blob: fe016af01fcf218435bc01f7eede654fb1cc81a0 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputDispatcher"
#define ATRACE_TAG ATRACE_TAG_INPUT
#define LOG_NDEBUG 1
// Log detailed debug messages about each inbound event notification to the dispatcher.
#define DEBUG_INBOUND_EVENT_DETAILS 0
// Log detailed debug messages about each outbound event processed by the dispatcher.
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
// Log debug messages about the dispatch cycle.
#define DEBUG_DISPATCH_CYCLE 0
// Log debug messages about registrations.
#define DEBUG_REGISTRATION 0
// Log debug messages about input event injection.
#define DEBUG_INJECTION 0
// Log debug messages about input focus tracking.
static constexpr bool DEBUG_FOCUS = false;
// Log debug messages about the app switch latency optimization.
#define DEBUG_APP_SWITCH 0
// Log debug messages about hover events.
#define DEBUG_HOVER 0
#include "InputDispatcher.h"
#include "Connection.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <statslog.h>
#include <stddef.h>
#include <time.h>
#include <unistd.h>
#include <queue>
#include <sstream>
#include <android-base/chrono_utils.h>
#include <android-base/stringprintf.h>
#include <binder/Binder.h>
#include <input/InputDevice.h>
#include <log/log.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <powermanager/PowerManager.h>
#include <utils/Trace.h>
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
using android::base::StringPrintf;
namespace android::inputdispatcher {
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
constexpr std::chrono::nanoseconds DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5s;
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
constexpr nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
// Amount of time to allow for an event to be dispatched (measured since its eventTime)
// before considering it stale and dropping it.
constexpr nsecs_t STALE_EVENT_TIMEOUT = 10000 * 1000000LL; // 10sec
// Log a warning when an event takes longer than this to process, even if an ANR does not occur.
constexpr nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec
// Log a warning when an interception call takes longer than this to process.
constexpr std::chrono::milliseconds SLOW_INTERCEPTION_THRESHOLD = 50ms;
// Additional key latency in case a connection is still processing some motion events.
// This will help with the case when a user touched a button that opens a new window,
// and gives us the chance to dispatch the key to this new window.
constexpr std::chrono::nanoseconds KEY_WAITING_FOR_EVENTS_TIMEOUT = 500ms;
// Number of recent events to keep for debugging purposes.
constexpr size_t RECENT_QUEUE_MAX_SIZE = 10;
static inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) >>
AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
static bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
static bool validateKeyEvent(int32_t action) {
if (!isValidKeyAction(action)) {
ALOGE("Key event has invalid action code 0x%x", action);
return false;
}
return true;
}
static bool isValidMotionAction(int32_t action, int32_t actionButton, int32_t pointerCount) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_OUTSIDE:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
case AMOTION_EVENT_ACTION_HOVER_EXIT:
case AMOTION_EVENT_ACTION_SCROLL:
return true;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP: {
int32_t index = getMotionEventActionPointerIndex(action);
return index >= 0 && index < pointerCount;
}
case AMOTION_EVENT_ACTION_BUTTON_PRESS:
case AMOTION_EVENT_ACTION_BUTTON_RELEASE:
return actionButton != 0;
default:
return false;
}
}
static bool validateMotionEvent(int32_t action, int32_t actionButton, size_t pointerCount,
const PointerProperties* pointerProperties) {
if (!isValidMotionAction(action, actionButton, pointerCount)) {
ALOGE("Motion event has invalid action code 0x%x", action);
return false;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
ALOGE("Motion event has invalid pointer count %zu; value must be between 1 and %d.",
pointerCount, MAX_POINTERS);
return false;
}
BitSet32 pointerIdBits;
for (size_t i = 0; i < pointerCount; i++) {
int32_t id = pointerProperties[i].id;
if (id < 0 || id > MAX_POINTER_ID) {
ALOGE("Motion event has invalid pointer id %d; value must be between 0 and %d", id,
MAX_POINTER_ID);
return false;
}
if (pointerIdBits.hasBit(id)) {
ALOGE("Motion event has duplicate pointer id %d", id);
return false;
}
pointerIdBits.markBit(id);
}
return true;
}
static void dumpRegion(std::string& dump, const Region& region) {
if (region.isEmpty()) {
dump += "<empty>";
return;
}
bool first = true;
Region::const_iterator cur = region.begin();
Region::const_iterator const tail = region.end();
while (cur != tail) {
if (first) {
first = false;
} else {
dump += "|";
}
dump += StringPrintf("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom);
cur++;
}
}
/**
* Find the entry in std::unordered_map by key, and return it.
* If the entry is not found, return a default constructed entry.
*
* Useful when the entries are vectors, since an empty vector will be returned
* if the entry is not found.
* Also useful when the entries are sp<>. If an entry is not found, nullptr is returned.
*/
template <typename K, typename V>
static V getValueByKey(const std::unordered_map<K, V>& map, K key) {
auto it = map.find(key);
return it != map.end() ? it->second : V{};
}
/**
* Find the entry in std::unordered_map by value, and remove it.
* If more than one entry has the same value, then all matching
* key-value pairs will be removed.
*
* Return true if at least one value has been removed.
*/
template <typename K, typename V>
static bool removeByValue(std::unordered_map<K, V>& map, const V& value) {
bool removed = false;
for (auto it = map.begin(); it != map.end();) {
if (it->second == value) {
it = map.erase(it);
removed = true;
} else {
it++;
}
}
return removed;
}
static bool haveSameToken(const sp<InputWindowHandle>& first, const sp<InputWindowHandle>& second) {
if (first == second) {
return true;
}
if (first == nullptr || second == nullptr) {
return false;
}
return first->getToken() == second->getToken();
}
static bool isStaleEvent(nsecs_t currentTime, const EventEntry& entry) {
return currentTime - entry.eventTime >= STALE_EVENT_TIMEOUT;
}
static std::unique_ptr<DispatchEntry> createDispatchEntry(const InputTarget& inputTarget,
EventEntry* eventEntry,
int32_t inputTargetFlags) {
if (inputTarget.useDefaultPointerInfo()) {
const PointerInfo& pointerInfo = inputTarget.getDefaultPointerInfo();
return std::make_unique<DispatchEntry>(eventEntry, // increments ref
inputTargetFlags, pointerInfo.xOffset,
pointerInfo.yOffset, inputTarget.globalScaleFactor,
pointerInfo.windowXScale, pointerInfo.windowYScale);
}
ALOG_ASSERT(eventEntry->type == EventEntry::Type::MOTION);
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(*eventEntry);
PointerCoords pointerCoords[motionEntry.pointerCount];
// Use the first pointer information to normalize all other pointers. This could be any pointer
// as long as all other pointers are normalized to the same value and the final DispatchEntry
// uses the offset and scale for the normalized pointer.
const PointerInfo& firstPointerInfo =
inputTarget.pointerInfos[inputTarget.pointerIds.firstMarkedBit()];
// Iterate through all pointers in the event to normalize against the first.
for (uint32_t pointerIndex = 0; pointerIndex < motionEntry.pointerCount; pointerIndex++) {
const PointerProperties& pointerProperties = motionEntry.pointerProperties[pointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
const PointerInfo& currPointerInfo = inputTarget.pointerInfos[pointerId];
// The scale factor is the ratio of the current pointers scale to the normalized scale.
float scaleXDiff = currPointerInfo.windowXScale / firstPointerInfo.windowXScale;
float scaleYDiff = currPointerInfo.windowYScale / firstPointerInfo.windowYScale;
pointerCoords[pointerIndex].copyFrom(motionEntry.pointerCoords[pointerIndex]);
// First apply the current pointers offset to set the window at 0,0
pointerCoords[pointerIndex].applyOffset(currPointerInfo.xOffset, currPointerInfo.yOffset);
// Next scale the coordinates.
pointerCoords[pointerIndex].scale(1, scaleXDiff, scaleYDiff);
// Lastly, offset the coordinates so they're in the normalized pointer's frame.
pointerCoords[pointerIndex].applyOffset(-firstPointerInfo.xOffset,
-firstPointerInfo.yOffset);
}
MotionEntry* combinedMotionEntry =
new MotionEntry(motionEntry.id, motionEntry.eventTime, motionEntry.deviceId,
motionEntry.source, motionEntry.displayId, motionEntry.policyFlags,
motionEntry.action, motionEntry.actionButton, motionEntry.flags,
motionEntry.metaState, motionEntry.buttonState,
motionEntry.classification, motionEntry.edgeFlags,
motionEntry.xPrecision, motionEntry.yPrecision,
motionEntry.xCursorPosition, motionEntry.yCursorPosition,
motionEntry.downTime, motionEntry.pointerCount,
motionEntry.pointerProperties, pointerCoords, 0 /* xOffset */,
0 /* yOffset */);
if (motionEntry.injectionState) {
combinedMotionEntry->injectionState = motionEntry.injectionState;
combinedMotionEntry->injectionState->refCount += 1;
}
std::unique_ptr<DispatchEntry> dispatchEntry =
std::make_unique<DispatchEntry>(combinedMotionEntry, // increments ref
inputTargetFlags, firstPointerInfo.xOffset,
firstPointerInfo.yOffset, inputTarget.globalScaleFactor,
firstPointerInfo.windowXScale,
firstPointerInfo.windowYScale);
combinedMotionEntry->release();
return dispatchEntry;
}
static void addGestureMonitors(const std::vector<Monitor>& monitors,
std::vector<TouchedMonitor>& outTouchedMonitors, float xOffset = 0,
float yOffset = 0) {
if (monitors.empty()) {
return;
}
outTouchedMonitors.reserve(monitors.size() + outTouchedMonitors.size());
for (const Monitor& monitor : monitors) {
outTouchedMonitors.emplace_back(monitor, xOffset, yOffset);
}
}
static std::array<uint8_t, 128> getRandomKey() {
std::array<uint8_t, 128> key;
if (RAND_bytes(key.data(), key.size()) != 1) {
LOG_ALWAYS_FATAL("Can't generate HMAC key");
}
return key;
}
// --- HmacKeyManager ---
HmacKeyManager::HmacKeyManager() : mHmacKey(getRandomKey()) {}
std::array<uint8_t, 32> HmacKeyManager::sign(const VerifiedInputEvent& event) const {
size_t size;
switch (event.type) {
case VerifiedInputEvent::Type::KEY: {
size = sizeof(VerifiedKeyEvent);
break;
}
case VerifiedInputEvent::Type::MOTION: {
size = sizeof(VerifiedMotionEvent);
break;
}
}
const uint8_t* start = reinterpret_cast<const uint8_t*>(&event);
return sign(start, size);
}
std::array<uint8_t, 32> HmacKeyManager::sign(const uint8_t* data, size_t size) const {
// SHA256 always generates 32-bytes result
std::array<uint8_t, 32> hash;
unsigned int hashLen = 0;
uint8_t* result =
HMAC(EVP_sha256(), mHmacKey.data(), mHmacKey.size(), data, size, hash.data(), &hashLen);
if (result == nullptr) {
ALOGE("Could not sign the data using HMAC");
return INVALID_HMAC;
}
if (hashLen != hash.size()) {
ALOGE("HMAC-SHA256 has unexpected length");
return INVALID_HMAC;
}
return hash;
}
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy)
: mPolicy(policy),
mPendingEvent(nullptr),
mLastDropReason(DropReason::NOT_DROPPED),
mIdGenerator(IdGenerator::Source::INPUT_DISPATCHER),
mAppSwitchSawKeyDown(false),
mAppSwitchDueTime(LONG_LONG_MAX),
mNextUnblockedEvent(nullptr),
mDispatchEnabled(false),
mDispatchFrozen(false),
mInputFilterEnabled(false),
// mInTouchMode will be initialized by the WindowManager to the default device config.
// To avoid leaking stack in case that call never comes, and for tests,
// initialize it here anyways.
mInTouchMode(true),
mFocusedDisplayId(ADISPLAY_ID_DEFAULT) {
mLooper = new Looper(false);
mReporter = createInputReporter();
mKeyRepeatState.lastKeyEntry = nullptr;
policy->getDispatcherConfiguration(&mConfig);
}
InputDispatcher::~InputDispatcher() {
{ // acquire lock
std::scoped_lock _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
}
while (!mConnectionsByFd.empty()) {
sp<Connection> connection = mConnectionsByFd.begin()->second;
unregisterInputChannel(connection->inputChannel);
}
}
status_t InputDispatcher::start() {
if (mThread) {
return ALREADY_EXISTS;
}
mThread = std::make_unique<InputThread>(
"InputDispatcher", [this]() { dispatchOnce(); }, [this]() { mLooper->wake(); });
return OK;
}
status_t InputDispatcher::stop() {
if (mThread && mThread->isCallingThread()) {
ALOGE("InputDispatcher cannot be stopped from its own thread!");
return INVALID_OPERATION;
}
mThread.reset();
return OK;
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
std::scoped_lock _l(mLock);
mDispatcherIsAlive.notify_all();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN;
}
// If we are still waiting for ack on some events,
// we might have to wake up earlier to check if an app is anr'ing.
const nsecs_t nextAnrCheck = processAnrsLocked();
nextWakeupTime = std::min(nextWakeupTime, nextAnrCheck);
// We are about to enter an infinitely long sleep, because we have no commands or
// pending or queued events
if (nextWakeupTime == LONG_LONG_MAX) {
mDispatcherEnteredIdle.notify_all();
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
/**
* Check if any of the connections' wait queues have events that are too old.
* If we waited for events to be ack'ed for more than the window timeout, raise an ANR.
* Return the time at which we should wake up next.
*/
nsecs_t InputDispatcher::processAnrsLocked() {
const nsecs_t currentTime = now();
nsecs_t nextAnrCheck = LONG_LONG_MAX;
// Check if we are waiting for a focused window to appear. Raise ANR if waited too long
if (mNoFocusedWindowTimeoutTime.has_value() && mAwaitedFocusedApplication != nullptr) {
if (currentTime >= *mNoFocusedWindowTimeoutTime) {
onAnrLocked(mAwaitedFocusedApplication);
mAwaitedFocusedApplication.clear();
return LONG_LONG_MIN;
} else {
// Keep waiting
const nsecs_t millisRemaining = ns2ms(*mNoFocusedWindowTimeoutTime - currentTime);
ALOGW("Still no focused window. Will drop the event in %" PRId64 "ms", millisRemaining);
nextAnrCheck = *mNoFocusedWindowTimeoutTime;
}
}
// Check if any connection ANRs are due
nextAnrCheck = std::min(nextAnrCheck, mAnrTracker.firstTimeout());
if (currentTime < nextAnrCheck) { // most likely scenario
return nextAnrCheck; // everything is normal. Let's check again at nextAnrCheck
}
// If we reached here, we have an unresponsive connection.
sp<Connection> connection = getConnectionLocked(mAnrTracker.firstToken());
if (connection == nullptr) {
ALOGE("Could not find connection for entry %" PRId64, mAnrTracker.firstTimeout());
return nextAnrCheck;
}
connection->responsive = false;
// Stop waking up for this unresponsive connection
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
onAnrLocked(connection);
return LONG_LONG_MIN;
}
nsecs_t InputDispatcher::getDispatchingTimeoutLocked(const sp<IBinder>& token) {
sp<InputWindowHandle> window = getWindowHandleLocked(token);
if (window != nullptr) {
return window->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT).count();
}
return DEFAULT_INPUT_DISPATCHING_TIMEOUT.count();
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever normal dispatch is suspended while the
// device is in a non-interactive state. This is to ensure that we abort a key
// repeat if the device is just coming out of sleep.
if (!mDispatchEnabled) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
if (DEBUG_FOCUS) {
ALOGD("Dispatch frozen. Waiting some more.");
}
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (!mPendingEvent) {
if (mInboundQueue.empty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.front();
mInboundQueue.pop_front();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(*mPendingEvent);
}
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != nullptr);
bool done = false;
DropReason dropReason = DropReason::NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DropReason::POLICY;
} else if (!mDispatchEnabled) {
dropReason = DropReason::DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = nullptr;
}
switch (mPendingEvent->type) {
case EventEntry::Type::CONFIGURATION_CHANGED: {
ConfigurationChangedEntry* typedEntry =
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // configuration changes are never dropped
break;
}
case EventEntry::Type::DEVICE_RESET: {
DeviceResetEntry* typedEntry = static_cast<DeviceResetEntry*>(mPendingEvent);
done = dispatchDeviceResetLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // device resets are never dropped
break;
}
case EventEntry::Type::FOCUS: {
FocusEntry* typedEntry = static_cast<FocusEntry*>(mPendingEvent);
dispatchFocusLocked(currentTime, typedEntry);
done = true;
dropReason = DropReason::NOT_DROPPED; // focus events are never dropped
break;
}
case EventEntry::Type::KEY: {
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEvent(*typedEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DropReason::NOT_DROPPED) {
dropReason = DropReason::APP_SWITCH;
}
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *typedEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::MOTION: {
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
if (dropReason == DropReason::NOT_DROPPED && isAppSwitchDue) {
dropReason = DropReason::APP_SWITCH;
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *typedEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchMotionLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
}
if (done) {
if (dropReason != DropReason::NOT_DROPPED) {
dropInboundEventLocked(*mPendingEvent, dropReason);
}
mLastDropReason = dropReason;
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
/**
* Return true if the events preceding this incoming motion event should be dropped
* Return false otherwise (the default behaviour)
*/
bool InputDispatcher::shouldPruneInboundQueueLocked(const MotionEntry& motionEntry) {
const bool isPointerDownEvent = motionEntry.action == AMOTION_EVENT_ACTION_DOWN &&
(motionEntry.source & AINPUT_SOURCE_CLASS_POINTER);
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
if (isPointerDownEvent && mAwaitedFocusedApplication != nullptr) {
int32_t displayId = motionEntry.displayId;
int32_t x = static_cast<int32_t>(
motionEntry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = static_cast<int32_t>(
motionEntry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> touchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, nullptr);
if (touchedWindowHandle != nullptr &&
touchedWindowHandle->getApplicationToken() !=
mAwaitedFocusedApplication->getApplicationToken()) {
// User touched a different application than the one we are waiting on.
ALOGI("Pruning input queue because user touched a different application while waiting "
"for %s",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
// Alternatively, maybe there's a gesture monitor that could handle this event
std::vector<TouchedMonitor> gestureMonitors =
findTouchedGestureMonitorsLocked(displayId, {});
for (TouchedMonitor& gestureMonitor : gestureMonitors) {
sp<Connection> connection =
getConnectionLocked(gestureMonitor.monitor.inputChannel->getConnectionToken());
if (connection != nullptr && connection->responsive) {
// This monitor could take more input. Drop all events preceding this
// event, so that gesture monitor could get a chance to receive the stream
ALOGW("Pruning the input queue because %s is unresponsive, but we have a "
"responsive gesture monitor that may handle the event",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
}
}
// Prevent getting stuck: if we have a pending key event, and some motion events that have not
// yet been processed by some connections, the dispatcher will wait for these motion
// events to be processed before dispatching the key event. This is because these motion events
// may cause a new window to be launched, which the user might expect to receive focus.
// To prevent waiting forever for such events, just send the key to the currently focused window
if (isPointerDownEvent && mKeyIsWaitingForEventsTimeout) {
ALOGD("Received a new pointer down event, stop waiting for events to process and "
"just send the pending key event to the focused window.");
mKeyIsWaitingForEventsTimeout = now();
}
return false;
}
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.empty();
mInboundQueue.push_back(entry);
traceInboundQueueLengthLocked();
switch (entry->type) {
case EventEntry::Type::KEY: {
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(*entry);
if (isAppSwitchKeyEvent(keyEntry)) {
if (keyEntry.action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
#if DEBUG_APP_SWITCH
ALOGD("App switch is pending!");
#endif
mAppSwitchDueTime = keyEntry.eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
break;
}
case EventEntry::Type::MOTION: {
if (shouldPruneInboundQueueLocked(static_cast<MotionEntry&>(*entry))) {
mNextUnblockedEvent = entry;
needWake = true;
}
break;
}
case EventEntry::Type::FOCUS: {
LOG_ALWAYS_FATAL("Focus events should be inserted using enqueueFocusEventLocked");
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
// nothing to do
break;
}
}
return needWake;
}
void InputDispatcher::addRecentEventLocked(EventEntry* entry) {
entry->refCount += 1;
mRecentQueue.push_back(entry);
if (mRecentQueue.size() > RECENT_QUEUE_MAX_SIZE) {
mRecentQueue.front()->release();
mRecentQueue.pop_front();
}
}
sp<InputWindowHandle> InputDispatcher::findTouchedWindowAtLocked(int32_t displayId, int32_t x,
int32_t y, TouchState* touchState,
bool addOutsideTargets,
bool addPortalWindows) {
if ((addPortalWindows || addOutsideTargets) && touchState == nullptr) {
LOG_ALWAYS_FATAL(
"Must provide a valid touch state if adding portal windows or outside targets");
}
// Traverse windows from front to back to find touched window.
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (windowInfo->displayId == displayId) {
int32_t flags = windowInfo->layoutParamsFlags;
if (windowInfo->visible) {
if (!(flags & InputWindowInfo::FLAG_NOT_TOUCHABLE)) {
bool isTouchModal = (flags &
(InputWindowInfo::FLAG_NOT_FOCUSABLE |
InputWindowInfo::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || windowInfo->touchableRegionContainsPoint(x, y)) {
int32_t portalToDisplayId = windowInfo->portalToDisplayId;
if (portalToDisplayId != ADISPLAY_ID_NONE &&
portalToDisplayId != displayId) {
if (addPortalWindows) {
// For the monitoring channels of the display.
touchState->addPortalWindow(windowHandle);
}
return findTouchedWindowAtLocked(portalToDisplayId, x, y, touchState,
addOutsideTargets, addPortalWindows);
}
// Found window.
return windowHandle;
}
}
if (addOutsideTargets && (flags & InputWindowInfo::FLAG_WATCH_OUTSIDE_TOUCH)) {
touchState->addOrUpdateWindow(windowHandle,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE,
BitSet32(0));
}
}
}
}
return nullptr;
}
std::vector<TouchedMonitor> InputDispatcher::findTouchedGestureMonitorsLocked(
int32_t displayId, const std::vector<sp<InputWindowHandle>>& portalWindows) const {
std::vector<TouchedMonitor> touchedMonitors;
std::vector<Monitor> monitors = getValueByKey(mGestureMonitorsByDisplay, displayId);
addGestureMonitors(monitors, touchedMonitors);
for (const sp<InputWindowHandle>& portalWindow : portalWindows) {
const InputWindowInfo* windowInfo = portalWindow->getInfo();
monitors = getValueByKey(mGestureMonitorsByDisplay, windowInfo->portalToDisplayId);
addGestureMonitors(monitors, touchedMonitors, -windowInfo->frameLeft,
-windowInfo->frameTop);
}
return touchedMonitors;
}
void InputDispatcher::dropInboundEventLocked(const EventEntry& entry, DropReason dropReason) {
const char* reason;
switch (dropReason) {
case DropReason::POLICY:
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("Dropped event because policy consumed it.");
#endif
reason = "inbound event was dropped because the policy consumed it";
break;
case DropReason::DISABLED:
if (mLastDropReason != DropReason::DISABLED) {
ALOGI("Dropped event because input dispatch is disabled.");
}
reason = "inbound event was dropped because input dispatch is disabled";
break;
case DropReason::APP_SWITCH:
ALOGI("Dropped event because of pending overdue app switch.");
reason = "inbound event was dropped because of pending overdue app switch";
break;
case DropReason::BLOCKED:
ALOGI("Dropped event because the current application is not responding and the user "
"has started interacting with a different application.");
reason = "inbound event was dropped because the current application is not responding "
"and the user has started interacting with a different application";
break;
case DropReason::STALE:
ALOGI("Dropped event because it is stale.");
reason = "inbound event was dropped because it is stale";
break;
case DropReason::NOT_DROPPED: {
LOG_ALWAYS_FATAL("Should not be dropping a NOT_DROPPED event");
return;
}
}
switch (entry.type) {
case EventEntry::Type::KEY: {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
if (motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
} else {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("Should not drop %s events", EventEntry::typeToString(entry.type));
break;
}
}
}
static bool isAppSwitchKeyCode(int32_t keyCode) {
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL ||
keyCode == AKEYCODE_APP_SWITCH;
}
bool InputDispatcher::isAppSwitchKeyEvent(const KeyEntry& keyEntry) {
return !(keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) && isAppSwitchKeyCode(keyEntry.keyCode) &&
(keyEntry.policyFlags & POLICY_FLAG_TRUSTED) &&
(keyEntry.policyFlags & POLICY_FLAG_PASS_TO_USER);
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
#if DEBUG_APP_SWITCH
if (handled) {
ALOGD("App switch has arrived.");
} else {
ALOGD("App switch was abandoned.");
}
#endif
}
bool InputDispatcher::haveCommandsLocked() const {
return !mCommandQueue.empty();
}
bool InputDispatcher::runCommandsLockedInterruptible() {
if (mCommandQueue.empty()) {
return false;
}
do {
std::unique_ptr<CommandEntry> commandEntry = std::move(mCommandQueue.front());
mCommandQueue.pop_front();
Command command = commandEntry->command;
command(*this, commandEntry.get()); // commands are implicitly 'LockedInterruptible'
commandEntry->connection.clear();
} while (!mCommandQueue.empty());
return true;
}
void InputDispatcher::postCommandLocked(std::unique_ptr<CommandEntry> commandEntry) {
mCommandQueue.push_back(std::move(commandEntry));
}
void InputDispatcher::drainInboundQueueLocked() {
while (!mInboundQueue.empty()) {
EventEntry* entry = mInboundQueue.front();
mInboundQueue.pop_front();
releaseInboundEventLocked(entry);
}
traceInboundQueueLengthLocked();
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = nullptr;
}
}
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Injected inbound event was dropped.");
#endif
setInjectionResult(entry, INPUT_EVENT_INJECTION_FAILED);
}
if (entry == mNextUnblockedEvent) {
mNextUnblockedEvent = nullptr;
}
addRecentEventLocked(entry);
entry->release();
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mKeyRepeatState.lastKeyEntry->release();
mKeyRepeatState.lastKeyEntry = nullptr;
}
}
KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) {
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
// Reuse the repeated key entry if it is otherwise unreferenced.
uint32_t policyFlags = entry->policyFlags &
(POLICY_FLAG_RAW_MASK | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED);
if (entry->refCount == 1) {
entry->recycle();
entry->id = mIdGenerator.nextId();
entry->eventTime = currentTime;
entry->policyFlags = policyFlags;
entry->repeatCount += 1;
} else {
KeyEntry* newEntry =
new KeyEntry(mIdGenerator.nextId(), currentTime, entry->deviceId, entry->source,
entry->displayId, policyFlags, entry->action, entry->flags,
entry->keyCode, entry->scanCode, entry->metaState,
entry->repeatCount + 1, entry->downTime);
mKeyRepeatState.lastKeyEntry = newEntry;
entry->release();
entry = newEntry;
}
entry->syntheticRepeat = true;
// Increment reference count since we keep a reference to the event in
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
entry->refCount += 1;
mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay;
return entry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(nsecs_t currentTime,
ConfigurationChangedEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchConfigurationChanged - eventTime=%" PRId64, entry->eventTime);
#endif
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doNotifyConfigurationChangedLockedInterruptible);
commandEntry->eventTime = entry->eventTime;
postCommandLocked(std::move(commandEntry));
return true;
}
bool InputDispatcher::dispatchDeviceResetLocked(nsecs_t currentTime, DeviceResetEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchDeviceReset - eventTime=%" PRId64 ", deviceId=%d", entry->eventTime,
entry->deviceId);
#endif
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS, "device was reset");
options.deviceId = entry->deviceId;
synthesizeCancelationEventsForAllConnectionsLocked(options);
return true;
}
void InputDispatcher::enqueueFocusEventLocked(const InputWindowHandle& window, bool hasFocus) {
if (mPendingEvent != nullptr) {
// Move the pending event to the front of the queue. This will give the chance
// for the pending event to get dispatched to the newly focused window
mInboundQueue.push_front(mPendingEvent);
mPendingEvent = nullptr;
}
FocusEntry* focusEntry =
new FocusEntry(mIdGenerator.nextId(), now(), window.getToken(), hasFocus);
// This event should go to the front of the queue, but behind all other focus events
// Find the last focus event, and insert right after it
std::deque<EventEntry*>::reverse_iterator it =
std::find_if(mInboundQueue.rbegin(), mInboundQueue.rend(),
[](EventEntry* event) { return event->type == EventEntry::Type::FOCUS; });
// Maintain the order of focus events. Insert the entry after all other focus events.
mInboundQueue.insert(it.base(), focusEntry);
}
void InputDispatcher::dispatchFocusLocked(nsecs_t currentTime, FocusEntry* entry) {
sp<InputChannel> channel = getInputChannelLocked(entry->connectionToken);
if (channel == nullptr) {
return; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, {target});
}
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (!entry->dispatchInProgress) {
if (entry->repeatCount == 0 && entry->action == AKEY_EVENT_ACTION_DOWN &&
(entry->policyFlags & POLICY_FLAG_TRUSTED) &&
(!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (!entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetails("dispatchKey - ", *entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, getTargetDisplayId(*entry));
if (focusedWindowHandle != nullptr) {
commandEntry->inputChannel = getInputChannelLocked(focusedWindowHandle->getToken());
}
commandEntry->keyEntry = entry;
postCommandLocked(std::move(commandEntry));
entry->refCount += 1;
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
if (*dropReason == DropReason::NOT_DROPPED) {
*dropReason = DropReason::POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(entry,
*dropReason == DropReason::POLICY ? INPUT_EVENT_INJECTION_SUCCEEDED
: INPUT_EVENT_INJECTION_FAILED);
mReporter->reportDroppedKey(entry->id);
return true;
}
// Identify targets.
std::vector<InputTarget> inputTargets;
int32_t injectionResult =
findFocusedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResult(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundKeyDetails(const char* prefix, const KeyEntry& entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32 ", "
"policyFlags=0x%x, action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, "
"metaState=0x%x, repeatCount=%d, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId, entry.policyFlags,
entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState,
entry.repeatCount, entry.downTime);
#endif
}
bool InputDispatcher::dispatchMotionLocked(nsecs_t currentTime, MotionEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
ATRACE_CALL();
// Preprocessing.
if (!entry->dispatchInProgress) {
entry->dispatchInProgress = true;
logOutboundMotionDetails("dispatchMotion - ", *entry);
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(entry,
*dropReason == DropReason::POLICY ? INPUT_EVENT_INJECTION_SUCCEEDED
: INPUT_EVENT_INJECTION_FAILED);
return true;
}
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
// Identify targets.
std::vector<InputTarget> inputTargets;
bool conflictingPointerActions = false;
int32_t injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult =
findTouchedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime,
&conflictingPointerActions);
} else {
// Non touch event. (eg. trackball)
injectionResult =
findFocusedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime);
}
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResult(entry, injectionResult);
if (injectionResult == INPUT_EVENT_INJECTION_PERMISSION_DENIED) {
ALOGW("Permission denied, dropping the motion (isPointer=%s)", toString(isPointerEvent));
return true;
}
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
CancelationOptions::Mode mode(isPointerEvent
? CancelationOptions::CANCEL_POINTER_EVENTS
: CancelationOptions::CANCEL_NON_POINTER_EVENTS);
CancelationOptions options(mode, "input event injection failed");
synthesizeCancelationEventsForMonitorsLocked(options);
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
if (isPointerEvent) {
std::unordered_map<int32_t, TouchState>::iterator it =
mTouchStatesByDisplay.find(entry->displayId);
if (it != mTouchStatesByDisplay.end()) {
const TouchState& state = it->second;
if (!state.portalWindows.empty()) {
// The event has gone through these portal windows, so we add monitoring targets of
// the corresponding displays as well.
for (size_t i = 0; i < state.portalWindows.size(); i++) {
const InputWindowInfo* windowInfo = state.portalWindows[i]->getInfo();
addGlobalMonitoringTargetsLocked(inputTargets, windowInfo->portalToDisplayId,
-windowInfo->frameLeft, -windowInfo->frameTop);
}
}
}
}
// Dispatch the motion.
if (conflictingPointerActions) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"conflicting pointer actions");
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundMotionDetails(const char* prefix, const MotionEntry& entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
", policyFlags=0x%x, "
"action=0x%x, actionButton=0x%x, flags=0x%x, "
"metaState=0x%x, buttonState=0x%x,"
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId, entry.policyFlags,
entry.action, entry.actionButton, entry.flags, entry.metaState, entry.buttonState,
entry.edgeFlags, entry.xPrecision, entry.yPrecision, entry.downTime);
for (uint32_t i = 0; i < entry.pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry.pointerProperties[i].id, entry.pointerProperties[i].toolType,
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
}
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime, EventEntry* eventEntry,
const std::vector<InputTarget>& inputTargets) {
ATRACE_CALL();
#if DEBUG_DISPATCH_CYCLE
ALOGD("dispatchEventToCurrentInputTargets");
#endif
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(*eventEntry);
for (const InputTarget& inputTarget : inputTargets) {
sp<Connection> connection =
getConnectionLocked(inputTarget.inputChannel->getConnectionToken());
if (connection != nullptr) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget);
} else {
if (DEBUG_FOCUS) {
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().c_str());
}
}
}
}
void InputDispatcher::cancelEventsForAnrLocked(const sp<Connection>& connection) {
// We will not be breaking any connections here, even if the policy wants us to abort dispatch.
// If the policy decides to close the app, we will get a channel removal event via
// unregisterInputChannel, and will clean up the connection that way. We are already not
// sending new pointers to the connection when it blocked, but focused events will continue to
// pile up.
ALOGW("Canceling events for %s because it is unresponsive",
connection->inputChannel->getName().c_str());
if (connection->status == Connection::STATUS_NORMAL) {
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"application not responding");
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
void InputDispatcher::resetNoFocusedWindowTimeoutLocked() {
if (DEBUG_FOCUS) {
ALOGD("Resetting ANR timeouts.");
}
// Reset input target wait timeout.
mNoFocusedWindowTimeoutTime = std::nullopt;
mAwaitedFocusedApplication.clear();
}
/**
* Get the display id that the given event should go to. If this event specifies a valid display id,
* then it should be dispatched to that display. Otherwise, the event goes to the focused display.
* Focused display is the display that the user most recently interacted with.
*/
int32_t InputDispatcher::getTargetDisplayId(const EventEntry& entry) {
int32_t displayId;
switch (entry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
displayId = keyEntry.displayId;
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
displayId = motionEntry.displayId;
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
ALOGE("%s events do not have a target display", EventEntry::typeToString(entry.type));
return ADISPLAY_ID_NONE;
}
}
return displayId == ADISPLAY_ID_NONE ? mFocusedDisplayId : displayId;
}
bool InputDispatcher::shouldWaitToSendKeyLocked(nsecs_t currentTime,
const char* focusedWindowName) {
if (mAnrTracker.empty()) {
// already processed all events that we waited for
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
if (!mKeyIsWaitingForEventsTimeout.has_value()) {
// Start the timer
ALOGD("Waiting to send key to %s because there are unprocessed events that may cause "
"focus to change",
focusedWindowName);
mKeyIsWaitingForEventsTimeout = currentTime + KEY_WAITING_FOR_EVENTS_TIMEOUT.count();
return true;
}
// We still have pending events, and already started the timer
if (currentTime < *mKeyIsWaitingForEventsTimeout) {
return true; // Still waiting
}
// Waited too long, and some connection still hasn't processed all motions
// Just send the key to the focused window
ALOGW("Dispatching key to %s even though there are other unprocessed events",
focusedWindowName);
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
const EventEntry& entry,
std::vector<InputTarget>& inputTargets,
nsecs_t* nextWakeupTime) {
std::string reason;
int32_t displayId = getTargetDisplayId(entry);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
sp<InputApplicationHandle> focusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
// If there is no currently focused window and no focused application
// then drop the event.
if (focusedWindowHandle == nullptr && focusedApplicationHandle == nullptr) {
ALOGI("Dropping %s event because there is no focused window or focused application in "
"display %" PRId32 ".",
EventEntry::typeToString(entry.type), displayId);
return INPUT_EVENT_INJECTION_FAILED;
}
// Compatibility behavior: raise ANR if there is a focused application, but no focused window.
// Only start counting when we have a focused event to dispatch. The ANR is canceled if we
// start interacting with another application via touch (app switch). This code can be removed
// if the "no focused window ANR" is moved to the policy. Input doesn't know whether
// an app is expected to have a focused window.
if (focusedWindowHandle == nullptr && focusedApplicationHandle != nullptr) {
if (!mNoFocusedWindowTimeoutTime.has_value()) {
// We just discovered that there's no focused window. Start the ANR timer
const nsecs_t timeout = focusedApplicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT.count());
mNoFocusedWindowTimeoutTime = currentTime + timeout;
mAwaitedFocusedApplication = focusedApplicationHandle;
ALOGW("Waiting because no window has focus but %s may eventually add a "
"window when it finishes starting up. Will wait for %" PRId64 "ms",
mAwaitedFocusedApplication->getName().c_str(), ns2ms(timeout));
*nextWakeupTime = *mNoFocusedWindowTimeoutTime;
return INPUT_EVENT_INJECTION_PENDING;
} else if (currentTime > *mNoFocusedWindowTimeoutTime) {
// Already raised ANR. Drop the event
ALOGE("Dropping %s event because there is no focused window",
EventEntry::typeToString(entry.type));
return INPUT_EVENT_INJECTION_FAILED;
} else {
// Still waiting for the focused window
return INPUT_EVENT_INJECTION_PENDING;
}
}
// we have a valid, non-null focused window
resetNoFocusedWindowTimeoutLocked();
// Check permissions.
if (!checkInjectionPermission(focusedWindowHandle, entry.injectionState)) {
return INPUT_EVENT_INJECTION_PERMISSION_DENIED;
}
if (focusedWindowHandle->getInfo()->paused) {
ALOGI("Waiting because %s is paused", focusedWindowHandle->getName().c_str());
return INPUT_EVENT_INJECTION_PENDING;
}
// If the event is a key event, then we must wait for all previous events to
// complete before delivering it because previous events may have the
// side-effect of transferring focus to a different window and we want to
// ensure that the following keys are sent to the new window.
//
// Suppose the user touches a button in a window then immediately presses "A".
// If the button causes a pop-up window to appear then we want to ensure that
// the "A" key is delivered to the new pop-up window. This is because users
// often anticipate pending UI changes when typing on a keyboard.
// To obtain this behavior, we must serialize key events with respect to all
// prior input events.
if (entry.type == EventEntry::Type::KEY) {
if (shouldWaitToSendKeyLocked(currentTime, focusedWindowHandle->getName().c_str())) {
*nextWakeupTime = *mKeyIsWaitingForEventsTimeout;
return INPUT_EVENT_INJECTION_PENDING;
}
}
// Success! Output targets.
addWindowTargetLocked(focusedWindowHandle,
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0), inputTargets);
// Done.
return INPUT_EVENT_INJECTION_SUCCEEDED;
}
/**
* Given a list of monitors, remove the ones we cannot find a connection for, and the ones
* that are currently unresponsive.
*/
std::vector<TouchedMonitor> InputDispatcher::selectResponsiveMonitorsLocked(
const std::vector<TouchedMonitor>& monitors) const {
std::vector<TouchedMonitor> responsiveMonitors;
std::copy_if(monitors.begin(), monitors.end(), std::back_inserter(responsiveMonitors),
[this](const TouchedMonitor& monitor) REQUIRES(mLock) {
sp<Connection> connection = getConnectionLocked(
monitor.monitor.inputChannel->getConnectionToken());
if (connection == nullptr) {
ALOGE("Could not find connection for monitor %s",
monitor.monitor.inputChannel->getName().c_str());
return false;
}
if (!connection->responsive) {
ALOGW("Unresponsive monitor %s will not get the new gesture",
connection->inputChannel->getName().c_str());
return false;
}
return true;
});
return responsiveMonitors;
}
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
const MotionEntry& entry,
std::vector<InputTarget>& inputTargets,
nsecs_t* nextWakeupTime,
bool* outConflictingPointerActions) {
ATRACE_CALL();
enum InjectionPermission {
INJECTION_PERMISSION_UNKNOWN,
INJECTION_PERMISSION_GRANTED,
INJECTION_PERMISSION_DENIED
};
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
int32_t displayId = entry.displayId;
int32_t action = entry.action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
// Update the touch state as needed based on the properties of the touch event.
int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
sp<InputWindowHandle> newHoverWindowHandle;
// Copy current touch state into tempTouchState.
// This state will be used to update mTouchStatesByDisplay at the end of this function.
// If no state for the specified display exists, then our initial state will be empty.
const TouchState* oldState = nullptr;
TouchState tempTouchState;
std::unordered_map<int32_t, TouchState>::iterator oldStateIt =
mTouchStatesByDisplay.find(displayId);
if (oldStateIt != mTouchStatesByDisplay.end()) {
oldState = &(oldStateIt->second);
tempTouchState.copyFrom(*oldState);
}
bool isSplit = tempTouchState.split;
bool switchedDevice = tempTouchState.deviceId >= 0 && tempTouchState.displayId >= 0 &&
(tempTouchState.deviceId != entry.deviceId || tempTouchState.source != entry.source ||
tempTouchState.displayId != displayId);
bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT);
bool newGesture = (maskedAction == AMOTION_EVENT_ACTION_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_SCROLL || isHoverAction);
const bool isFromMouse = entry.source == AINPUT_SOURCE_MOUSE;
bool wrongDevice = false;
if (newGesture) {
bool down = maskedAction == AMOTION_EVENT_ACTION_DOWN;
if (switchedDevice && tempTouchState.down && !down && !isHoverAction) {
ALOGI("Dropping event because a pointer for a different device is already down "
"in display %" PRId32,
displayId);
// TODO: test multiple simultaneous input streams.
injectionResult = INPUT_EVENT_INJECTION_FAILED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
tempTouchState.reset();
tempTouchState.down = down;
tempTouchState.deviceId = entry.deviceId;
tempTouchState.source = entry.source;
tempTouchState.displayId = displayId;
isSplit = false;
} else if (switchedDevice && maskedAction == AMOTION_EVENT_ACTION_MOVE) {
ALOGI("Dropping move event because a pointer for a different device is already active "
"in display %" PRId32,
displayId);
// TODO: test multiple simultaneous input streams.
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down, or need target for hover or scroll. */
int32_t x;
int32_t y;
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
// Always dispatch mouse events to cursor position.
if (isFromMouse) {
x = int32_t(entry.xCursorPosition);
y = int32_t(entry.yCursorPosition);
} else {
x = int32_t(entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_X));
y = int32_t(entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_Y));
}
bool isDown = maskedAction == AMOTION_EVENT_ACTION_DOWN;
sp<InputWindowHandle> newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, &tempTouchState,
isDown /*addOutsideTargets*/, true /*addPortalWindows*/);
std::vector<TouchedMonitor> newGestureMonitors = isDown
? findTouchedGestureMonitorsLocked(displayId, tempTouchState.portalWindows)
: std::vector<TouchedMonitor>{};
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindowHandle != nullptr &&
newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
// New window supports splitting, but we should never split mouse events.
isSplit = !isFromMouse;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Ignore the new window.
newTouchedWindowHandle = nullptr;
}
// Handle the case where we did not find a window.
if (newTouchedWindowHandle == nullptr) {
// Try to assign the pointer to the first foreground window we find, if there is one.
newTouchedWindowHandle = tempTouchState.getFirstForegroundWindowHandle();
}
if (newTouchedWindowHandle != nullptr && newTouchedWindowHandle->getInfo()->paused) {
ALOGI("Not sending touch event to %s because it is paused",
newTouchedWindowHandle->getName().c_str());
newTouchedWindowHandle = nullptr;
}
if (newTouchedWindowHandle != nullptr) {
sp<Connection> connection = getConnectionLocked(newTouchedWindowHandle->getToken());
if (connection == nullptr) {
ALOGI("Could not find connection for %s",
newTouchedWindowHandle->getName().c_str());
newTouchedWindowHandle = nullptr;
} else if (!connection->responsive) {
// don't send the new touch to an unresponsive window
ALOGW("Unresponsive window %s will not get the new gesture at %" PRIu64,
newTouchedWindowHandle->getName().c_str(), entry.eventTime);
newTouchedWindowHandle = nullptr;
}
}
// Also don't send the new touch event to unresponsive gesture monitors
newGestureMonitors = selectResponsiveMonitorsLocked(newGestureMonitors);
if (newTouchedWindowHandle == nullptr && newGestureMonitors.empty()) {
ALOGI("Dropping event because there is no touchable window or gesture monitor at "
"(%d, %d) in display %" PRId32 ".",
x, y, displayId);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
if (newTouchedWindowHandle != nullptr) {
// Set target flags.
int32_t targetFlags = InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(newTouchedWindowHandle)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
// Update hover state.
if (isHoverAction) {
newHoverWindowHandle = newTouchedWindowHandle;
} else if (maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
newHoverWindowHandle = mLastHoverWindowHandle;
}
// Update the temporary touch state.
BitSet32 pointerIds;
if (isSplit) {
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
pointerIds.markBit(pointerId);
}
tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
tempTouchState.addGestureMonitors(newGestureMonitors);
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (!tempTouchState.down) {
if (DEBUG_FOCUS) {
ALOGD("Dropping event because the pointer is not down or we previously "
"dropped the pointer down event in display %" PRId32,
displayId);
}
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check whether touches should slip outside of the current foreground window.
if (maskedAction == AMOTION_EVENT_ACTION_MOVE && entry.pointerCount == 1 &&
tempTouchState.isSlippery()) {
int32_t x = int32_t(entry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(entry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> oldTouchedWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
sp<InputWindowHandle> newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, &tempTouchState);
if (oldTouchedWindowHandle != newTouchedWindowHandle &&
oldTouchedWindowHandle != nullptr && newTouchedWindowHandle != nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Touch is slipping out of window %s into window %s in display %" PRId32,
oldTouchedWindowHandle->getName().c_str(),
newTouchedWindowHandle->getName().c_str(), displayId);
}
// Make a slippery exit from the old window.
tempTouchState.addOrUpdateWindow(oldTouchedWindowHandle,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT,
BitSet32(0));
// Make a slippery entrance into the new window.
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
isSplit = true;
}
int32_t targetFlags =
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
BitSet32 pointerIds;
if (isSplit) {
pointerIds.markBit(entry.pointerProperties[0].id);
}
tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
}
}
if (newHoverWindowHandle != mLastHoverWindowHandle) {
// Let the previous window know that the hover sequence is over.
if (mLastHoverWindowHandle != nullptr) {
#if DEBUG_HOVER
ALOGD("Sending hover exit event to window %s.",
mLastHoverWindowHandle->getName().c_str());
#endif
tempTouchState.addOrUpdateWindow(mLastHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT, BitSet32(0));
}
// Let the new window know that the hover sequence is starting.
if (newHoverWindowHandle != nullptr) {
#if DEBUG_HOVER
ALOGD("Sending hover enter event to window %s.",
newHoverWindowHandle->getName().c_str());
#endif
tempTouchState.addOrUpdateWindow(newHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER,
BitSet32(0));
}
}
// Check permission to inject into all touched foreground windows and ensure there
// is at least one touched foreground window.
{
bool haveForegroundWindow = false;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
haveForegroundWindow = true;
if (!checkInjectionPermission(touchedWindow.windowHandle, entry.injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
}
}
bool hasGestureMonitor = !tempTouchState.gestureMonitors.empty();
if (!haveForegroundWindow && !hasGestureMonitor) {
ALOGI("Dropping event because there is no touched foreground window in display "
"%" PRId32 " or gesture monitor to receive it.",
displayId);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Permission granted to injection into all touched foreground windows.
injectionPermission = INJECTION_PERMISSION_GRANTED;
}
// Check whether windows listening for outside touches are owned by the same UID. If it is
// set the policy flag that we will not reveal coordinate information to this window.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle) {
const int32_t foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
sp<InputWindowHandle> inputWindowHandle = touchedWindow.windowHandle;
if (inputWindowHandle->getInfo()->ownerUid != foregroundWindowUid) {
tempTouchState.addOrUpdateWindow(inputWindowHandle,
InputTarget::FLAG_ZERO_COORDS,
BitSet32(0));
}
}
}
}
}
// If this is the first pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
// We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
// engine only supports touch events. We would need to add a mechanism similar
// to View.onGenericMotionEvent to enable wallpapers to handle these events.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle && foregroundWindowHandle->getInfo()->hasWallpaper) {
const std::vector<sp<InputWindowHandle>> windowHandles =
getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
const InputWindowInfo* info = windowHandle->getInfo();
if (info->displayId == displayId &&
windowHandle->getInfo()->layoutParamsType == InputWindowInfo::TYPE_WALLPAPER) {
tempTouchState
.addOrUpdateWindow(windowHandle,
InputTarget::FLAG_WINDOW_IS_OBSCURED |
InputTarget::
FLAG_WINDOW_IS_PARTIALLY_OBSCURED |
InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0));
}
}
}
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
addWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.pointerIds, inputTargets);
}
for (const TouchedMonitor& touchedMonitor : tempTouchState.gestureMonitors) {
addMonitoringTargetLocked(touchedMonitor.monitor, touchedMonitor.xOffset,
touchedMonitor.yOffset, inputTargets);
}
// Drop the outside or hover touch windows since we will not care about them
// in the next iteration.
tempTouchState.filterNonAsIsTouchWindows();
Failed:
// Check injection permission once and for all.
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
if (checkInjectionPermission(nullptr, entry.injectionState)) {
injectionPermission = INJECTION_PERMISSION_GRANTED;
} else {
injectionPermission = INJECTION_PERMISSION_DENIED;
}
}
if (injectionPermission != INJECTION_PERMISSION_GRANTED) {
return injectionResult;
}
// Update final pieces of touch state if the injector had permission.
if (!wrongDevice) {
if (switchedDevice) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Switched to a different device.");
}
*outConflictingPointerActions = true;
}
if (isHoverAction) {
// Started hovering, therefore no longer down.
if (oldState && oldState->down) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Hover received while pointer was "
"down.");
}
*outConflictingPointerActions = true;
}
tempTouchState.reset();
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
tempTouchState.deviceId = entry.deviceId;
tempTouchState.source = entry.source;
tempTouchState.displayId = displayId;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_UP ||
maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
tempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (oldState && oldState->down) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Down received while already down.");
}
*outConflictingPointerActions = true;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
if (isSplit) {
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
for (size_t i = 0; i < tempTouchState.windows.size();) {
TouchedWindow& touchedWindow = tempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
touchedWindow.pointerIds.clearBit(pointerId);
if (touchedWindow.pointerIds.isEmpty()) {
tempTouchState.windows.erase(tempTouchState.windows.begin() + i);
continue;
}
}
i += 1;
}
}
}
// Save changes unless the action was scroll in which case the temporary touch
// state was only valid for this one action.
if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) {
if (tempTouchState.displayId >= 0) {
mTouchStatesByDisplay[displayId] = tempTouchState;
} else {
mTouchStatesByDisplay.erase(displayId);
}
}
// Update hover state.
mLastHoverWindowHandle = newHoverWindowHandle;
}
return injectionResult;
}
void InputDispatcher::addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds,
std::vector<InputTarget>& inputTargets) {
std::vector<InputTarget>::iterator it =
std::find_if(inputTargets.begin(), inputTargets.end(),
[&windowHandle](const InputTarget& inputTarget) {
return inputTarget.inputChannel->getConnectionToken() ==
windowHandle->getToken();
});
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (it == inputTargets.end()) {
InputTarget inputTarget;
sp<InputChannel> inputChannel = getInputChannelLocked(windowHandle->getToken());
if (inputChannel == nullptr) {
ALOGW("Window %s already unregistered input channel", windowHandle->getName().c_str());
return;
}
inputTarget.inputChannel = inputChannel;
inputTarget.flags = targetFlags;
inputTarget.globalScaleFactor = windowInfo->globalScaleFactor;
inputTargets.push_back(inputTarget);
it = inputTargets.end() - 1;
}
ALOG_ASSERT(it->flags == targetFlags);
ALOG_ASSERT(it->globalScaleFactor == windowInfo->globalScaleFactor);
it->addPointers(pointerIds, -windowInfo->frameLeft, -windowInfo->frameTop,
windowInfo->windowXScale, windowInfo->windowYScale);
}
void InputDispatcher::addGlobalMonitoringTargetsLocked(std::vector<InputTarget>& inputTargets,
int32_t displayId, float xOffset,
float yOffset) {
std::unordered_map<int32_t, std::vector<Monitor>>::const_iterator it =
mGlobalMonitorsByDisplay.find(displayId);
if (it != mGlobalMonitorsByDisplay.end()) {
const std::vector<Monitor>& monitors = it->second;
for (const Monitor& monitor : monitors) {
addMonitoringTargetLocked(monitor, xOffset, yOffset, inputTargets);
}
}
}
void InputDispatcher::addMonitoringTargetLocked(const Monitor& monitor, float xOffset,
float yOffset,
std::vector<InputTarget>& inputTargets) {
InputTarget target;
target.inputChannel = monitor.inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
target.setDefaultPointerInfo(xOffset, yOffset, 1 /* windowXScale */, 1 /* windowYScale */);
inputTargets.push_back(target);
}
bool InputDispatcher::checkInjectionPermission(const sp<InputWindowHandle>& windowHandle,
const InjectionState* injectionState) {
if (injectionState &&
(windowHandle == nullptr ||
windowHandle->getInfo()->ownerUid != injectionState->injectorUid) &&
!hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) {
if (windowHandle != nullptr) {
ALOGW("Permission denied: injecting event from pid %d uid %d to window %s "
"owned by uid %d",
injectionState->injectorPid, injectionState->injectorUid,
windowHandle->getName().c_str(), windowHandle->getInfo()->ownerUid);
} else {
ALOGW("Permission denied: injecting event from pid %d uid %d",
injectionState->injectorPid, injectionState->injectorUid);
}
return false;
}
return true;
}
/**
* Indicate whether one window handle should be considered as obscuring
* another window handle. We only check a few preconditions. Actually
* checking the bounds is left to the caller.
*/
static bool canBeObscuredBy(const sp<InputWindowHandle>& windowHandle,
const sp<InputWindowHandle>& otherHandle) {
// Compare by token so cloned layers aren't counted
if (haveSameToken(windowHandle, otherHandle)) {
return false;
}
auto info = windowHandle->getInfo();
auto otherInfo = otherHandle->getInfo();
if (!otherInfo->visible) {
return false;
} else if (info->ownerPid == otherInfo->ownerPid) {
// If ownerPid is the same we don't generate occlusion events as there
// is no in-process security boundary.
return false;
} else if (otherInfo->isTrustedOverlay()) {
return false;
} else if (otherInfo->displayId != info->displayId) {
return false;
}
return true;
}
bool InputDispatcher::isWindowObscuredAtPointLocked(const sp<InputWindowHandle>& windowHandle,
int32_t x, int32_t y) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->frameContainsPoint(x, y)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowObscuredLocked(const sp<InputWindowHandle>& windowHandle) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
for (const sp<InputWindowHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->overlaps(windowInfo)) {
return true;
}
}
return false;
}
std::string InputDispatcher::getApplicationWindowLabel(
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle) {
if (applicationHandle != nullptr) {
if (windowHandle != nullptr) {
return applicationHandle->getName() + " - " + windowHandle->getName();
} else {
return applicationHandle->getName();
}
} else if (windowHandle != nullptr) {
return windowHandle->getInfo()->applicationInfo.name + " - " + windowHandle->getName();
} else {
return "<unknown application or window>";
}
}
void InputDispatcher::pokeUserActivityLocked(const EventEntry& eventEntry) {
if (eventEntry.type == EventEntry::Type::FOCUS) {
// Focus events are passed to apps, but do not represent user activity.
return;
}
int32_t displayId = getTargetDisplayId(eventEntry);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
if (focusedWindowHandle != nullptr) {
const InputWindowInfo* info = focusedWindowHandle->getInfo();
if (info->inputFeatures & InputWindowInfo::INPUT_FEATURE_DISABLE_USER_ACTIVITY) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Not poking user activity: disabled by window '%s'.", info->name.c_str());
#endif
return;
}
}
int32_t eventType = USER_ACTIVITY_EVENT_OTHER;
switch (eventEntry.type) {
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
if (MotionEvent::isTouchEvent(motionEntry.source, motionEntry.action)) {
eventType = USER_ACTIVITY_EVENT_TOUCH;
}
break;
}
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) {
return;
}
eventType = USER_ACTIVITY_EVENT_BUTTON;
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s events are not user activity",
EventEntry::typeToString(eventEntry.type));
break;
}
}
std::unique_ptr<CommandEntry> commandEntry =
std::make_unique<CommandEntry>(&InputDispatcher::doPokeUserActivityLockedInterruptible);
commandEntry->eventTime = eventEntry.eventTime;
commandEntry->userActivityEventType = eventType;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection,
EventEntry* eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("prepareDispatchCycleLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=0x%08x, "
"globalScaleFactor=%f, pointerIds=0x%x %s",
connection->getInputChannelName().c_str(), inputTarget.flags,
inputTarget.globalScaleFactor, inputTarget.pointerIds.value,
inputTarget.getPointerInfoString().c_str());
#endif
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::STATUS_NORMAL) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName().c_str(), connection->getStatusLabel());
#endif
return;
}
// Split a motion event if needed.
if (inputTarget.flags & InputTarget::FLAG_SPLIT) {
LOG_ALWAYS_FATAL_IF(eventEntry->type != EventEntry::Type::MOTION,
"Entry type %s should not have FLAG_SPLIT",
EventEntry::typeToString(eventEntry->type));
const MotionEntry& originalMotionEntry = static_cast<const MotionEntry&>(*eventEntry);
if (inputTarget.pointerIds.count() != originalMotionEntry.pointerCount) {
MotionEntry* splitMotionEntry =
splitMotionEvent(originalMotionEntry, inputTarget.pointerIds);
if (!splitMotionEntry) {
return; // split event was dropped
}
if (DEBUG_FOCUS) {
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName().c_str());
logOutboundMotionDetails(" ", *splitMotionEntry);
}
enqueueDispatchEntriesLocked(currentTime, connection, splitMotionEntry, inputTarget);
splitMotionEntry->release();
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection,
EventEntry* eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("enqueueDispatchEntriesLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
bool wasEmpty = connection->outboundQueue.empty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(const sp<Connection>& connection,
EventEntry* eventEntry,
const InputTarget& inputTarget,
int32_t dispatchMode) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("enqueueDispatchEntry(inputChannel=%s, dispatchMode=%s)",
connection->getInputChannelName().c_str(),
dispatchModeToString(dispatchMode).c_str());
ATRACE_NAME(message.c_str());
}
int32_t inputTargetFlags = inputTarget.flags;
if (!(inputTargetFlags & dispatchMode)) {
return;
}
inputTargetFlags = (inputTargetFlags & ~InputTarget::FLAG_DISPATCH_MASK) | dispatchMode;
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
std::unique_ptr<DispatchEntry> dispatchEntry =
createDispatchEntry(inputTarget, eventEntry, inputTargetFlags);
// Use the eventEntry from dispatchEntry since the entry may have changed and can now be a
// different EventEntry than what was passed in.
EventEntry* newEntry = dispatchEntry->eventEntry;
// Apply target flags and update the connection's input state.
switch (newEntry->type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(*newEntry);
dispatchEntry->resolvedEventId = keyEntry.id;
dispatchEntry->resolvedAction = keyEntry.action;
dispatchEntry->resolvedFlags = keyEntry.flags;
if (!connection->inputState.trackKey(keyEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent key event",
connection->getInputChannelName().c_str());
#endif
return; // skip the inconsistent event
}
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(*newEntry);
// Assign a default value to dispatchEntry that will never be generated by InputReader,
// and assign a InputDispatcher value if it doesn't change in the if-else chain below.
constexpr int32_t DEFAULT_RESOLVED_EVENT_ID =
static_cast<int32_t>(IdGenerator::Source::OTHER);
dispatchEntry->resolvedEventId = DEFAULT_RESOLVED_EVENT_ID;
if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_CANCEL;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_DOWN;
} else {
dispatchEntry->resolvedAction = motionEntry.action;
dispatchEntry->resolvedEventId = motionEntry.id;
}
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE &&
!connection->inputState.isHovering(motionEntry.deviceId, motionEntry.source,
motionEntry.displayId)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: filling in missing hover enter "
"event",
connection->getInputChannelName().c_str());
#endif
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
}
dispatchEntry->resolvedFlags = motionEntry.flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
if (!connection->inputState.trackMotion(motionEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent motion "
"event",
connection->getInputChannelName().c_str());
#endif
return; // skip the inconsistent event
}
dispatchEntry->resolvedEventId =
dispatchEntry->resolvedEventId == DEFAULT_RESOLVED_EVENT_ID
? mIdGenerator.nextId()
: motionEntry.id;
if (ATRACE_ENABLED() && dispatchEntry->resolvedEventId != motionEntry.id) {
std::string message = StringPrintf("Transmute MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
motionEntry.id, dispatchEntry->resolvedEventId);
ATRACE_NAME(message.c_str());
}
dispatchPointerDownOutsideFocus(motionEntry.source, dispatchEntry->resolvedAction,
inputTarget.inputChannel->getConnectionToken());
break;
}
case EventEntry::Type::FOCUS: {
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s events should not go to apps",
EventEntry::typeToString(newEntry->type));
break;
}
}
// Remember that we are waiting for this dispatch to complete.
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatches(newEntry);
}
// Enqueue the dispatch entry.
connection->outboundQueue.push_back(dispatchEntry.release());
traceOutboundQueueLength(connection);
}
void InputDispatcher::dispatchPointerDownOutsideFocus(uint32_t source, int32_t action,
const sp<IBinder>& newToken) {
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
uint32_t maskedSource = source & AINPUT_SOURCE_CLASS_MASK;
if (maskedSource != AINPUT_SOURCE_CLASS_POINTER || maskedAction != AMOTION_EVENT_ACTION_DOWN) {
return;
}
sp<InputWindowHandle> inputWindowHandle = getWindowHandleLocked(newToken);
if (inputWindowHandle == nullptr) {
return;
}
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, mFocusedDisplayId);
bool hasFocusChanged = !focusedWindowHandle || focusedWindowHandle->getToken() != newToken;
if (!hasFocusChanged) {
return;
}
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doOnPointerDownOutsideFocusLockedInterruptible);
commandEntry->newToken = newToken;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("startDispatchCycleLocked(inputChannel=%s)",
connection->getInputChannelName().c_str());
ATRACE_NAME(message.c_str());
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ startDispatchCycle", connection->getInputChannelName().c_str());
#endif
while (connection->status == Connection::STATUS_NORMAL && !connection->outboundQueue.empty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.front();
dispatchEntry->deliveryTime = currentTime;
const nsecs_t timeout =
getDispatchingTimeoutLocked(connection->inputChannel->getConnectionToken());
dispatchEntry->timeoutTime = currentTime + timeout;
// Publish the event.
status_t status;
EventEntry* eventEntry = dispatchEntry->eventEntry;
switch (eventEntry->type) {
case EventEntry::Type::KEY: {
const KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
std::array<uint8_t, 32> hmac = getSignature(*keyEntry, *dispatchEntry);
// Publish the key event.
status =
connection->inputPublisher
.publishKeyEvent(dispatchEntry->seq, dispatchEntry->resolvedEventId,
keyEntry->deviceId, keyEntry->source,
keyEntry->displayId, std::move(hmac),
dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags, keyEntry->keyCode,
keyEntry->scanCode, keyEntry->metaState,
keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
break;
}
case EventEntry::Type::MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry->pointerCoords;
// Set the X and Y offset and X and Y scale depending on the input source.
float xOffset = 0.0f, yOffset = 0.0f;
float xScale = 1.0f, yScale = 1.0f;
if ((motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) &&
!(dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS)) {
float globalScaleFactor = dispatchEntry->globalScaleFactor;
xScale = dispatchEntry->windowXScale;
yScale = dispatchEntry->windowYScale;
xOffset = dispatchEntry->xOffset * xScale;
yOffset = dispatchEntry->yOffset * yScale;
if (globalScaleFactor != 1.0f) {
for (uint32_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i] = motionEntry->pointerCoords[i];
// Don't apply window scale here since we don't want scale to affect raw
// coordinates. The scale will be sent back to the client and applied
// later when requesting relative coordinates.
scaledCoords[i].scale(globalScaleFactor, 1 /* windowXScale */,
1 /* windowYScale */);
}
usingCoords = scaledCoords;
}
} else {
// We don't want the dispatch target to know.
if (dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS) {
for (uint32_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
}
std::array<uint8_t, 32> hmac = getSignature(*motionEntry, *dispatchEntry);
// Publish the motion event.
status = connection->inputPublisher
.publishMotionEvent(dispatchEntry->seq,
dispatchEntry->resolvedEventId,
motionEntry->deviceId, motionEntry->source,
motionEntry->displayId, std::move(hmac),
dispatchEntry->resolvedAction,
motionEntry->actionButton,
dispatchEntry->resolvedFlags,
motionEntry->edgeFlags, motionEntry->metaState,
motionEntry->buttonState,
motionEntry->classification, xScale, yScale,
xOffset, yOffset, motionEntry->xPrecision,
motionEntry->yPrecision,
motionEntry->xCursorPosition,
motionEntry->yCursorPosition,
motionEntry->downTime, motionEntry->eventTime,
motionEntry->pointerCount,
motionEntry->pointerProperties, usingCoords);
reportTouchEventForStatistics(*motionEntry);
break;
}
case EventEntry::Type::FOCUS: {
FocusEntry* focusEntry = static_cast<FocusEntry*>(eventEntry);
status = connection->inputPublisher.publishFocusEvent(dispatchEntry->seq,
focusEntry->id,
focusEntry->hasFocus,
mInTouchMode);
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("Should never start dispatch cycles for %s events",
EventEntry::typeToString(eventEntry->type));
return;
}
}
// Check the result.
if (status) {
if (status == WOULD_BLOCK) {
if (connection->waitQueue.empty()) {
ALOGE("channel '%s' ~ Could not publish event because the pipe is full. "
"This is unexpected because the wait queue is empty, so the pipe "
"should be empty and we shouldn't have any problems writing an "
"event to it, status=%d",
connection->getInputChannelName().c_str(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
} else {
// Pipe is full and we are waiting for the app to finish process some events
// before sending more events to it.
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Could not publish event because the pipe is full, "
"waiting for the application to catch up",
connection->getInputChannelName().c_str());
#endif
}
} else {
ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, "
"status=%d",
connection->getInputChannelName().c_str(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
}
return;
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.erase(std::remove(connection->outboundQueue.begin(),
connection->outboundQueue.end(),
dispatchEntry));
traceOutboundQueueLength(connection);
connection->waitQueue.push_back(dispatchEntry);
if (connection->responsive) {
mAnrTracker.insert(dispatchEntry->timeoutTime,
connection->inputChannel->getConnectionToken());
}
traceWaitQueueLength(connection);
}
}
const std::array<uint8_t, 32> InputDispatcher::getSignature(
const MotionEntry& motionEntry, const DispatchEntry& dispatchEntry) const {
int32_t actionMasked = dispatchEntry.resolvedAction & AMOTION_EVENT_ACTION_MASK;
if ((actionMasked == AMOTION_EVENT_ACTION_UP) || (actionMasked == AMOTION_EVENT_ACTION_DOWN)) {
// Only sign events up and down events as the purely move events
// are tied to their up/down counterparts so signing would be redundant.
VerifiedMotionEvent verifiedEvent = verifiedMotionEventFromMotionEntry(motionEntry);
verifiedEvent.actionMasked = actionMasked;
verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_MOTION_EVENT_FLAGS;
return mHmacKeyManager.sign(verifiedEvent);
}
return INVALID_HMAC;
}
const std::array<uint8_t, 32> InputDispatcher::getSignature(
const KeyEntry& keyEntry, const DispatchEntry& dispatchEntry) const {
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEntry(keyEntry);
verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_KEY_EVENT_FLAGS;
verifiedEvent.action = dispatchEntry.resolvedAction;
return mHmacKeyManager.sign(verifiedEvent);
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, uint32_t seq,
bool handled) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s",
connection->getInputChannelName().c_str(), seq, toString(handled));
#endif
if (connection->status == Connection::STATUS_BROKEN ||
connection->status == Connection::STATUS_ZOMBIE) {
return;
}
// Notify other system components and prepare to start the next dispatch cycle.
onDispatchCycleFinishedLocked(currentTime, connection, seq, handled);
}
void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection,
bool notify) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ abortBrokenDispatchCycle - notify=%s",
connection->getInputChannelName().c_str(), toString(notify));
#endif
// Clear the dispatch queues.
drainDispatchQueue(connection->outboundQueue);
traceOutboundQueueLength(connection);
drainDispatchQueue(connection->waitQueue);
traceWaitQueueLength(connection);
// The connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (connection->status == Connection::STATUS_NORMAL) {
connection->status = Connection::STATUS_BROKEN;
if (notify) {
// Notify other system components.
onDispatchCycleBrokenLocked(currentTime, connection);
}
}
}
void InputDispatcher::drainDispatchQueue(std::deque<DispatchEntry*>& queue) {
while (!queue.empty()) {
DispatchEntry* dispatchEntry = queue.front();
queue.pop_front();
releaseDispatchEntry(dispatchEntry);
}
}
void InputDispatcher::releaseDispatchEntry(DispatchEntry* dispatchEntry) {
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatches(dispatchEntry->eventEntry);
}
delete dispatchEntry;
}
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) {
InputDispatcher* d = static_cast<InputDispatcher*>(data);
{ // acquire lock
std::scoped_lock _l(d->mLock);
if (d->mConnectionsByFd.find(fd) == d->mConnectionsByFd.end()) {
ALOGE("Received spurious receive callback for unknown input channel. "
"fd=%d, events=0x%x",
fd, events);
return 0; // remove the callback
}
bool notify;
sp<Connection> connection = d->mConnectionsByFd[fd];
if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) {
if (!(events & ALOOPER_EVENT_INPUT)) {
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x",
connection->getInputChannelName().c_str(), events);
return 1;
}
nsecs_t currentTime = now();
bool gotOne = false;
status_t status;
for (;;) {
uint32_t seq;
bool handled;
status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled);
if (status) {
break;
}
d->finishDispatchCycleLocked(currentTime, connection, seq, handled);
gotOne = true;
}
if (gotOne) {
d->runCommandsLockedInterruptible();
if (status == WOULD_BLOCK) {
return 1;
}
}
notify = status != DEAD_OBJECT || !connection->monitor;
if (notify) {
ALOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
connection->getInputChannelName().c_str(), status);
}
} else {
// Monitor channels are never explicitly unregistered.
// We do it automatically when the remote endpoint is closed so don't warn
// about them.
const bool stillHaveWindowHandle =
d->getWindowHandleLocked(connection->inputChannel->getConnectionToken()) !=
nullptr;
notify = !connection->monitor && stillHaveWindowHandle;
if (notify) {
ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. "
"events=0x%x",
connection->getInputChannelName().c_str(), events);
}
}
// Unregister the channel.
d->unregisterInputChannelLocked(connection->inputChannel, notify);
return 0; // remove the callback
} // release lock
}
void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked(
const CancelationOptions& options) {
for (const auto& pair : mConnectionsByFd) {
synthesizeCancelationEventsForConnectionLocked(pair.second, options);
}
}
void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked(
const CancelationOptions& options) {
synthesizeCancelationEventsForMonitorsLocked(options, mGlobalMonitorsByDisplay);
synthesizeCancelationEventsForMonitorsLocked(options, mGestureMonitorsByDisplay);
}
void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked(
const CancelationOptions& options,
std::unordered_map<int32_t, std::vector<Monitor>>& monitorsByDisplay) {
for (const auto& it : monitorsByDisplay) {
const std::vector<Monitor>& monitors = it.second;
for (const Monitor& monitor : monitors) {
synthesizeCancelationEventsForInputChannelLocked(monitor.inputChannel, options);
}
}
}
void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked(
const sp<InputChannel>& channel, const CancelationOptions& options) {
sp<Connection> connection = getConnectionLocked(channel->getConnectionToken());
if (connection == nullptr) {
return;
}
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
void InputDispatcher::synthesizeCancelationEventsForConnectionLocked(
const sp<Connection>& connection, const CancelationOptions& options) {
if (connection->status == Connection::STATUS_BROKEN) {
return;
}
nsecs_t currentTime = now();
std::vector<EventEntry*> cancelationEvents =
connection->inputState.synthesizeCancelationEvents(currentTime, options);
if (cancelationEvents.empty()) {
return;
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("channel '%s' ~ Synthesized %zu cancelation events to bring channel back in sync "
"with reality: %s, mode=%d.",
connection->getInputChannelName().c_str(), cancelationEvents.size(), options.reason,
options.mode);
#endif
InputTarget target;
sp<InputWindowHandle> windowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (windowHandle != nullptr) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
target.setDefaultPointerInfo(-windowInfo->frameLeft, -windowInfo->frameTop,
windowInfo->windowXScale, windowInfo->windowYScale);
target.globalScaleFactor = windowInfo->globalScaleFactor;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
for (size_t i = 0; i < cancelationEvents.size(); i++) {
EventEntry* cancelationEventEntry = cancelationEvents[i];
switch (cancelationEventEntry->type) {
case EventEntry::Type::KEY: {
logOutboundKeyDetails("cancel - ",
static_cast<const KeyEntry&>(*cancelationEventEntry));
break;
}
case EventEntry::Type::MOTION: {
logOutboundMotionDetails("cancel - ",
static_cast<const MotionEntry&>(*cancelationEventEntry));
break;
}
case EventEntry::Type::FOCUS: {
LOG_ALWAYS_FATAL("Canceling focus events is not supported");
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue",
EventEntry::typeToString(cancelationEventEntry->type));
break;
}
}
enqueueDispatchEntryLocked(connection, cancelationEventEntry, // increments ref
target, InputTarget::FLAG_DISPATCH_AS_IS);
cancelationEventEntry->release();
}
startDispatchCycleLocked(currentTime, connection);
}
void InputDispatcher::synthesizePointerDownEventsForConnectionLocked(
const sp<Connection>& connection) {
if (connection->status == Connection::STATUS_BROKEN) {
return;
}
nsecs_t currentTime = now();
std::vector<EventEntry*> downEvents =
connection->inputState.synthesizePointerDownEvents(currentTime);
if (downEvents.empty()) {
return;
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("channel '%s' ~ Synthesized %zu down events to ensure consistent event stream.",
connection->getInputChannelName().c_str(), downEvents.size());
#endif
InputTarget target;
sp<InputWindowHandle> windowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (windowHandle != nullptr) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
target.setDefaultPointerInfo(-windowInfo->frameLeft, -windowInfo->frameTop,
windowInfo->windowXScale, windowInfo->windowYScale);
target.globalScaleFactor = windowInfo->globalScaleFactor;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
for (EventEntry* downEventEntry : downEvents) {
switch (downEventEntry->type) {
case EventEntry::Type::MOTION: {
logOutboundMotionDetails("down - ",
static_cast<const MotionEntry&>(*downEventEntry));
break;
}
case EventEntry::Type::KEY:
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue",
EventEntry::typeToString(downEventEntry->type));
break;
}
}
enqueueDispatchEntryLocked(connection, downEventEntry, // increments ref
target, InputTarget::FLAG_DISPATCH_AS_IS);
downEventEntry->release();
}
startDispatchCycleLocked(currentTime, connection);
}
MotionEntry* InputDispatcher::splitMotionEvent(const MotionEntry& originalMotionEntry,
BitSet32 pointerIds) {
ALOG_ASSERT(pointerIds.value != 0);
uint32_t splitPointerIndexMap[MAX_POINTERS];
PointerProperties splitPointerProperties[MAX_POINTERS];
PointerCoords splitPointerCoords[MAX_POINTERS];
uint32_t originalPointerCount = originalMotionEntry.pointerCount;
uint32_t splitPointerCount = 0;
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
originalPointerIndex++) {
const PointerProperties& pointerProperties =
originalMotionEntry.pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
splitPointerProperties[splitPointerCount].copyFrom(pointerProperties);
splitPointerCoords[splitPointerCount].copyFrom(
originalMotionEntry.pointerCoords[originalPointerIndex]);
splitPointerCount += 1;
}
}
if (splitPointerCount != pointerIds.count()) {
// This is bad. We are missing some of the pointers that we expected to deliver.
// Most likely this indicates that we received an ACTION_MOVE events that has
// different pointer ids than we expected based on the previous ACTION_DOWN
// or ACTION_POINTER_DOWN events that caused us to decide to split the pointers
// in this way.
ALOGW("Dropping split motion event because the pointer count is %d but "
"we expected there to be %d pointers. This probably means we received "
"a broken sequence of pointer ids from the input device.",
splitPointerCount, pointerIds.count());
return nullptr;
}
int32_t action = originalMotionEntry.action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
const PointerProperties& pointerProperties =
originalMotionEntry.pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
if (pointerIds.count() == 1) {
// The first/last pointer went down/up.
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
? AMOTION_EVENT_ACTION_DOWN
: AMOTION_EVENT_ACTION_UP;
} else {
// A secondary pointer went down/up.
uint32_t splitPointerIndex = 0;
while (pointerId != uint32_t(splitPointerProperties[splitPointerIndex].id)) {
splitPointerIndex += 1;
}
action = maskedAction |
(splitPointerIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
} else {
// An unrelated pointer changed.
action = AMOTION_EVENT_ACTION_MOVE;
}
}
int32_t newId = mIdGenerator.nextId();
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("Split MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
originalMotionEntry.id, newId);
ATRACE_NAME(message.c_str());
}
MotionEntry* splitMotionEntry =
new MotionEntry(newId, originalMotionEntry.eventTime, originalMotionEntry.deviceId,
originalMotionEntry.source, originalMotionEntry.displayId,
originalMotionEntry.policyFlags, action,
originalMotionEntry.actionButton, originalMotionEntry.flags,
originalMotionEntry.metaState, originalMotionEntry.buttonState,
originalMotionEntry.classification, originalMotionEntry.edgeFlags,
originalMotionEntry.xPrecision, originalMotionEntry.yPrecision,
originalMotionEntry.xCursorPosition,
originalMotionEntry.yCursorPosition, originalMotionEntry.downTime,
splitPointerCount, splitPointerProperties, splitPointerCoords, 0, 0);
if (originalMotionEntry.injectionState) {
splitMotionEntry->injectionState = originalMotionEntry.injectionState;
splitMotionEntry->injectionState->refCount += 1;
}
return splitMotionEntry;
}
void InputDispatcher::notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyConfigurationChanged - eventTime=%" PRId64, args->eventTime);
#endif
bool needWake;
{ // acquire lock
std::scoped_lock _l(mLock);
ConfigurationChangedEntry* newEntry =
new ConfigurationChangedEntry(args->id, args->eventTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
/**
* If one of the meta shortcuts is detected, process them here:
* Meta + Backspace -> generate BACK
* Meta + Enter -> generate HOME
* This will potentially overwrite keyCode and metaState.
*/
void InputDispatcher::accelerateMetaShortcuts(const int32_t deviceId, const int32_t action,
int32_t& keyCode, int32_t& metaState) {
if (metaState & AMETA_META_ON && action == AKEY_EVENT_ACTION_DOWN) {
int32_t newKeyCode = AKEYCODE_UNKNOWN;
if (keyCode == AKEYCODE_DEL) {
newKeyCode = AKEYCODE_BACK;
} else if (keyCode == AKEYCODE_ENTER) {
newKeyCode = AKEYCODE_HOME;
}
if (newKeyCode != AKEYCODE_UNKNOWN) {
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
mReplacedKeys[replacement] = newKeyCode;
keyCode = newKeyCode;
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
} else if (action == AKEY_EVENT_ACTION_UP) {
// In order to maintain a consistent stream of up and down events, check to see if the key
// going up is one we've replaced in a down event and haven't yet replaced in an up event,
// even if the modifier was released between the down and the up events.
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
auto replacementIt = mReplacedKeys.find(replacement);
if (replacementIt != mReplacedKeys.end()) {
keyCode = replacementIt->second;
mReplacedKeys.erase(replacementIt);
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
}
}
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyKey - eventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
"policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%" PRId64,
args->eventTime, args->deviceId, args->source, args->displayId, args->policyFlags,
args->action, args->flags, args->keyCode, args->scanCode, args->metaState,
args->downTime);
#endif
if (!validateKeyEvent(args->action)) {
return;
}
uint32_t policyFlags = args->policyFlags;
int32_t flags = args->flags;
int32_t metaState = args->metaState;
// InputDispatcher tracks and generates key repeats on behalf of
// whatever notifies it, so repeatCount should always be set to 0
constexpr int32_t repeatCount = 0;
if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
policyFlags |= POLICY_FLAG_VIRTUAL;
flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
}
if (policyFlags & POLICY_FLAG_FUNCTION) {
metaState |= AMETA_FUNCTION_ON;
}
policyFlags |= POLICY_FLAG_TRUSTED;
int32_t keyCode = args->keyCode;
accelerateMetaShortcuts(args->deviceId, args->action, keyCode, metaState);
KeyEvent event;
event.initialize(args->id, args->deviceId, args->source, args->displayId, INVALID_HMAC,
args->action, flags, keyCode, args->scanCode, metaState, repeatCount,
args->downTime, args->eventTime);
android::base::Timer t;
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
KeyEntry* newEntry =
new KeyEntry(args->id, args->eventTime, args->deviceId, args->source,
args->displayId, policyFlags, args->action, flags, keyCode,
args->scanCode, metaState, repeatCount, args->downTime);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendKeyToInputFilterLocked(const NotifyKeyArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyMotion - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=0x%x, "
"displayId=%" PRId32 ", policyFlags=0x%x, "
"action=0x%x, actionButton=0x%x, flags=0x%x, metaState=0x%x, buttonState=0x%x, "
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, xCursorPosition=%f, "
"yCursorPosition=%f, downTime=%" PRId64,
args->id, args->eventTime, args->deviceId, args->source, args->displayId,
args->policyFlags, args->action, args->actionButton, args->flags, args->metaState,
args->buttonState, args->edgeFlags, args->xPrecision, args->yPrecision,
args->xCursorPosition, args->yCursorPosition, args->downTime);
for (uint32_t i = 0; i < args->pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, args->pointerProperties[i].id, args->pointerProperties[i].toolType,
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
if (!validateMotionEvent(args->action, args->actionButton, args->pointerCount,
args->pointerProperties)) {
return;
}
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
android::base::Timer t;
mPolicy->interceptMotionBeforeQueueing(args->displayId, args->eventTime, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendMotionToInputFilterLocked(args)) {
mLock.unlock();
MotionEvent event;
event.initialize(args->id, args->deviceId, args->source, args->displayId, INVALID_HMAC,
args->action, args->actionButton, args->flags, args->edgeFlags,
args->metaState, args->buttonState, args->classification, 1 /*xScale*/,
1 /*yScale*/, 0 /* xOffset */, 0 /* yOffset */, args->xPrecision,
args->yPrecision, args->xCursorPosition, args->yCursorPosition,
args->downTime, args->eventTime, args->pointerCount,
args->pointerProperties, args->pointerCoords);
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
// Just enqueue a new motion event.
MotionEntry* newEntry =
new MotionEntry(args->id, args->eventTime, args->deviceId, args->source,
args->displayId, policyFlags, args->action, args->actionButton,
args->flags, args->metaState, args->buttonState,
args->classification, args->edgeFlags, args->xPrecision,
args->yPrecision, args->xCursorPosition, args->yCursorPosition,
args->downTime, args->pointerCount, args->pointerProperties,
args->pointerCoords, 0, 0);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendMotionToInputFilterLocked(const NotifyMotionArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifySwitch(const NotifySwitchArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifySwitch - eventTime=%" PRId64 ", policyFlags=0x%x, switchValues=0x%08x, "
"switchMask=0x%08x",
args->eventTime, args->policyFlags, args->switchValues, args->switchMask);
#endif
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
mPolicy->notifySwitch(args->eventTime, args->switchValues, args->switchMask, policyFlags);
}
void InputDispatcher::notifyDeviceReset(const NotifyDeviceResetArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyDeviceReset - eventTime=%" PRId64 ", deviceId=%d", args->eventTime,
args->deviceId);
#endif
bool needWake;
{ // acquire lock
std::scoped_lock _l(mLock);
DeviceResetEntry* newEntry =
new DeviceResetEntry(args->id, args->eventTime, args->deviceId);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
int32_t InputDispatcher::injectInputEvent(const InputEvent* event, int32_t injectorPid,
int32_t injectorUid, int32_t syncMode,
std::chrono::milliseconds timeout, uint32_t policyFlags) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
"syncMode=%d, timeout=%lld, policyFlags=0x%08x",
event->getType(), injectorPid, injectorUid, syncMode, timeout.count(), policyFlags);
#endif
nsecs_t endTime = now() + std::chrono::duration_cast<std::chrono::nanoseconds>(timeout).count();
policyFlags |= POLICY_FLAG_INJECTED;
if (hasInjectionPermission(injectorPid, injectorUid)) {
policyFlags |= POLICY_FLAG_TRUSTED;
}
std::queue<EventEntry*> injectedEntries;
switch (event->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent& incomingKey = static_cast<const KeyEvent&>(*event);
int32_t action = incomingKey.getAction();
if (!validateKeyEvent(action)) {
return INPUT_EVENT_INJECTION_FAILED;
}
int32_t flags = incomingKey.getFlags();
int32_t keyCode = incomingKey.getKeyCode();
int32_t metaState = incomingKey.getMetaState();
accelerateMetaShortcuts(VIRTUAL_KEYBOARD_ID, action,
/*byref*/ keyCode, /*byref*/ metaState);
KeyEvent keyEvent;
keyEvent.initialize(incomingKey.getId(), VIRTUAL_KEYBOARD_ID, incomingKey.getSource(),
incomingKey.getDisplayId(), INVALID_HMAC, action, flags, keyCode,
incomingKey.getScanCode(), metaState, incomingKey.getRepeatCount(),
incomingKey.getDownTime(), incomingKey.getEventTime());
if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) {
policyFlags |= POLICY_FLAG_VIRTUAL;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
android::base::Timer t;
mPolicy->interceptKeyBeforeQueueing(&keyEvent, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
}
mLock.lock();
KeyEntry* injectedEntry =
new KeyEntry(incomingKey.getId(), incomingKey.getEventTime(),
VIRTUAL_KEYBOARD_ID, incomingKey.getSource(),
incomingKey.getDisplayId(), policyFlags, action, flags, keyCode,
incomingKey.getScanCode(), metaState, incomingKey.getRepeatCount(),
incomingKey.getDownTime());
injectedEntries.push(injectedEntry);
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event);
int32_t action = motionEvent->getAction();
size_t pointerCount = motionEvent->getPointerCount();
const PointerProperties* pointerProperties = motionEvent->getPointerProperties();
int32_t actionButton = motionEvent->getActionButton();
int32_t displayId = motionEvent->getDisplayId();
if (!validateMotionEvent(action, actionButton, pointerCount, pointerProperties)) {
return INPUT_EVENT_INJECTION_FAILED;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
nsecs_t eventTime = motionEvent->getEventTime();
android::base::Timer t;
mPolicy->interceptMotionBeforeQueueing(displayId, eventTime, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
}
mLock.lock();
const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes();
const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords();
MotionEntry* injectedEntry =
new MotionEntry(motionEvent->getId(), *sampleEventTimes, VIRTUAL_KEYBOARD_ID,
motionEvent->getSource(), motionEvent->getDisplayId(),
policyFlags, action, actionButton, motionEvent->getFlags(),
motionEvent->getMetaState(), motionEvent->getButtonState(),
motionEvent->getClassification(), motionEvent->getEdgeFlags(),
motionEvent->getXPrecision(), motionEvent->getYPrecision(),
motionEvent->getRawXCursorPosition(),
motionEvent->getRawYCursorPosition(),
motionEvent->getDownTime(), uint32_t(pointerCount),
pointerProperties, samplePointerCoords,
motionEvent->getXOffset(), motionEvent->getYOffset());
injectedEntries.push(injectedEntry);
for (size_t i = motionEvent->getHistorySize(); i > 0; i--) {
sampleEventTimes += 1;
samplePointerCoords += pointerCount;
MotionEntry* nextInjectedEntry =
new MotionEntry(motionEvent->getId(), *sampleEventTimes,
VIRTUAL_KEYBOARD_ID, motionEvent->getSource(),
motionEvent->getDisplayId(), policyFlags, action,
actionButton, motionEvent->getFlags(),
motionEvent->getMetaState(), motionEvent->getButtonState(),
motionEvent->getClassification(),
motionEvent->getEdgeFlags(), motionEvent->getXPrecision(),
motionEvent->getYPrecision(),
motionEvent->getRawXCursorPosition(),
motionEvent->getRawYCursorPosition(),
motionEvent->getDownTime(), uint32_t(pointerCount),
pointerProperties, samplePointerCoords,
motionEvent->getXOffset(), motionEvent->getYOffset());
injectedEntries.push(nextInjectedEntry);
}
break;
}
default:
ALOGW("Cannot inject %s events", inputEventTypeToString(event->getType()));
return INPUT_EVENT_INJECTION_FAILED;
}
InjectionState* injectionState = new InjectionState(injectorPid, injectorUid);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionState->injectionIsAsync = true;
}
injectionState->refCount += 1;
injectedEntries.back()->injectionState = injectionState;
bool needWake = false;
while (!injectedEntries.empty()) {
needWake |= enqueueInboundEventLocked(injectedEntries.front());
injectedEntries.pop();
}
mLock.unlock();
if (needWake) {
mLooper->wake();
}
int32_t injectionResult;
{ // acquire lock
std::unique_lock _l(mLock);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
} else {
for (;;) {
injectionResult = injectionState->injectionResult;
if (injectionResult != INPUT_EVENT_INJECTION_PENDING) {
break;
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Timed out waiting for injection result "
"to become available.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionResultAvailable.wait_for(_l, std::chrono::nanoseconds(remainingTimeout));
}
if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED &&
syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) {
while (injectionState->pendingForegroundDispatches != 0) {
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
injectionState->pendingForegroundDispatches);
#endif
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Timed out waiting for pending foreground "
"dispatches to finish.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionSyncFinished.wait_for(_l, std::chrono::nanoseconds(remainingTimeout));
}
}
}
injectionState->release();
} // release lock
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Finished with result %d. injectorPid=%d, injectorUid=%d",
injectionResult, injectorPid, injectorUid);
#endif
return injectionResult;
}
std::unique_ptr<VerifiedInputEvent> InputDispatcher::verifyInputEvent(const InputEvent& event) {
std::array<uint8_t, 32> calculatedHmac;
std::unique_ptr<VerifiedInputEvent> result;
switch (event.getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(event);
VerifiedKeyEvent verifiedKeyEvent = verifiedKeyEventFromKeyEvent(keyEvent);
result = std::make_unique<VerifiedKeyEvent>(verifiedKeyEvent);
calculatedHmac = mHmacKeyManager.sign(verifiedKeyEvent);
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(event);
VerifiedMotionEvent verifiedMotionEvent =
verifiedMotionEventFromMotionEvent(motionEvent);
result = std::make_unique<VerifiedMotionEvent>(verifiedMotionEvent);
calculatedHmac = mHmacKeyManager.sign(verifiedMotionEvent);
break;
}
default: {
ALOGE("Cannot verify events of type %" PRId32, event.getType());
return nullptr;
}
}
if (calculatedHmac == INVALID_HMAC) {
return nullptr;
}
if (calculatedHmac != event.getHmac()) {
return nullptr;
}
return result;
}
bool InputDispatcher::hasInjectionPermission(int32_t injectorPid, int32_t injectorUid) {
return injectorUid == 0 ||
mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid);
}
void InputDispatcher::setInjectionResult(EventEntry* entry, int32_t injectionResult) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
#if DEBUG_INJECTION
ALOGD("Setting input event injection result to %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, injectionState->injectorPid, injectionState->injectorUid);
#endif
if (injectionState->injectionIsAsync && !(entry->policyFlags & POLICY_FLAG_FILTERED)) {
// Log the outcome since the injector did not wait for the injection result.
switch (injectionResult) {
case INPUT_EVENT_INJECTION_SUCCEEDED:
ALOGV("Asynchronous input event injection succeeded.");
break;
case INPUT_EVENT_INJECTION_FAILED:
ALOGW("Asynchronous input event injection failed.");
break;
case INPUT_EVENT_INJECTION_PERMISSION_DENIED:
ALOGW("Asynchronous input event injection permission denied.");
break;
case INPUT_EVENT_INJECTION_TIMED_OUT:
ALOGW("Asynchronous input event injection timed out.");
break;
}
}
injectionState->injectionResult = injectionResult;
mInjectionResultAvailable.notify_all();
}
}
void InputDispatcher::incrementPendingForegroundDispatches(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches += 1;
}
}
void InputDispatcher::decrementPendingForegroundDispatches(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches -= 1;
if (injectionState->pendingForegroundDispatches == 0) {
mInjectionSyncFinished.notify_all();
}
}
}
std::vector<sp<InputWindowHandle>> InputDispatcher::getWindowHandlesLocked(
int32_t displayId) const {
return getValueByKey(mWindowHandlesByDisplay, displayId);
}
sp<InputWindowHandle> InputDispatcher::getWindowHandleLocked(
const sp<IBinder>& windowHandleToken) const {
if (windowHandleToken == nullptr) {
return nullptr;
}
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<InputWindowHandle>> windowHandles = it.second;
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
if (windowHandle->getToken() == windowHandleToken) {
return windowHandle;
}
}
}
return nullptr;
}
bool InputDispatcher::hasWindowHandleLocked(const sp<InputWindowHandle>& windowHandle) const {
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<InputWindowHandle>> windowHandles = it.second;
for (const sp<InputWindowHandle>& handle : windowHandles) {
if (handle->getId() == windowHandle->getId() &&
handle->getToken() == windowHandle->getToken()) {
if (windowHandle->getInfo()->displayId != it.first) {
ALOGE("Found window %s in display %" PRId32
", but it should belong to display %" PRId32,
windowHandle->getName().c_str(), it.first,
windowHandle->getInfo()->displayId);
}
return true;
}
}
}
return false;
}
sp<InputChannel> InputDispatcher::getInputChannelLocked(const sp<IBinder>& token) const {
size_t count = mInputChannelsByToken.count(token);
if (count == 0) {
return nullptr;
}
return mInputChannelsByToken.at(token);
}
void InputDispatcher::updateWindowHandlesForDisplayLocked(
const std::vector<sp<InputWindowHandle>>& inputWindowHandles, int32_t displayId) {
if (inputWindowHandles.empty()) {
// Remove all handles on a display if there are no windows left.
mWindowHandlesByDisplay.erase(displayId);
return;
}
// Since we compare the pointer of input window handles across window updates, we need
// to make sure the handle object for the same window stays unchanged across updates.
const std::vector<sp<InputWindowHandle>>& oldHandles = getWindowHandlesLocked(displayId);
std::unordered_map<int32_t /*id*/, sp<InputWindowHandle>> oldHandlesById;
for (const sp<InputWindowHandle>& handle : oldHandles) {
oldHandlesById[handle->getId()] = handle;
}
std::vector<sp<InputWindowHandle>> newHandles;
for (const sp<InputWindowHandle>& handle : inputWindowHandles) {
if (!handle->updateInfo()) {
// handle no longer valid
continue;
}
const InputWindowInfo* info = handle->getInfo();
if ((getInputChannelLocked(handle->getToken()) == nullptr &&
info->portalToDisplayId == ADISPLAY_ID_NONE)) {
const bool noInputChannel =
info->inputFeatures & InputWindowInfo::INPUT_FEATURE_NO_INPUT_CHANNEL;
const bool canReceiveInput =
!(info->layoutParamsFlags & InputWindowInfo::FLAG_NOT_TOUCHABLE) ||
!(info->layoutParamsFlags & InputWindowInfo::FLAG_NOT_FOCUSABLE);
if (canReceiveInput && !noInputChannel) {
ALOGV("Window handle %s has no registered input channel",
handle->getName().c_str());
continue;
}
}
if (info->displayId != displayId) {
ALOGE("Window %s updated by wrong display %d, should belong to display %d",
handle->getName().c_str(), displayId, info->displayId);
continue;
}
if ((oldHandlesById.find(handle->getId()) != oldHandlesById.end()) &&
(oldHandlesById.at(handle->getId())->getToken() == handle->getToken())) {
const sp<InputWindowHandle>& oldHandle = oldHandlesById.at(handle->getId());
oldHandle->updateFrom(handle);
newHandles.push_back(oldHandle);
} else {
newHandles.push_back(handle);
}
}
// Insert or replace
mWindowHandlesByDisplay[displayId] = newHandles;
}
void InputDispatcher::setInputWindows(
const std::unordered_map<int32_t, std::vector<sp<InputWindowHandle>>>& handlesPerDisplay) {
{ // acquire lock
std::scoped_lock _l(mLock);
for (auto const& i : handlesPerDisplay) {
setInputWindowsLocked(i.second, i.first);
}
}
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
/**
* Called from InputManagerService, update window handle list by displayId that can receive input.
* A window handle contains information about InputChannel, Touch Region, Types, Focused,...
* If set an empty list, remove all handles from the specific display.
* For focused handle, check if need to change and send a cancel event to previous one.
* For removed handle, check if need to send a cancel event if already in touch.
*/
void InputDispatcher::setInputWindowsLocked(
const std::vector<sp<InputWindowHandle>>& inputWindowHandles, int32_t displayId) {
if (DEBUG_FOCUS) {
std::string windowList;
for (const sp<InputWindowHandle>& iwh : inputWindowHandles) {
windowList += iwh->getName() + " ";
}
ALOGD("setInputWindows displayId=%" PRId32 " %s", displayId, windowList.c_str());
}
// Copy old handles for release if they are no longer present.
const std::vector<sp<InputWindowHandle>> oldWindowHandles = getWindowHandlesLocked(displayId);
updateWindowHandlesForDisplayLocked(inputWindowHandles, displayId);
sp<InputWindowHandle> newFocusedWindowHandle = nullptr;
bool foundHoveredWindow = false;
for (const sp<InputWindowHandle>& windowHandle : getWindowHandlesLocked(displayId)) {
// Set newFocusedWindowHandle to the top most focused window instead of the last one
if (!newFocusedWindowHandle && windowHandle->getInfo()->hasFocus &&
windowHandle->getInfo()->visible) {
newFocusedWindowHandle = windowHandle;
}
if (windowHandle == mLastHoverWindowHandle) {
foundHoveredWindow = true;
}
}
if (!foundHoveredWindow) {
mLastHoverWindowHandle = nullptr;
}
sp<InputWindowHandle> oldFocusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
if (!haveSameToken(oldFocusedWindowHandle, newFocusedWindowHandle)) {
if (oldFocusedWindowHandle != nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Focus left window: %s in display %" PRId32,
oldFocusedWindowHandle->getName().c_str(), displayId);
}
sp<InputChannel> focusedInputChannel =
getInputChannelLocked(oldFocusedWindowHandle->getToken());
if (focusedInputChannel != nullptr) {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS,
"focus left window");
synthesizeCancelationEventsForInputChannelLocked(focusedInputChannel, options);
enqueueFocusEventLocked(*oldFocusedWindowHandle, false /*hasFocus*/);
}
mFocusedWindowHandlesByDisplay.erase(displayId);
}
if (newFocusedWindowHandle != nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Focus entered window: %s in display %" PRId32,
newFocusedWindowHandle->getName().c_str(), displayId);
}
mFocusedWindowHandlesByDisplay[displayId] = newFocusedWindowHandle;
enqueueFocusEventLocked(*newFocusedWindowHandle, true /*hasFocus*/);
}
if (mFocusedDisplayId == displayId) {
onFocusChangedLocked(oldFocusedWindowHandle, newFocusedWindowHandle);
}
}
std::unordered_map<int32_t, TouchState>::iterator stateIt =
mTouchStatesByDisplay.find(displayId);
if (stateIt != mTouchStatesByDisplay.end()) {
TouchState& state = stateIt->second;
for (size_t i = 0; i < state.windows.size();) {
TouchedWindow& touchedWindow = state.windows[i];
if (!hasWindowHandleLocked(touchedWindow.windowHandle)) {
if (DEBUG_FOCUS) {
ALOGD("Touched window was removed: %s in display %" PRId32,
touchedWindow.windowHandle->getName().c_str(), displayId);
}
sp<InputChannel> touchedInputChannel =
getInputChannelLocked(touchedWindow.windowHandle->getToken());
if (touchedInputChannel != nullptr) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"touched window was removed");
synthesizeCancelationEventsForInputChannelLocked(touchedInputChannel, options);
}
state.windows.erase(state.windows.begin() + i);
} else {
++i;
}
}
}
// Release information for windows that are no longer present.
// This ensures that unused input channels are released promptly.
// Otherwise, they might stick around until the window handle is destroyed
// which might not happen until the next GC.
for (const sp<InputWindowHandle>& oldWindowHandle : oldWindowHandles) {
if (!hasWindowHandleLocked(oldWindowHandle)) {
if (DEBUG_FOCUS) {
ALOGD("Window went away: %s", oldWindowHandle->getName().c_str());
}
oldWindowHandle->releaseChannel();
}
}
}
void InputDispatcher::setFocusedApplication(
int32_t displayId, const sp<InputApplicationHandle>& inputApplicationHandle) {
if (DEBUG_FOCUS) {
ALOGD("setFocusedApplication displayId=%" PRId32 " %s", displayId,
inputApplicationHandle ? inputApplicationHandle->getName().c_str() : "<nullptr>");
}
{ // acquire lock
std::scoped_lock _l(mLock);
sp<InputApplicationHandle> oldFocusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
if (oldFocusedApplicationHandle == mAwaitedFocusedApplication &&
inputApplicationHandle != oldFocusedApplicationHandle) {
resetNoFocusedWindowTimeoutLocked();
}
if (inputApplicationHandle != nullptr && inputApplicationHandle->updateInfo()) {
if (oldFocusedApplicationHandle != inputApplicationHandle) {
mFocusedApplicationHandlesByDisplay[displayId] = inputApplicationHandle;
}
} else if (oldFocusedApplicationHandle != nullptr) {
oldFocusedApplicationHandle.clear();
mFocusedApplicationHandlesByDisplay.erase(displayId);
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
/**
* Sets the focused display, which is responsible for receiving focus-dispatched input events where
* the display not specified.
*
* We track any unreleased events for each window. If a window loses the ability to receive the
* released event, we will send a cancel event to it. So when the focused display is changed, we
* cancel all the unreleased display-unspecified events for the focused window on the old focused
* display. The display-specified events won't be affected.
*/
void InputDispatcher::setFocusedDisplay(int32_t displayId) {
if (DEBUG_FOCUS) {
ALOGD("setFocusedDisplay displayId=%" PRId32, displayId);
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (mFocusedDisplayId != displayId) {
sp<InputWindowHandle> oldFocusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, mFocusedDisplayId);
if (oldFocusedWindowHandle != nullptr) {
sp<InputChannel> inputChannel =
getInputChannelLocked(oldFocusedWindowHandle->getToken());
if (inputChannel != nullptr) {
CancelationOptions
options(CancelationOptions::CANCEL_NON_POINTER_EVENTS,
"The display which contains this window no longer has focus.");
options.displayId = ADISPLAY_ID_NONE;
synthesizeCancelationEventsForInputChannelLocked(inputChannel, options);
}
}
mFocusedDisplayId = displayId;
// Sanity check
sp<InputWindowHandle> newFocusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
onFocusChangedLocked(oldFocusedWindowHandle, newFocusedWindowHandle);
if (newFocusedWindowHandle == nullptr) {
ALOGW("Focused display #%" PRId32 " does not have a focused window.", displayId);
if (!mFocusedWindowHandlesByDisplay.empty()) {
ALOGE("But another display has a focused window:");
for (auto& it : mFocusedWindowHandlesByDisplay) {
const int32_t displayId = it.first;
const sp<InputWindowHandle>& windowHandle = it.second;
ALOGE("Display #%" PRId32 " has focused window: '%s'\n", displayId,
windowHandle->getName().c_str());
}
}
}
}
if (DEBUG_FOCUS) {
logDispatchStateLocked();
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
if (DEBUG_FOCUS) {
ALOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
}
bool changed;
{ // acquire lock
std::scoped_lock _l(mLock);
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
if (mDispatchFrozen && !frozen) {
resetNoFocusedWindowTimeoutLocked();
}
if (mDispatchEnabled && !enabled) {
resetAndDropEverythingLocked("dispatcher is being disabled");
}
mDispatchEnabled = enabled;
mDispatchFrozen = frozen;
changed = true;
} else {
changed = false;
}
if (DEBUG_FOCUS) {
logDispatchStateLocked();
}
} // release lock
if (changed) {
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
}
void InputDispatcher::setInputFilterEnabled(bool enabled) {
if (DEBUG_FOCUS) {
ALOGD("setInputFilterEnabled: enabled=%d", enabled);
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (mInputFilterEnabled == enabled) {
return;
}
mInputFilterEnabled = enabled;
resetAndDropEverythingLocked("input filter is being enabled or disabled");
} // release lock
// Wake up poll loop since there might be work to do to drop everything.
mLooper->wake();
}
void InputDispatcher::setInTouchMode(bool inTouchMode) {
std::scoped_lock lock(mLock);
mInTouchMode = inTouchMode;
}
bool InputDispatcher::transferTouchFocus(const sp<IBinder>& fromToken, const sp<IBinder>& toToken) {
if (fromToken == toToken) {
if (DEBUG_FOCUS) {
ALOGD("Trivial transfer to same window.");
}
return true;
}
{ // acquire lock
std::scoped_lock _l(mLock);
sp<InputWindowHandle> fromWindowHandle = getWindowHandleLocked(fromToken);
sp<InputWindowHandle> toWindowHandle = getWindowHandleLocked(toToken);
if (fromWindowHandle == nullptr || toWindowHandle == nullptr) {
ALOGW("Cannot transfer focus because from or to window not found.");
return false;
}
if (DEBUG_FOCUS) {
ALOGD("transferTouchFocus: fromWindowHandle=%s, toWindowHandle=%s",
fromWindowHandle->getName().c_str(), toWindowHandle->getName().c_str());
}
if (fromWindowHandle->getInfo()->displayId != toWindowHandle->getInfo()->displayId) {
if (DEBUG_FOCUS) {
ALOGD("Cannot transfer focus because windows are on different displays.");
}
return false;
}
bool found = false;
for (std::pair<const int32_t, TouchState>& pair : mTouchStatesByDisplay) {
TouchState& state = pair.second;
for (size_t i = 0; i < state.windows.size(); i++) {
const TouchedWindow& touchedWindow = state.windows[i];
if (touchedWindow.windowHandle == fromWindowHandle) {
int32_t oldTargetFlags = touchedWindow.targetFlags;
BitSet32 pointerIds = touchedWindow.pointerIds;
state.windows.erase(state.windows.begin() + i);
int32_t newTargetFlags = oldTargetFlags &
(InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_SPLIT |
InputTarget::FLAG_DISPATCH_AS_IS);
state.addOrUpdateWindow(toWindowHandle, newTargetFlags, pointerIds);
found = true;
goto Found;
}
}
}
Found:
if (!found) {
if (DEBUG_FOCUS) {
ALOGD("Focus transfer failed because from window did not have focus.");
}
return false;
}
sp<Connection> fromConnection = getConnectionLocked(fromToken);
sp<Connection> toConnection = getConnectionLocked(toToken);
if (fromConnection != nullptr && toConnection != nullptr) {
fromConnection->inputState.mergePointerStateTo(toConnection->inputState);
CancelationOptions
options(CancelationOptions::CANCEL_POINTER_EVENTS,
"transferring touch focus from this window to another window");
synthesizeCancelationEventsForConnectionLocked(fromConnection, options);
synthesizePointerDownEventsForConnectionLocked(toConnection);
}
if (DEBUG_FOCUS) {
logDispatchStateLocked();
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
return true;
}
void InputDispatcher::resetAndDropEverythingLocked(const char* reason) {
if (DEBUG_FOCUS) {
ALOGD("Resetting and dropping all events (%s).", reason);
}
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
resetNoFocusedWindowTimeoutLocked();
mAnrTracker.clear();
mTouchStatesByDisplay.clear();
mLastHoverWindowHandle.clear();
mReplacedKeys.clear();
}
void InputDispatcher::logDispatchStateLocked() {
std::string dump;
dumpDispatchStateLocked(dump);
std::istringstream stream(dump);
std::string line;
while (std::getline(stream, line, '\n')) {
ALOGD("%s", line.c_str());
}
}
void InputDispatcher::dumpDispatchStateLocked(std::string& dump) {
dump += StringPrintf(INDENT "DispatchEnabled: %s\n", toString(mDispatchEnabled));
dump += StringPrintf(INDENT "DispatchFrozen: %s\n", toString(mDispatchFrozen));
dump += StringPrintf(INDENT "InputFilterEnabled: %s\n", toString(mInputFilterEnabled));
dump += StringPrintf(INDENT "FocusedDisplayId: %" PRId32 "\n", mFocusedDisplayId);
if (!mFocusedApplicationHandlesByDisplay.empty()) {
dump += StringPrintf(INDENT "FocusedApplications:\n");
for (auto& it : mFocusedApplicationHandlesByDisplay) {
const int32_t displayId = it.first;
const sp<InputApplicationHandle>& applicationHandle = it.second;
dump += StringPrintf(INDENT2 "displayId=%" PRId32
", name='%s', dispatchingTimeout=%" PRId64 "ms\n",
displayId, applicationHandle->getName().c_str(),
ns2ms(applicationHandle
->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT)
.count()));
}
} else {
dump += StringPrintf(INDENT "FocusedApplications: <none>\n");
}
if (!mFocusedWindowHandlesByDisplay.empty()) {
dump += StringPrintf(INDENT "FocusedWindows:\n");
for (auto& it : mFocusedWindowHandlesByDisplay) {
const int32_t displayId = it.first;
const sp<InputWindowHandle>& windowHandle = it.second;
dump += StringPrintf(INDENT2 "displayId=%" PRId32 ", name='%s'\n", displayId,
windowHandle->getName().c_str());
}
} else {
dump += StringPrintf(INDENT "FocusedWindows: <none>\n");
}
if (!mTouchStatesByDisplay.empty()) {
dump += StringPrintf(INDENT "TouchStatesByDisplay:\n");
for (const std::pair<int32_t, TouchState>& pair : mTouchStatesByDisplay) {
const TouchState& state = pair.second;
dump += StringPrintf(INDENT2 "%d: down=%s, split=%s, deviceId=%d, source=0x%08x\n",
state.displayId, toString(state.down), toString(state.split),
state.deviceId, state.source);
if (!state.windows.empty()) {
dump += INDENT3 "Windows:\n";
for (size_t i = 0; i < state.windows.size(); i++) {
const TouchedWindow& touchedWindow = state.windows[i];
dump += StringPrintf(INDENT4
"%zu: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n",
i, touchedWindow.windowHandle->getName().c_str(),
touchedWindow.pointerIds.value, touchedWindow.targetFlags);
}
} else {
dump += INDENT3 "Windows: <none>\n";
}
if (!state.portalWindows.empty()) {
dump += INDENT3 "Portal windows:\n";
for (size_t i = 0; i < state.portalWindows.size(); i++) {
const sp<InputWindowHandle> portalWindowHandle = state.portalWindows[i];
dump += StringPrintf(INDENT4 "%zu: name='%s'\n", i,
portalWindowHandle->getName().c_str());
}
}
}
} else {
dump += INDENT "TouchStates: <no displays touched>\n";
}
if (!mWindowHandlesByDisplay.empty()) {
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<InputWindowHandle>> windowHandles = it.second;
dump += StringPrintf(INDENT "Display: %" PRId32 "\n", it.first);
if (!windowHandles.empty()) {
dump += INDENT2 "Windows:\n";
for (size_t i = 0; i < windowHandles.size(); i++) {
const sp<InputWindowHandle>& windowHandle = windowHandles[i];
const InputWindowInfo* windowInfo = windowHandle->getInfo();
dump += StringPrintf(INDENT3 "%zu: name='%s', displayId=%d, "
"portalToDisplayId=%d, paused=%s, hasFocus=%s, "
"hasWallpaper=%s, visible=%s, canReceiveKeys=%s, "
"flags=0x%08x, type=0x%08x, "
"frame=[%d,%d][%d,%d], globalScale=%f, "
"windowScale=(%f,%f), touchableRegion=",
i, windowInfo->name.c_str(), windowInfo->displayId,
windowInfo->portalToDisplayId,
toString(windowInfo->paused),
toString(windowInfo->hasFocus),
toString(windowInfo->hasWallpaper),
toString(windowInfo->visible),
toString(windowInfo->canReceiveKeys),
windowInfo->layoutParamsFlags,
windowInfo->layoutParamsType, windowInfo->frameLeft,
windowInfo->frameTop, windowInfo->frameRight,
windowInfo->frameBottom, windowInfo->globalScaleFactor,
windowInfo->windowXScale, windowInfo->windowYScale);
dumpRegion(dump, windowInfo->touchableRegion);
dump += StringPrintf(", inputFeatures=0x%08x", windowInfo->inputFeatures);
dump += StringPrintf(", ownerPid=%d, ownerUid=%d, dispatchingTimeout=%" PRId64
"ms\n",
windowInfo->ownerPid, windowInfo->ownerUid,
ns2ms(windowInfo->dispatchingTimeout));
}
} else {
dump += INDENT2 "Windows: <none>\n";
}
}
} else {
dump += INDENT "Displays: <none>\n";
}
if (!mGlobalMonitorsByDisplay.empty() || !mGestureMonitorsByDisplay.empty()) {
for (auto& it : mGlobalMonitorsByDisplay) {
const std::vector<Monitor>& monitors = it.second;
dump += StringPrintf(INDENT "Global monitors in display %" PRId32 ":\n", it.first);
dumpMonitors(dump, monitors);
}
for (auto& it : mGestureMonitorsByDisplay) {
const std::vector<Monitor>& monitors = it.second;
dump += StringPrintf(INDENT "Gesture monitors in display %" PRId32 ":\n", it.first);
dumpMonitors(dump, monitors);
}
} else {
dump += INDENT "Monitors: <none>\n";
}
nsecs_t currentTime = now();
// Dump recently dispatched or dropped events from oldest to newest.
if (!mRecentQueue.empty()) {
dump += StringPrintf(INDENT "RecentQueue: length=%zu\n", mRecentQueue.size());
for (EventEntry* entry : mRecentQueue) {
dump += INDENT2;
entry->appendDescription(dump);
dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime));
}
} else {
dump += INDENT "RecentQueue: <empty>\n";
}
// Dump event currently being dispatched.
if (mPendingEvent) {
dump += INDENT "PendingEvent:\n";
dump += INDENT2;
mPendingEvent->appendDescription(dump);
dump += StringPrintf(", age=%" PRId64 "ms\n",
ns2ms(currentTime - mPendingEvent->eventTime));
} else {
dump += INDENT "PendingEvent: <none>\n";
}
// Dump inbound events from oldest to newest.
if (!mInboundQueue.empty()) {
dump += StringPrintf(INDENT "InboundQueue: length=%zu\n", mInboundQueue.size());
for (EventEntry* entry : mInboundQueue) {
dump += INDENT2;
entry->appendDescription(dump);
dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime));
}
} else {
dump += INDENT "InboundQueue: <empty>\n";
}
if (!mReplacedKeys.empty()) {
dump += INDENT "ReplacedKeys:\n";
for (const std::pair<KeyReplacement, int32_t>& pair : mReplacedKeys) {
const KeyReplacement& replacement = pair.first;
int32_t newKeyCode = pair.second;
dump += StringPrintf(INDENT2 "originalKeyCode=%d, deviceId=%d -> newKeyCode=%d\n",
replacement.keyCode, replacement.deviceId, newKeyCode);
}
} else {
dump += INDENT "ReplacedKeys: <empty>\n";
}
if (!mConnectionsByFd.empty()) {
dump += INDENT "Connections:\n";
for (const auto& pair : mConnectionsByFd) {
const sp<Connection>& connection = pair.second;
dump += StringPrintf(INDENT2 "%i: channelName='%s', windowName='%s', "
"status=%s, monitor=%s, responsive=%s\n",
pair.first, connection->getInputChannelName().c_str(),
connection->getWindowName().c_str(), connection->getStatusLabel(),
toString(connection->monitor), toString(connection->responsive));
if (!connection->outboundQueue.empty()) {
dump += StringPrintf(INDENT3 "OutboundQueue: length=%zu\n",
connection->outboundQueue.size());
for (DispatchEntry* entry : connection->outboundQueue) {
dump.append(INDENT4);
entry->eventEntry->appendDescription(dump);
dump += StringPrintf(", targetFlags=0x%08x, resolvedAction=%d, age=%" PRId64
"ms\n",
entry->targetFlags, entry->resolvedAction,
ns2ms(currentTime - entry->eventEntry->eventTime));
}
} else {
dump += INDENT3 "OutboundQueue: <empty>\n";
}
if (!connection->waitQueue.empty()) {
dump += StringPrintf(INDENT3 "WaitQueue: length=%zu\n",
connection->waitQueue.size());
for (DispatchEntry* entry : connection->waitQueue) {
dump += INDENT4;
entry->eventEntry->appendDescription(dump);
dump += StringPrintf(", targetFlags=0x%08x, resolvedAction=%d, "
"age=%" PRId64 "ms, wait=%" PRId64 "ms\n",
entry->targetFlags, entry->resolvedAction,
ns2ms(currentTime - entry->eventEntry->eventTime),
ns2ms(currentTime - entry->deliveryTime));
}
} else {
dump += INDENT3 "WaitQueue: <empty>\n";
}
}
} else {
dump += INDENT "Connections: <none>\n";
}
if (isAppSwitchPendingLocked()) {
dump += StringPrintf(INDENT "AppSwitch: pending, due in %" PRId64 "ms\n",
ns2ms(mAppSwitchDueTime - now()));
} else {
dump += INDENT "AppSwitch: not pending\n";
}
dump += INDENT "Configuration:\n";
dump += StringPrintf(INDENT2 "KeyRepeatDelay: %" PRId64 "ms\n", ns2ms(mConfig.keyRepeatDelay));
dump += StringPrintf(INDENT2 "KeyRepeatTimeout: %" PRId64 "ms\n",
ns2ms(mConfig.keyRepeatTimeout));
}
void InputDispatcher::dumpMonitors(std::string& dump, const std::vector<Monitor>& monitors) {
const size_t numMonitors = monitors.size();
for (size_t i = 0; i < numMonitors; i++) {
const Monitor& monitor = monitors[i];
const sp<InputChannel>& channel = monitor.inputChannel;
dump += StringPrintf(INDENT2 "%zu: '%s', ", i, channel->getName().c_str());
dump += "\n";
}
}
status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel) {
#if DEBUG_REGISTRATION
ALOGD("channel '%s' ~ registerInputChannel", inputChannel->getName().c_str());
#endif
{ // acquire lock
std::scoped_lock _l(mLock);
sp<Connection> existingConnection = getConnectionLocked(inputChannel->getConnectionToken());
if (existingConnection != nullptr) {
ALOGW("Attempted to register already registered input channel '%s'",
inputChannel->getName().c_str());
return BAD_VALUE;
}
sp<Connection> connection = new Connection(inputChannel, false /*monitor*/, mIdGenerator);
int fd = inputChannel->getFd();
mConnectionsByFd[fd] = connection;
mInputChannelsByToken[inputChannel->getConnectionToken()] = inputChannel;
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
} // release lock
// Wake the looper because some connections have changed.
mLooper->wake();
return OK;
}
status_t InputDispatcher::registerInputMonitor(const sp<InputChannel>& inputChannel,
int32_t displayId, bool isGestureMonitor) {
{ // acquire lock
std::scoped_lock _l(mLock);
if (displayId < 0) {
ALOGW("Attempted to register input monitor without a specified display.");
return BAD_VALUE;
}
if (inputChannel->getConnectionToken() == nullptr) {
ALOGW("Attempted to register input monitor without an identifying token.");
return BAD_VALUE;
}
sp<Connection> connection = new Connection(inputChannel, true /*monitor*/, mIdGenerator);
const int fd = inputChannel->getFd();
mConnectionsByFd[fd] = connection;
mInputChannelsByToken[inputChannel->getConnectionToken()] = inputChannel;
auto& monitorsByDisplay =
isGestureMonitor ? mGestureMonitorsByDisplay : mGlobalMonitorsByDisplay;
monitorsByDisplay[displayId].emplace_back(inputChannel);
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
}
// Wake the looper because some connections have changed.
mLooper->wake();
return OK;
}
status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) {
#if DEBUG_REGISTRATION
ALOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().c_str());
#endif
{ // acquire lock
std::scoped_lock _l(mLock);
status_t status = unregisterInputChannelLocked(inputChannel, false /*notify*/);
if (status) {
return status;
}
} // release lock
// Wake the poll loop because removing the connection may have changed the current
// synchronization state.
mLooper->wake();
return OK;
}
status_t InputDispatcher::unregisterInputChannelLocked(const sp<InputChannel>& inputChannel,
bool notify) {
sp<Connection> connection = getConnectionLocked(inputChannel->getConnectionToken());
if (connection == nullptr) {
ALOGW("Attempted to unregister already unregistered input channel '%s'",
inputChannel->getName().c_str());
return BAD_VALUE;
}
removeConnectionLocked(connection);
mInputChannelsByToken.erase(inputChannel->getConnectionToken());
if (connection->monitor) {
removeMonitorChannelLocked(inputChannel);
}
mLooper->removeFd(inputChannel->getFd());
nsecs_t currentTime = now();
abortBrokenDispatchCycleLocked(currentTime, connection, notify);
connection->status = Connection::STATUS_ZOMBIE;
return OK;
}
void InputDispatcher::removeMonitorChannelLocked(const sp<InputChannel>& inputChannel) {
removeMonitorChannelLocked(inputChannel, mGlobalMonitorsByDisplay);
removeMonitorChannelLocked(inputChannel, mGestureMonitorsByDisplay);
}
void InputDispatcher::removeMonitorChannelLocked(
const sp<InputChannel>& inputChannel,
std::unordered_map<int32_t, std::vector<Monitor>>& monitorsByDisplay) {
for (auto it = monitorsByDisplay.begin(); it != monitorsByDisplay.end();) {
std::vector<Monitor>& monitors = it->second;
const size_t numMonitors = monitors.size();
for (size_t i = 0; i < numMonitors; i++) {
if (monitors[i].inputChannel == inputChannel) {
monitors.erase(monitors.begin() + i);
break;
}
}
if (monitors.empty()) {
it = monitorsByDisplay.erase(it);
} else {
++it;
}
}
}
status_t InputDispatcher::pilferPointers(const sp<IBinder>& token) {
{ // acquire lock
std::scoped_lock _l(mLock);
std::optional<int32_t> foundDisplayId = findGestureMonitorDisplayByTokenLocked(token);
if (!foundDisplayId) {
ALOGW("Attempted to pilfer pointers from an un-registered monitor or invalid token");
return BAD_VALUE;
}
int32_t displayId = foundDisplayId.value();
std::unordered_map<int32_t, TouchState>::iterator stateIt =
mTouchStatesByDisplay.find(displayId);
if (stateIt == mTouchStatesByDisplay.end()) {
ALOGW("Failed to pilfer pointers: no pointers on display %" PRId32 ".", displayId);
return BAD_VALUE;
}
TouchState& state = stateIt->second;
std::optional<int32_t> foundDeviceId;
for (const TouchedMonitor& touchedMonitor : state.gestureMonitors) {
if (touchedMonitor.monitor.inputChannel->getConnectionToken() == token) {
foundDeviceId = state.deviceId;
}
}
if (!foundDeviceId || !state.down) {
ALOGW("Attempted to pilfer points from a monitor without any on-going pointer streams."
" Ignoring.");
return BAD_VALUE;
}
int32_t deviceId = foundDeviceId.value();
// Send cancel events to all the input channels we're stealing from.
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"gesture monitor stole pointer stream");
options.deviceId = deviceId;
options.displayId = displayId;
for (const TouchedWindow& window : state.windows) {
sp<InputChannel> channel = getInputChannelLocked(window.windowHandle->getToken());
if (channel != nullptr) {
synthesizeCancelationEventsForInputChannelLocked(channel, options);
}
}
// Then clear the current touch state so we stop dispatching to them as well.
state.filterNonMonitors();
}
return OK;
}
std::optional<int32_t> InputDispatcher::findGestureMonitorDisplayByTokenLocked(
const sp<IBinder>& token) {
for (const auto& it : mGestureMonitorsByDisplay) {
const std::vector<Monitor>& monitors = it.second;
for (const Monitor& monitor : monitors) {
if (monitor.inputChannel->getConnectionToken() == token) {
return it.first;
}
}
}
return std::nullopt;
}
sp<Connection> InputDispatcher::getConnectionLocked(const sp<IBinder>& inputConnectionToken) const {
if (inputConnectionToken == nullptr) {
return nullptr;
}
for (const auto& pair : mConnectionsByFd) {
const sp<Connection>& connection = pair.second;
if (connection->inputChannel->getConnectionToken() == inputConnectionToken) {
return connection;
}
}
return nullptr;
}
void InputDispatcher::removeConnectionLocked(const sp<Connection>& connection) {
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
removeByValue(mConnectionsByFd, connection);
}
void InputDispatcher::onDispatchCycleFinishedLocked(nsecs_t currentTime,
const sp<Connection>& connection, uint32_t seq,
bool handled) {
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doDispatchCycleFinishedLockedInterruptible);
commandEntry->connection = connection;
commandEntry->eventTime = currentTime;
commandEntry->seq = seq;
commandEntry->handled = handled;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::onDispatchCycleBrokenLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
ALOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
connection->getInputChannelName().c_str());
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible);
commandEntry->connection = connection;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::onFocusChangedLocked(const sp<InputWindowHandle>& oldFocus,
const sp<InputWindowHandle>& newFocus) {
sp<IBinder> oldToken = oldFocus != nullptr ? oldFocus->getToken() : nullptr;
sp<IBinder> newToken = newFocus != nullptr ? newFocus->getToken() : nullptr;
std::unique_ptr<CommandEntry> commandEntry = std::make_unique<CommandEntry>(
&InputDispatcher::doNotifyFocusChangedLockedInterruptible);
commandEntry->oldToken = oldToken;
commandEntry->newToken = newToken;
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::onAnrLocked(const sp<Connection>& connection) {
// Since we are allowing the policy to extend the timeout, maybe the waitQueue
// is already healthy again. Don't raise ANR in this situation
if (connection->waitQueue.empty()) {
ALOGI("Not raising ANR because the connection %s has recovered",
connection->inputChannel->getName().c_str());
return;
}
/**
* The "oldestEntry" is the entry that was first sent to the application. That entry, however,
* may not be the one that caused the timeout to occur. One possibility is that window timeout
* has changed. This could cause newer entries to time out before the already dispatched
* entries. In that situation, the newest entries caused ANR. But in all likelihood, the app
* processes the events linearly. So providing information about the oldest entry seems to be
* most useful.
*/
DispatchEntry* oldestEntry = *connection->waitQueue.begin();
const nsecs_t currentWait = now() - oldestEntry->deliveryTime;
std::string reason =
android::base::StringPrintf("%s is not responding. Waited %" PRId64 "ms for %s",
connection->inputChannel->getName().c_str(),
ns2ms(currentWait),
oldestEntry->eventEntry->getDescription().c_str());
updateLastAnrStateLocked(getWindowHandleLocked(connection->inputChannel->getConnectionToken()),
reason);
std::unique_ptr<CommandEntry> commandEntry =
std::make_unique<CommandEntry>(&InputDispatcher::doNotifyAnrLockedInterruptible);
commandEntry->inputApplicationHandle = nullptr;
commandEntry->inputChannel = connection->inputChannel;
commandEntry->reason = std::move(reason);
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::onAnrLocked(const sp<InputApplicationHandle>& application) {
std::string reason = android::base::StringPrintf("%s does not have a focused window",
application->getName().c_str());
updateLastAnrStateLocked(application, reason);
std::unique_ptr<CommandEntry> commandEntry =
std::make_unique<CommandEntry>(&InputDispatcher::doNotifyAnrLockedInterruptible);
commandEntry->inputApplicationHandle = application;
commandEntry->inputChannel = nullptr;
commandEntry->reason = std::move(reason);
postCommandLocked(std::move(commandEntry));
}
void InputDispatcher::updateLastAnrStateLocked(const sp<InputWindowHandle>& window,
const std::string& reason) {
const std::string windowLabel = getApplicationWindowLabel(nullptr, window);
updateLastAnrStateLocked(windowLabel, reason);
}
void InputDispatcher::updateLastAnrStateLocked(const sp<InputApplicationHandle>& application,
const std::string& reason) {
const std::string windowLabel = getApplicationWindowLabel(application, nullptr);
updateLastAnrStateLocked(windowLabel, reason);
}
void InputDispatcher::updateLastAnrStateLocked(const std::string& windowLabel,
const std::string& reason) {
// Capture a record of the InputDispatcher state at the time of the ANR.
time_t t = time(nullptr);
struct tm tm;
localtime_r(&t, &tm);
char timestr[64];
strftime(timestr, sizeof(timestr), "%F %T", &tm);
mLastAnrState.clear();
mLastAnrState += INDENT "ANR:\n";
mLastAnrState += StringPrintf(INDENT2 "Time: %s\n", timestr);
mLastAnrState += StringPrintf(INDENT2 "Reason: %s\n", reason.c_str());
mLastAnrState += StringPrintf(INDENT2 "Window: %s\n", windowLabel.c_str());
dumpDispatchStateLocked(mLastAnrState);
}
void InputDispatcher::doNotifyConfigurationChangedLockedInterruptible(CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->notifyConfigurationChanged(commandEntry->eventTime);
mLock.lock();
}
void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
if (connection->status != Connection::STATUS_ZOMBIE) {
mLock.unlock();
mPolicy->notifyInputChannelBroken(connection->inputChannel->getConnectionToken());
mLock.lock();
}
}
void InputDispatcher::doNotifyFocusChangedLockedInterruptible(CommandEntry* commandEntry) {
sp<IBinder> oldToken = commandEntry->oldToken;
sp<IBinder> newToken = commandEntry->newToken;
mLock.unlock();
mPolicy->notifyFocusChanged(oldToken, newToken);
mLock.lock();
}
void InputDispatcher::doNotifyAnrLockedInterruptible(CommandEntry* commandEntry) {
sp<IBinder> token =
commandEntry->inputChannel ? commandEntry->inputChannel->getConnectionToken() : nullptr;
mLock.unlock();
const nsecs_t timeoutExtension =
mPolicy->notifyAnr(commandEntry->inputApplicationHandle, token, commandEntry->reason);
mLock.lock();
if (timeoutExtension > 0) {
extendAnrTimeoutsLocked(commandEntry->inputApplicationHandle, token, timeoutExtension);
} else {
// stop waking up for events in this connection, it is already not responding
sp<Connection> connection = getConnectionLocked(token);
if (connection == nullptr) {
return;
}
cancelEventsForAnrLocked(connection);
}
}
void InputDispatcher::extendAnrTimeoutsLocked(const sp<InputApplicationHandle>& application,
const sp<IBinder>& connectionToken,
nsecs_t timeoutExtension) {
sp<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
if (mNoFocusedWindowTimeoutTime.has_value() && application != nullptr) {
// Maybe ANR happened because there's no focused window?
mNoFocusedWindowTimeoutTime = now() + timeoutExtension;
mAwaitedFocusedApplication = application;
} else {
// It's also possible that the connection already disappeared. No action necessary.
}
return;
}
ALOGI("Raised ANR, but the policy wants to keep waiting on %s for %" PRId64 "ms longer",
connection->inputChannel->getName().c_str(), ns2ms(timeoutExtension));
connection->responsive = true;
const nsecs_t newTimeout = now() + timeoutExtension;
for (DispatchEntry* entry : connection->waitQueue) {
if (newTimeout >= entry->timeoutTime) {
// Already removed old entries when connection was marked unresponsive
entry->timeoutTime = newTimeout;
mAnrTracker.insert(entry->timeoutTime, connectionToken);
}
}
}
void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible(
CommandEntry* commandEntry) {
KeyEntry* entry = commandEntry->keyEntry;
KeyEvent event = createKeyEvent(*entry);
mLock.unlock();
android::base::Timer t;
sp<IBinder> token = commandEntry->inputChannel != nullptr
? commandEntry->inputChannel->getConnectionToken()
: nullptr;
nsecs_t delay = mPolicy->interceptKeyBeforeDispatching(token, &event, entry->policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeDispatching; took %s ms",
std::to_string(t.duration().count()).c_str());
}
mLock.lock();
if (delay < 0) {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_SKIP;
} else if (!delay) {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER;
entry->interceptKeyWakeupTime = now() + delay;
}
entry->release();
}
void InputDispatcher::doOnPointerDownOutsideFocusLockedInterruptible(CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->onPointerDownOutsideFocus(commandEntry->newToken);
mLock.lock();
}
/**
* Connection is responsive if it has no events in the waitQueue that are older than the
* current time.
*/
static bool isConnectionResponsive(const Connection& connection) {
const nsecs_t currentTime = now();
for (const DispatchEntry* entry : connection.waitQueue) {
if (entry->timeoutTime < currentTime) {
return false;
}
}
return true;
}
void InputDispatcher::doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
const nsecs_t finishTime = commandEntry->eventTime;
uint32_t seq = commandEntry->seq;
const bool handled = commandEntry->handled;
// Handle post-event policy actions.
std::deque<DispatchEntry*>::iterator dispatchEntryIt = connection->findWaitQueueEntry(seq);
if (dispatchEntryIt == connection->waitQueue.end()) {
return;
}
DispatchEntry* dispatchEntry = *dispatchEntryIt;
const nsecs_t eventDuration = finishTime - dispatchEntry->deliveryTime;
if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
ALOGI("%s spent %" PRId64 "ms processing %s", connection->getWindowName().c_str(),
ns2ms(eventDuration), dispatchEntry->eventEntry->getDescription().c_str());
}
reportDispatchStatistics(std::chrono::nanoseconds(eventDuration), *connection, handled);
bool restartEvent;
if (dispatchEntry->eventEntry->type == EventEntry::Type::KEY) {
KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry);
restartEvent =
afterKeyEventLockedInterruptible(connection, dispatchEntry, keyEntry, handled);
} else if (dispatchEntry->eventEntry->type == EventEntry::Type::MOTION) {
MotionEntry* motionEntry = static_cast<MotionEntry*>(dispatchEntry->eventEntry);
restartEvent = afterMotionEventLockedInterruptible(connection, dispatchEntry, motionEntry,
handled);
} else {
restartEvent = false;
}
// Dequeue the event and start the next cycle.
// Because the lock might have been released, it is possible that the
// contents of the wait queue to have been drained, so we need to double-check
// a few things.
dispatchEntryIt = connection->findWaitQueueEntry(seq);
if (dispatchEntryIt != connection->waitQueue.end()) {
dispatchEntry = *dispatchEntryIt;
connection->waitQueue.erase(dispatchEntryIt);
mAnrTracker.erase(dispatchEntry->timeoutTime,
connection->inputChannel->getConnectionToken());
if (!connection->responsive) {
connection->responsive = isConnectionResponsive(*connection);
}
traceWaitQueueLength(connection);
if (restartEvent && connection->status == Connection::STATUS_NORMAL) {
connection->outboundQueue.push_front(dispatchEntry);
traceOutboundQueueLength(connection);
} else {
releaseDispatchEntry(dispatchEntry);
}
}
// Start the next dispatch cycle for this connection.
startDispatchCycleLocked(now(), connection);
}
bool InputDispatcher::afterKeyEventLockedInterruptible(const sp<Connection>& connection,
DispatchEntry* dispatchEntry,
KeyEntry* keyEntry, bool handled) {
if (keyEntry->flags & AKEY_EVENT_FLAG_FALLBACK) {
if (!handled) {
// Report the key as unhandled, since the fallback was not handled.
mReporter->reportUnhandledKey(keyEntry->id);
}
return false;
}
// Get the fallback key state.
// Clear it out after dispatching the UP.
int32_t originalKeyCode = keyEntry->keyCode;
int32_t fallbackKeyCode = connection->inputState.getFallbackKey(originalKeyCode);
if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
connection->inputState.removeFallbackKey(originalKeyCode);
}
if (handled || !dispatchEntry->hasForegroundTarget()) {
// If the application handles the original key for which we previously
// generated a fallback or if the window is not a foreground window,
// then cancel the associated fallback key, if any.
if (fallbackKeyCode != -1) {
// Dispatch the unhandled key to the policy with the cancel flag.
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Asking policy to cancel fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry->keyCode, keyEntry->action, keyEntry->repeatCount,
keyEntry->policyFlags);
#endif
KeyEvent event = createKeyEvent(*keyEntry);
event.setFlags(event.getFlags() | AKEY_EVENT_FLAG_CANCELED);
mLock.unlock();
mPolicy->dispatchUnhandledKey(connection->inputChannel->getConnectionToken(), &event,
keyEntry->policyFlags, &event);
mLock.lock();
// Cancel the fallback key.
if (fallbackKeyCode != AKEYCODE_UNKNOWN) {
CancelationOptions options(CancelationOptions::CANCEL_FALLBACK_EVENTS,
"application handled the original non-fallback key "
"or is no longer a foreground target, "
"canceling previously dispatched fallback key");
options.keyCode = fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
connection->inputState.removeFallbackKey(originalKeyCode);
}
} else {
// If the application did not handle a non-fallback key, first check
// that we are in a good state to perform unhandled key event processing
// Then ask the policy what to do with it.
bool initialDown = keyEntry->action == AKEY_EVENT_ACTION_DOWN && keyEntry->repeatCount == 0;
if (fallbackKeyCode == -1 && !initialDown) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Skipping unhandled key event processing "
"since this is not an initial down. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
originalKeyCode, keyEntry->action, keyEntry->repeatCount, keyEntry->policyFlags);
#endif
return false;
}
// Dispatch the unhandled key to the policy.
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Asking policy to perform fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry->keyCode, keyEntry->action, keyEntry->repeatCount, keyEntry->policyFlags);
#endif
KeyEvent event = createKeyEvent(*keyEntry);
mLock.unlock();
bool fallback =
mPolicy->dispatchUnhandledKey(connection->inputChannel->getConnectionToken(),
&event, keyEntry->policyFlags, &event);
mLock.lock();
if (connection->status != Connection::STATUS_NORMAL) {
connection->inputState.removeFallbackKey(originalKeyCode);
return false;
}
// Latch the fallback keycode for this key on an initial down.
// The fallback keycode cannot change at any other point in the lifecycle.
if (initialDown) {
if (fallback) {
fallbackKeyCode = event.getKeyCode();
} else {
fallbackKeyCode = AKEYCODE_UNKNOWN;
}
connection->inputState.setFallbackKey(originalKeyCode, fallbackKeyCode);
}
ALOG_ASSERT(fallbackKeyCode != -1);
// Cancel the fallback key if the policy decides not to send it anymore.
// We will continue to dispatch the key to the policy but we will no
// longer dispatch a fallback key to the application.
if (fallbackKeyCode != AKEYCODE_UNKNOWN &&
(!fallback || fallbackKeyCode != event.getKeyCode())) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
if (fallback) {
ALOGD("Unhandled key event: Policy requested to send key %d"
"as a fallback for %d, but on the DOWN it had requested "
"to send %d instead. Fallback canceled.",
event.getKeyCode(), originalKeyCode, fallbackKeyCode);
} else {
ALOGD("Unhandled key event: Policy did not request fallback for %d, "
"but on the DOWN it had requested to send %d. "
"Fallback canceled.",
originalKeyCode, fallbackKeyCode);
}
#endif
CancelationOptions options(CancelationOptions::CANCEL_FALLBACK_EVENTS,
"canceling fallback, policy no longer desires it");
options.keyCode = fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
fallback = false;
fallbackKeyCode = AKEYCODE_UNKNOWN;
if (keyEntry->action != AKEY_EVENT_ACTION_UP) {
connection->inputState.setFallbackKey(originalKeyCode, fallbackKeyCode);
}
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
{
std::string msg;
const KeyedVector<int32_t, int32_t>& fallbackKeys =
connection->inputState.getFallbackKeys();
for (size_t i = 0; i < fallbackKeys.size(); i++) {
msg += StringPrintf(", %d->%d", fallbackKeys.keyAt(i), fallbackKeys.valueAt(i));
}
ALOGD("Unhandled key event: %zu currently tracked fallback keys%s.",
fallbackKeys.size(), msg.c_str());
}
#endif
if (fallback) {
// Restart the dispatch cycle using the fallback key.
keyEntry->eventTime = event.getEventTime();
keyEntry->deviceId = event.getDeviceId();
keyEntry->source = event.getSource();
keyEntry->displayId = event.getDisplayId();
keyEntry->flags = event.getFlags() | AKEY_EVENT_FLAG_FALLBACK;
keyEntry->keyCode = fallbackKeyCode;
keyEntry->scanCode = event.getScanCode();
keyEntry->metaState = event.getMetaState();
keyEntry->repeatCount = event.getRepeatCount();
keyEntry->downTime = event.getDownTime();
keyEntry->syntheticRepeat = false;
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Dispatching fallback key. "
"originalKeyCode=%d, fallbackKeyCode=%d, fallbackMetaState=%08x",
originalKeyCode, fallbackKeyCode, keyEntry->metaState);
#endif
return true; // restart the event
} else {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: No fallback key.");
#endif
// Report the key as unhandled, since there is no fallback key.
mReporter->reportUnhandledKey(keyEntry->id);
}
}
return false;
}
bool InputDispatcher::afterMotionEventLockedInterruptible(const sp<Connection>& connection,
DispatchEntry* dispatchEntry,
MotionEntry* motionEntry, bool handled) {
return false;
}
void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType);
mLock.lock();
}
KeyEvent InputDispatcher::createKeyEvent(const KeyEntry& entry) {
KeyEvent event;
event.initialize(entry.id, entry.deviceId, entry.source, entry.displayId, INVALID_HMAC,
entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState,
entry.repeatCount, entry.downTime, entry.eventTime);
return event;
}
void InputDispatcher::reportDispatchStatistics(std::chrono::nanoseconds eventDuration,
const Connection& connection, bool handled) {
// TODO Write some statistics about how long we spend waiting.
}
/**
* Report the touch event latency to the statsd server.
* Input events are reported for statistics if:
* - This is a touchscreen event
* - InputFilter is not enabled
* - Event is not injected or synthesized
*
* Statistics should be reported before calling addValue, to prevent a fresh new sample
* from getting aggregated with the "old" data.
*/
void InputDispatcher::reportTouchEventForStatistics(const MotionEntry& motionEntry)
REQUIRES(mLock) {
const bool reportForStatistics = (motionEntry.source == AINPUT_SOURCE_TOUCHSCREEN) &&
!(motionEntry.isSynthesized()) && !mInputFilterEnabled;
if (!reportForStatistics) {
return;
}
if (mTouchStatistics.shouldReport()) {
android::util::stats_write(android::util::TOUCH_EVENT_REPORTED, mTouchStatistics.getMin(),
mTouchStatistics.getMax(), mTouchStatistics.getMean(),
mTouchStatistics.getStDev(), mTouchStatistics.getCount());
mTouchStatistics.reset();
}
const float latencyMicros = nanoseconds_to_microseconds(now() - motionEntry.eventTime);
mTouchStatistics.addValue(latencyMicros);
}
void InputDispatcher::traceInboundQueueLengthLocked() {
if (ATRACE_ENABLED()) {
ATRACE_INT("iq", mInboundQueue.size());
}
}
void InputDispatcher::traceOutboundQueueLength(const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "oq:%s", connection->getWindowName().c_str());
ATRACE_INT(counterName, connection->outboundQueue.size());
}
}
void InputDispatcher::traceWaitQueueLength(const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "wq:%s", connection->getWindowName().c_str());
ATRACE_INT(counterName, connection->waitQueue.size());
}
}
void InputDispatcher::dump(std::string& dump) {
std::scoped_lock _l(mLock);
dump += "Input Dispatcher State:\n";
dumpDispatchStateLocked(dump);
if (!mLastAnrState.empty()) {
dump += "\nInput Dispatcher State at time of last ANR:\n";
dump += mLastAnrState;
}
}
void InputDispatcher::monitor() {
// Acquire and release the lock to ensure that the dispatcher has not deadlocked.
std::unique_lock _l(mLock);
mLooper->wake();
mDispatcherIsAlive.wait(_l);
}
/**
* Wake up the dispatcher and wait until it processes all events and commands.
* The notification of mDispatcherEnteredIdle is guaranteed to happen after wake(), so
* this method can be safely called from any thread, as long as you've ensured that
* the work you are interested in completing has already been queued.
*/
bool InputDispatcher::waitForIdle() {
/**
* Timeout should represent the longest possible time that a device might spend processing
* events and commands.
*/
constexpr std::chrono::duration TIMEOUT = 100ms;
std::unique_lock lock(mLock);
mLooper->wake();
std::cv_status result = mDispatcherEnteredIdle.wait_for(lock, TIMEOUT);
return result == std::cv_status::no_timeout;
}
} // namespace android::inputdispatcher