAndFenceTime mAcquireConsumer { mFenceMap }; |
| FenceAndFenceTime mAcquireProducer { mFenceMap }; |
| FenceAndFenceTime mRelease { mFenceMap }; |
| |
| const nsecs_t kPostedTime; |
| const nsecs_t kRequestedPresentTime; |
| const nsecs_t kProducerAcquireTime; |
| const nsecs_t kConsumerAcquireTime; |
| const nsecs_t kLatchTime; |
| const nsecs_t kDequeueReadyTime; |
| const nsecs_t kReleaseTime; |
| |
| RefreshEvents mRefreshes[3]; |
| }; |
| |
| GetFrameTimestampsTest() {} |
| |
| virtual void SetUp() { |
| BufferQueue::createBufferQueue(&mProducer, &mConsumer); |
| mFakeConsumer = new FakeConsumer; |
| mCfeh = &mFakeConsumer->mFrameEventHistory; |
| mConsumer->consumerConnect(mFakeConsumer, false); |
| mConsumer->setConsumerName(String8("TestConsumer")); |
| mSurface = new TestSurface(mProducer, &mFenceMap); |
| mWindow = mSurface; |
| |
| ASSERT_EQ(NO_ERROR, native_window_api_connect(mWindow.get(), |
| NATIVE_WINDOW_API_CPU)); |
| native_window_set_buffer_count(mWindow.get(), 4); |
| } |
| |
| void disableFrameTimestamps() { |
| mFakeConsumer->mGetFrameTimestampsEnabled = false; |
| native_window_enable_frame_timestamps(mWindow.get(), 0); |
| mFrameTimestampsEnabled = false; |
| } |
| |
| void enableFrameTimestamps() { |
| mFakeConsumer->mGetFrameTimestampsEnabled = true; |
| native_window_enable_frame_timestamps(mWindow.get(), 1); |
| mFrameTimestampsEnabled = true; |
| } |
| |
| int getAllFrameTimestamps(uint64_t frameId) { |
| return native_window_get_frame_timestamps(mWindow.get(), frameId, |
| &outRequestedPresentTime, &outAcquireTime, &outLatchTime, |
| &outFirstRefreshStartTime, &outLastRefreshStartTime, |
| &outGpuCompositionDoneTime, &outDisplayPresentTime, |
| &outDequeueReadyTime, &outReleaseTime); |
| } |
| |
| void resetTimestamps() { |
| outRequestedPresentTime = -1; |
| outAcquireTime = -1; |
| outLatchTime = -1; |
| outFirstRefreshStartTime = -1; |
| outLastRefreshStartTime = -1; |
| outGpuCompositionDoneTime = -1; |
| outDisplayPresentTime = -1; |
| outDequeueReadyTime = -1; |
| outReleaseTime = -1; |
| } |
| |
| uint64_t getNextFrameId() { |
| uint64_t frameId = -1; |
| int status = native_window_get_next_frame_id(mWindow.get(), &frameId); |
| EXPECT_EQ(status, NO_ERROR); |
| return frameId; |
| } |
| |
| void dequeueAndQueue(uint64_t frameIndex) { |
| int fence = -1; |
| ANativeWindowBuffer* buffer = nullptr; |
| ASSERT_EQ(NO_ERROR, |
| mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence)); |
| |
| int oldAddFrameTimestampsCount = |
| mFakeConsumer->mAddFrameTimestampsCount; |
| |
| FrameEvents* frame = &mFrames[frameIndex]; |
| uint64_t frameNumber = frameIndex + 1; |
| |
| NewFrameEventsEntry fe; |
| fe.frameNumber = frameNumber; |
| fe.postedTime = frame->kPostedTime; |
| fe.requestedPresentTime = frame->kRequestedPresentTime; |
| fe.acquireFence = frame->mAcquireConsumer.mFenceTime; |
| mFakeConsumer->mNewFrameEntryOverride = fe; |
| |
| mSurface->mFakeFrameEventHistory->setAcquireFenceOverride( |
| frame->mAcquireProducer.mFenceTime, |
| frame->mAcquireConsumer.mFenceTime); |
| |
| ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence)); |
| |
| EXPECT_EQ(frameNumber, mFakeConsumer->mLastAddedFrameNumber); |
| |
| EXPECT_EQ( |
| oldAddFrameTimestampsCount + (mFrameTimestampsEnabled ? 1 : 0), |
| mFakeConsumer->mAddFrameTimestampsCount); |
| } |
| |
| void addFrameEvents( |
| bool gpuComposited, uint64_t iOldFrame, int64_t iNewFrame) { |
| FrameEvents* oldFrame = |
| (iOldFrame == NO_FRAME_INDEX) ? nullptr : &mFrames[iOldFrame]; |
| FrameEvents* newFrame = &mFrames[iNewFrame]; |
| |
| uint64_t nOldFrame = iOldFrame + 1; |
| uint64_t nNewFrame = iNewFrame + 1; |
| |
| // Latch, Composite, and Release the frames in a plausible order. |
| // Note: The timestamps won't necessarily match the order, but |
| // that's okay for the purposes of this test. |
| std::shared_ptr<FenceTime> gpuDoneFenceTime = FenceTime::NO_FENCE; |
| |
| // Composite the previous frame one more time, which helps verify |
| // LastRefresh is updated properly. |
| if (oldFrame != nullptr) { |
| mCfeh->addPreComposition(nOldFrame, |
| oldFrame->mRefreshes[2].kStartTime); |
| gpuDoneFenceTime = gpuComposited ? |
| oldFrame->mRefreshes[2].mGpuCompositionDone.mFenceTime : |
| FenceTime::NO_FENCE; |
| mCfeh->addPostComposition(nOldFrame, gpuDoneFenceTime, |
| oldFrame->mRefreshes[2].mPresent.mFenceTime, |
| oldFrame->mRefreshes[2].kCompositorTiming); |
| } |
| |
| // Latch the new frame. |
| mCfeh->addLatch(nNewFrame, newFrame->kLatchTime); |
| |
| mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[0].kStartTime); |
| gpuDoneFenceTime = gpuComposited ? |
| newFrame->mRefreshes[0].mGpuCompositionDone.mFenceTime : |
| FenceTime::NO_FENCE; |
| // HWC2 releases the previous buffer after a new latch just before |
| // calling postComposition. |
| if (oldFrame != nullptr) { |
| mCfeh->addRelease(nOldFrame, oldFrame->kDequeueReadyTime, |
| std::shared_ptr<FenceTime>(oldFrame->mRelease.mFenceTime)); |
| } |
| mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime, |
| newFrame->mRefreshes[0].mPresent.mFenceTime, |
| newFrame->mRefreshes[0].kCompositorTiming); |
| |
| mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[1].kStartTime); |
| gpuDoneFenceTime = gpuComposited ? |
| newFrame->mRefreshes[1].mGpuCompositionDone.mFenceTime : |
| FenceTime::NO_FENCE; |
| mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime, |
| newFrame->mRefreshes[1].mPresent.mFenceTime, |
| newFrame->mRefreshes[1].kCompositorTiming); |
| } |
| |
| sp<IGraphicBufferProducer> mProducer; |
| sp<IGraphicBufferConsumer> mConsumer; |
| sp<FakeConsumer> mFakeConsumer; |
| ConsumerFrameEventHistory* mCfeh; |
| sp<TestSurface> mSurface; |
| sp<ANativeWindow> mWindow; |
| |
| FenceToFenceTimeMap mFenceMap; |
| |
| bool mFrameTimestampsEnabled = false; |
| |
| int64_t outRequestedPresentTime = -1; |
| int64_t outAcquireTime = -1; |
| int64_t outLatchTime = -1; |
| int64_t outFirstRefreshStartTime = -1; |
| int64_t outLastRefreshStartTime = -1; |
| int64_t outGpuCompositionDoneTime = -1; |
| int64_t outDisplayPresentTime = -1; |
| int64_t outDequeueReadyTime = -1; |
| int64_t outReleaseTime = -1; |
| |
| FrameEvents mFrames[3] { |
| { mFenceMap, 1000 }, { mFenceMap, 2000 }, { mFenceMap, 3000 } }; |
| }; |
| |
| |
| // This test verifies that the frame timestamps are not retrieved when not |
| // explicitly enabled via native_window_enable_frame_timestamps. |
| // We want to check this to make sure there's no overhead for users |
| // that don't need the timestamp information. |
| TEST_F(GetFrameTimestampsTest, DefaultDisabled) { |
| int fence; |
| ANativeWindowBuffer* buffer; |
| |
| EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); |
| EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| const uint64_t fId = getNextFrameId(); |
| |
| // Verify the producer doesn't get frame timestamps piggybacked on dequeue. |
| ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence)); |
| EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); |
| EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| // Verify the producer doesn't get frame timestamps piggybacked on queue. |
| // It is okay that frame timestamps are added in the consumer since it is |
| // still needed for SurfaceFlinger dumps. |
| ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence)); |
| EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount); |
| EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| // Verify attempts to get frame timestamps fail. |
| int result = getAllFrameTimestamps(fId); |
| EXPECT_EQ(INVALID_OPERATION, result); |
| EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| // Verify compositor timing query fails. |
| nsecs_t compositeDeadline = 0; |
| nsecs_t compositeInterval = 0; |
| nsecs_t compositeToPresentLatency = 0; |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(INVALID_OPERATION, result); |
| } |
| |
| // This test verifies that the frame timestamps are retrieved if explicitly |
| // enabled via native_window_enable_frame_timestamps. |
| TEST_F(GetFrameTimestampsTest, EnabledSimple) { |
| CompositorTiming initialCompositorTiming { |
| 1000000000, // 1s deadline |
| 16666667, // 16ms interval |
| 50000000, // 50ms present latency |
| }; |
| mCfeh->initializeCompositorTiming(initialCompositorTiming); |
| |
| enableFrameTimestamps(); |
| |
| // Verify the compositor timing query gets the initial compositor values |
| // after timststamps are enabled; even before the first frame is queued |
| // or dequeued. |
| nsecs_t compositeDeadline = 0; |
| nsecs_t compositeInterval = 0; |
| nsecs_t compositeToPresentLatency = 0; |
| mSurface->setNow(initialCompositorTiming.deadline - 1); |
| int result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); |
| EXPECT_EQ(initialCompositorTiming.interval, compositeInterval); |
| EXPECT_EQ(initialCompositorTiming.presentLatency, |
| compositeToPresentLatency); |
| |
| int fence; |
| ANativeWindowBuffer* buffer; |
| |
| EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); |
| EXPECT_EQ(1, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| const uint64_t fId1 = getNextFrameId(); |
| |
| // Verify getFrameTimestamps is piggybacked on dequeue. |
| ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence)); |
| EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount); |
| EXPECT_EQ(2, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| NewFrameEventsEntry f1; |
| f1.frameNumber = 1; |
| f1.postedTime = mFrames[0].kPostedTime; |
| f1.requestedPresentTime = mFrames[0].kRequestedPresentTime; |
| f1.acquireFence = mFrames[0].mAcquireConsumer.mFenceTime; |
| mSurface->mFakeFrameEventHistory->setAcquireFenceOverride( |
| mFrames[0].mAcquireProducer.mFenceTime, |
| mFrames[0].mAcquireConsumer.mFenceTime); |
| mFakeConsumer->mNewFrameEntryOverride = f1; |
| mFrames[0].signalQueueFences(); |
| |
| // Verify getFrameTimestamps is piggybacked on queue. |
| ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence)); |
| EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount); |
| EXPECT_EQ(1u, mFakeConsumer->mLastAddedFrameNumber); |
| EXPECT_EQ(3, mFakeConsumer->mGetFrameTimestampsCount); |
| |
| // Verify queries for timestamps that the producer doesn't know about |
| // triggers a call to see if the consumer has any new timestamps. |
| result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(4, mFakeConsumer->mGetFrameTimestampsCount); |
| } |
| |
| TEST_F(GetFrameTimestampsTest, QueryPresentSupported) { |
| bool displayPresentSupported = true; |
| mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported); |
| |
| // Verify supported bits are forwarded. |
| int supportsPresent = -1; |
| mWindow.get()->query(mWindow.get(), |
| NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent); |
| EXPECT_EQ(displayPresentSupported, supportsPresent); |
| } |
| |
| TEST_F(GetFrameTimestampsTest, QueryPresentNotSupported) { |
| bool displayPresentSupported = false; |
| mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported); |
| |
| // Verify supported bits are forwarded. |
| int supportsPresent = -1; |
| mWindow.get()->query(mWindow.get(), |
| NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent); |
| EXPECT_EQ(displayPresentSupported, supportsPresent); |
| } |
| |
| TEST_F(GetFrameTimestampsTest, SnapToNextTickBasic) { |
| nsecs_t phase = 4000; |
| nsecs_t interval = 1000; |
| |
| // Timestamp in previous interval. |
| nsecs_t timestamp = 3500; |
| EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| |
| // Timestamp in next interval. |
| timestamp = 4500; |
| EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| |
| // Timestamp multiple intervals before. |
| timestamp = 2500; |
| EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| |
| // Timestamp multiple intervals after. |
| timestamp = 6500; |
| EXPECT_EQ(7000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| |
| // Timestamp on previous interval. |
| timestamp = 3000; |
| EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| |
| // Timestamp on next interval. |
| timestamp = 5000; |
| EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| |
| // Timestamp equal to phase. |
| timestamp = 4000; |
| EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick( |
| timestamp, phase, interval)); |
| } |
| |
| // int(big_timestamp / interval) < 0, which can cause a crash or invalid result |
| // if the number of intervals elapsed is internally stored in an int. |
| TEST_F(GetFrameTimestampsTest, SnapToNextTickOverflow) { |
| nsecs_t phase = 0; |
| nsecs_t interval = 4000; |
| nsecs_t big_timestamp = 8635916564000; |
| int32_t intervals = big_timestamp / interval; |
| |
| EXPECT_LT(intervals, 0); |
| EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick( |
| big_timestamp, phase, interval)); |
| EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick( |
| big_timestamp, big_timestamp, interval)); |
| } |
| |
| // This verifies the compositor timing is updated by refresh events |
| // and piggy backed on a queue, dequeue, and enabling of timestamps.. |
| TEST_F(GetFrameTimestampsTest, CompositorTimingUpdatesBasic) { |
| CompositorTiming initialCompositorTiming { |
| 1000000000, // 1s deadline |
| 16666667, // 16ms interval |
| 50000000, // 50ms present latency |
| }; |
| mCfeh->initializeCompositorTiming(initialCompositorTiming); |
| |
| enableFrameTimestamps(); |
| |
| // We get the initial values before any frames are submitted. |
| nsecs_t compositeDeadline = 0; |
| nsecs_t compositeInterval = 0; |
| nsecs_t compositeToPresentLatency = 0; |
| mSurface->setNow(initialCompositorTiming.deadline - 1); |
| int result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); |
| EXPECT_EQ(initialCompositorTiming.interval, compositeInterval); |
| EXPECT_EQ(initialCompositorTiming.presentLatency, |
| compositeToPresentLatency); |
| |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| addFrameEvents(true, NO_FRAME_INDEX, 0); |
| |
| // Still get the initial values because the frame events for frame 0 |
| // didn't get a chance to piggyback on a queue or dequeue yet. |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); |
| EXPECT_EQ(initialCompositorTiming.interval, compositeInterval); |
| EXPECT_EQ(initialCompositorTiming.presentLatency, |
| compositeToPresentLatency); |
| |
| const uint64_t fId2 = getNextFrameId(); |
| dequeueAndQueue(1); |
| addFrameEvents(true, 0, 1); |
| |
| // Now expect the composite values associated with frame 1. |
| mSurface->setNow(mFrames[0].mRefreshes[1].kCompositorTiming.deadline); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.deadline, |
| compositeDeadline); |
| EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.interval, |
| compositeInterval); |
| EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.presentLatency, |
| compositeToPresentLatency); |
| |
| dequeueAndQueue(2); |
| addFrameEvents(true, 1, 2); |
| |
| // Now expect the composite values associated with frame 2. |
| mSurface->setNow(mFrames[1].mRefreshes[1].kCompositorTiming.deadline); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.deadline, |
| compositeDeadline); |
| EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.interval, |
| compositeInterval); |
| EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.presentLatency, |
| compositeToPresentLatency); |
| |
| // Re-enabling frame timestamps should get the latest values. |
| disableFrameTimestamps(); |
| enableFrameTimestamps(); |
| |
| // Now expect the composite values associated with frame 3. |
| mSurface->setNow(mFrames[2].mRefreshes[1].kCompositorTiming.deadline); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.deadline, |
| compositeDeadline); |
| EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.interval, |
| compositeInterval); |
| EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.presentLatency, |
| compositeToPresentLatency); |
| } |
| |
| // This verifies the compositor deadline properly snaps to the the next |
| // deadline based on the current time. |
| TEST_F(GetFrameTimestampsTest, CompositorTimingDeadlineSnaps) { |
| CompositorTiming initialCompositorTiming { |
| 1000000000, // 1s deadline |
| 16666667, // 16ms interval |
| 50000000, // 50ms present latency |
| }; |
| mCfeh->initializeCompositorTiming(initialCompositorTiming); |
| |
| enableFrameTimestamps(); |
| |
| nsecs_t compositeDeadline = 0; |
| nsecs_t compositeInterval = 0; |
| nsecs_t compositeToPresentLatency = 0; |
| |
| // A "now" just before the deadline snaps to the deadline. |
| mSurface->setNow(initialCompositorTiming.deadline - 1); |
| int result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline); |
| nsecs_t expectedDeadline = initialCompositorTiming.deadline; |
| EXPECT_EQ(expectedDeadline, compositeDeadline); |
| |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| addFrameEvents(true, NO_FRAME_INDEX, 0); |
| |
| // A "now" just after the deadline snaps properly. |
| mSurface->setNow(initialCompositorTiming.deadline + 1); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| expectedDeadline = |
| initialCompositorTiming.deadline +initialCompositorTiming.interval; |
| EXPECT_EQ(expectedDeadline, compositeDeadline); |
| |
| const uint64_t fId2 = getNextFrameId(); |
| dequeueAndQueue(1); |
| addFrameEvents(true, 0, 1); |
| |
| // A "now" just after the next interval snaps properly. |
| mSurface->setNow( |
| mFrames[0].mRefreshes[1].kCompositorTiming.deadline + |
| mFrames[0].mRefreshes[1].kCompositorTiming.interval + 1); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| expectedDeadline = |
| mFrames[0].mRefreshes[1].kCompositorTiming.deadline + |
| mFrames[0].mRefreshes[1].kCompositorTiming.interval * 2; |
| EXPECT_EQ(expectedDeadline, compositeDeadline); |
| |
| dequeueAndQueue(2); |
| addFrameEvents(true, 1, 2); |
| |
| // A "now" over 1 interval before the deadline snaps properly. |
| mSurface->setNow( |
| mFrames[1].mRefreshes[1].kCompositorTiming.deadline - |
| mFrames[1].mRefreshes[1].kCompositorTiming.interval - 1); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| expectedDeadline = |
| mFrames[1].mRefreshes[1].kCompositorTiming.deadline - |
| mFrames[1].mRefreshes[1].kCompositorTiming.interval; |
| EXPECT_EQ(expectedDeadline, compositeDeadline); |
| |
| // Re-enabling frame timestamps should get the latest values. |
| disableFrameTimestamps(); |
| enableFrameTimestamps(); |
| |
| // A "now" over 2 intervals before the deadline snaps properly. |
| mSurface->setNow( |
| mFrames[2].mRefreshes[1].kCompositorTiming.deadline - |
| mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2 - 1); |
| result = native_window_get_compositor_timing(mWindow.get(), |
| &compositeDeadline, &compositeInterval, &compositeToPresentLatency); |
| EXPECT_EQ(NO_ERROR, result); |
| expectedDeadline = |
| mFrames[2].mRefreshes[1].kCompositorTiming.deadline - |
| mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2; |
| EXPECT_EQ(expectedDeadline, compositeDeadline); |
| } |
| |
| // This verifies the timestamps recorded in the consumer's |
| // FrameTimestampsHistory are properly retrieved by the producer for the |
| // correct frames. |
| TEST_F(GetFrameTimestampsTest, TimestampsAssociatedWithCorrectFrame) { |
| enableFrameTimestamps(); |
| |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| mFrames[0].signalQueueFences(); |
| |
| const uint64_t fId2 = getNextFrameId(); |
| dequeueAndQueue(1); |
| mFrames[1].signalQueueFences(); |
| |
| addFrameEvents(true, NO_FRAME_INDEX, 0); |
| mFrames[0].signalRefreshFences(); |
| addFrameEvents(true, 0, 1); |
| mFrames[0].signalReleaseFences(); |
| mFrames[1].signalRefreshFences(); |
| |
| // Verify timestamps are correct for frame 1. |
| resetTimestamps(); |
| int result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime, |
| outGpuCompositionDoneTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime); |
| |
| // Verify timestamps are correct for frame 2. |
| resetTimestamps(); |
| result = getAllFrameTimestamps(fId2); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[0].kGpuCompositionDoneTime, |
| outGpuCompositionDoneTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); |
| } |
| |
| // This test verifies the acquire fence recorded by the consumer is not sent |
| // back to the producer and the producer saves its own fence. |
| TEST_F(GetFrameTimestampsTest, QueueTimestampsNoSync) { |
| enableFrameTimestamps(); |
| |
| // Dequeue and queue frame 1. |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| |
| // Verify queue-related timestamps for f1 are available immediately in the |
| // producer without asking the consumer again, even before signaling the |
| // acquire fence. |
| resetTimestamps(); |
| int oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| int result = native_window_get_frame_timestamps(mWindow.get(), fId1, |
| &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, |
| nullptr, nullptr, nullptr, nullptr, nullptr); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime); |
| |
| // Signal acquire fences. Verify a sync call still isn't necessary. |
| mFrames[0].signalQueueFences(); |
| |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = native_window_get_frame_timestamps(mWindow.get(), fId1, |
| &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, |
| nullptr, nullptr, nullptr, nullptr, nullptr); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| |
| // Dequeue and queue frame 2. |
| const uint64_t fId2 = getNextFrameId(); |
| dequeueAndQueue(1); |
| |
| // Verify queue-related timestamps for f2 are available immediately in the |
| // producer without asking the consumer again, even before signaling the |
| // acquire fence. |
| resetTimestamps(); |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = native_window_get_frame_timestamps(mWindow.get(), fId2, |
| &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, |
| nullptr, nullptr, nullptr, nullptr, nullptr); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime); |
| |
| // Signal acquire fences. Verify a sync call still isn't necessary. |
| mFrames[1].signalQueueFences(); |
| |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = native_window_get_frame_timestamps(mWindow.get(), fId2, |
| &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr, |
| nullptr, nullptr, nullptr, nullptr, nullptr); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime); |
| } |
| |
| TEST_F(GetFrameTimestampsTest, ZeroRequestedTimestampsNoSync) { |
| enableFrameTimestamps(); |
| |
| // Dequeue and queue frame 1. |
| dequeueAndQueue(0); |
| mFrames[0].signalQueueFences(); |
| |
| // Dequeue and queue frame 2. |
| const uint64_t fId2 = getNextFrameId(); |
| dequeueAndQueue(1); |
| mFrames[1].signalQueueFences(); |
| |
| addFrameEvents(true, NO_FRAME_INDEX, 0); |
| mFrames[0].signalRefreshFences(); |
| addFrameEvents(true, 0, 1); |
| mFrames[0].signalReleaseFences(); |
| mFrames[1].signalRefreshFences(); |
| |
| // Verify a request for no timestamps doesn't result in a sync call. |
| int oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| int result = native_window_get_frame_timestamps(mWindow.get(), fId2, |
| nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, |
| nullptr, nullptr); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| } |
| |
| // This test verifies that fences can signal and update timestamps producer |
| // side without an additional sync call to the consumer. |
| TEST_F(GetFrameTimestampsTest, FencesInProducerNoSync) { |
| enableFrameTimestamps(); |
| |
| // Dequeue and queue frame 1. |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| mFrames[0].signalQueueFences(); |
| |
| // Dequeue and queue frame 2. |
| dequeueAndQueue(1); |
| mFrames[1].signalQueueFences(); |
| |
| addFrameEvents(true, NO_FRAME_INDEX, 0); |
| addFrameEvents(true, 0, 1); |
| |
| // Verify available timestamps are correct for frame 1, before any |
| // fence has been signaled. |
| // Note: A sync call is necessary here since the events triggered by |
| // addFrameEvents didn't get to piggyback on the earlier queues/dequeues. |
| resetTimestamps(); |
| int oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| int result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); |
| |
| // Verify available timestamps are correct for frame 1 again, before any |
| // fence has been signaled. |
| // This time a sync call should not be necessary. |
| resetTimestamps(); |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); |
| |
| // Signal the fences for frame 1. |
| mFrames[0].signalRefreshFences(); |
| mFrames[0].signalReleaseFences(); |
| |
| // Verify all timestamps are available without a sync call. |
| resetTimestamps(); |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime, |
| outGpuCompositionDoneTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime); |
| } |
| |
| // This test verifies that if the frame wasn't GPU composited but has a refresh |
| // event a sync call isn't made to get the GPU composite done time since it will |
| // never exist. |
| TEST_F(GetFrameTimestampsTest, NoGpuNoSync) { |
| enableFrameTimestamps(); |
| |
| // Dequeue and queue frame 1. |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| mFrames[0].signalQueueFences(); |
| |
| // Dequeue and queue frame 2. |
| dequeueAndQueue(1); |
| mFrames[1].signalQueueFences(); |
| |
| addFrameEvents(false, NO_FRAME_INDEX, 0); |
| addFrameEvents(false, 0, 1); |
| |
| // Verify available timestamps are correct for frame 1, before any |
| // fence has been signaled. |
| // Note: A sync call is necessary here since the events triggered by |
| // addFrameEvents didn't get to piggyback on the earlier queues/dequeues. |
| resetTimestamps(); |
| int oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| int result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); |
| |
| // Signal the fences for frame 1. |
| mFrames[0].signalRefreshFences(); |
| mFrames[0].signalReleaseFences(); |
| |
| // Verify all timestamps, except GPU composition, are available without a |
| // sync call. |
| resetTimestamps(); |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime); |
| } |
| |
| // This test verifies that if the certain timestamps can't possibly exist for |
| // the most recent frame, then a sync call is not done. |
| TEST_F(GetFrameTimestampsTest, NoReleaseNoSync) { |
| enableFrameTimestamps(); |
| |
| // Dequeue and queue frame 1. |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| mFrames[0].signalQueueFences(); |
| |
| // Dequeue and queue frame 2. |
| const uint64_t fId2 = getNextFrameId(); |
| dequeueAndQueue(1); |
| mFrames[1].signalQueueFences(); |
| |
| addFrameEvents(false, NO_FRAME_INDEX, 0); |
| addFrameEvents(false, 0, 1); |
| |
| // Verify available timestamps are correct for frame 1, before any |
| // fence has been signaled. |
| // Note: A sync call is necessary here since the events triggered by |
| // addFrameEvents didn't get to piggyback on the earlier queues/dequeues. |
| resetTimestamps(); |
| int oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| int result = getAllFrameTimestamps(fId1); |
| EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime); |
| EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); |
| |
| mFrames[0].signalRefreshFences(); |
| mFrames[0].signalReleaseFences(); |
| mFrames[1].signalRefreshFences(); |
| |
| // Verify querying for all timestmaps of f2 does not do a sync call. Even |
| // though the lastRefresh, dequeueReady, and release times aren't |
| // available, a sync call should not occur because it's not possible for f2 |
| // to encounter the final value for those events until another frame is |
| // queued. |
| resetTimestamps(); |
| oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| result = getAllFrameTimestamps(fId2); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(NO_ERROR, result); |
| EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime); |
| EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime); |
| EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime); |
| EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime); |
| EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime); |
| } |
| |
| // This test verifies there are no sync calls for present times |
| // when they aren't supported and that an error is returned. |
| |
| TEST_F(GetFrameTimestampsTest, PresentUnsupportedNoSync) { |
| enableFrameTimestamps(); |
| mSurface->mFakeSurfaceComposer->setSupportsPresent(false); |
| |
| // Dequeue and queue frame 1. |
| const uint64_t fId1 = getNextFrameId(); |
| dequeueAndQueue(0); |
| |
| // Verify a query for the Present times do not trigger a sync call if they |
| // are not supported. |
| resetTimestamps(); |
| int oldCount = mFakeConsumer->mGetFrameTimestampsCount; |
| int result = native_window_get_frame_timestamps(mWindow.get(), fId1, |
| nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, |
| &outDisplayPresentTime, nullptr, nullptr); |
| EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount); |
| EXPECT_EQ(BAD_VALUE, result); |
| EXPECT_EQ(-1, outDisplayPresentTime); |
| } |
| |
| } // namespace android |