blob: 5494ff1f306dbcf4b79428b7218b7e2b85c4dd6a [file] [log] [blame]
* Copyright (C) 2012 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include <gui/ConsumerBase.h>
#include <ui/GraphicBuffer.h>
#include <utils/String8.h>
#include <utils/Vector.h>
#include <utils/threads.h>
namespace android {
class BufferQueue;
* BufferItemConsumer is a BufferQueue consumer endpoint that allows clients
* access to the whole BufferItem entry from BufferQueue. Multiple buffers may
* be acquired at once, to be used concurrently by the client. This consumer can
* operate either in synchronous or asynchronous mode.
class BufferItemConsumer: public ConsumerBase
typedef ConsumerBase::FrameAvailableListener FrameAvailableListener;
typedef BufferQueue::BufferItem BufferItem;
enum { DEFAULT_MAX_BUFFERS = -1 };
// Create a new buffer item consumer. The consumerUsage parameter determines
// the consumer usage flags passed to the graphics allocator. The
// bufferCount parameter specifies how many buffers can be locked for user
// access at the same time.
// controlledByApp tells whether this consumer is controlled by the
// application.
BufferItemConsumer(const sp<IGraphicBufferConsumer>& consumer,
uint32_t consumerUsage, int bufferCount = DEFAULT_MAX_BUFFERS,
bool controlledByApp = false);
virtual ~BufferItemConsumer();
// set the name of the BufferItemConsumer that will be used to identify it in
// log messages.
void setName(const String8& name);
// Gets the next graphics buffer from the producer, filling out the
// passed-in BufferItem structure. Returns NO_BUFFER_AVAILABLE if the queue
// of buffers is empty, and INVALID_OPERATION if the maximum number of
// buffers is already acquired.
// Only a fixed number of buffers can be acquired at a time, determined by
// the construction-time bufferCount parameter. If INVALID_OPERATION is
// returned by acquireBuffer, then old buffers must be returned to the
// queue by calling releaseBuffer before more buffers can be acquired.
// If waitForFence is true, and the acquired BufferItem has a valid fence object,
// acquireBuffer will wait on the fence with no timeout before returning.
status_t acquireBuffer(BufferItem *item, nsecs_t presentWhen,
bool waitForFence = true);
// Returns an acquired buffer to the queue, allowing it to be reused. Since
// only a fixed number of buffers may be acquired at a time, old buffers
// must be released by calling releaseBuffer to ensure new buffers can be
// acquired by acquireBuffer. Once a BufferItem is released, the caller must
// not access any members of the BufferItem, and should immediately remove
// all of its references to the BufferItem itself.
status_t releaseBuffer(const BufferItem &item,
const sp<Fence>& releaseFence = Fence::NO_FENCE);
// setDefaultBufferSize is used to set the size of buffers returned by
// requestBuffers when a with and height of zero is requested.
status_t setDefaultBufferSize(uint32_t w, uint32_t h);
// setDefaultBufferFormat allows the BufferQueue to create
// GraphicBuffers of a defaultFormat if no format is specified
// in dequeueBuffer
status_t setDefaultBufferFormat(uint32_t defaultFormat);
} // namespace android