blob: 1a133dc01ccc8ffbc4b7b67c13bb6b1866e63c2e [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../dispatcher/InputDispatcher.h"
#include <android-base/stringprintf.h>
#include <android-base/thread_annotations.h>
#include <binder/Binder.h>
#include <input/Input.h>
#include <gtest/gtest.h>
#include <linux/input.h>
#include <cinttypes>
#include <thread>
#include <unordered_set>
#include <vector>
using android::base::StringPrintf;
namespace android::inputdispatcher {
// An arbitrary time value.
static const nsecs_t ARBITRARY_TIME = 1234;
// An arbitrary device id.
static const int32_t DEVICE_ID = 1;
// An arbitrary display id.
static const int32_t DISPLAY_ID = ADISPLAY_ID_DEFAULT;
// An arbitrary injector pid / uid pair that has permission to inject events.
static const int32_t INJECTOR_PID = 999;
static const int32_t INJECTOR_UID = 1001;
struct PointF {
float x;
float y;
};
/**
* Return a DOWN key event with KEYCODE_A.
*/
static KeyEvent getTestKeyEvent() {
KeyEvent event;
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0,
ARBITRARY_TIME, ARBITRARY_TIME);
return event;
}
// --- FakeInputDispatcherPolicy ---
class FakeInputDispatcherPolicy : public InputDispatcherPolicyInterface {
InputDispatcherConfiguration mConfig;
protected:
virtual ~FakeInputDispatcherPolicy() {
}
public:
FakeInputDispatcherPolicy() {
}
void assertFilterInputEventWasCalled(const NotifyKeyArgs& args) {
assertFilterInputEventWasCalled(AINPUT_EVENT_TYPE_KEY, args.eventTime, args.action,
args.displayId);
}
void assertFilterInputEventWasCalled(const NotifyMotionArgs& args) {
assertFilterInputEventWasCalled(AINPUT_EVENT_TYPE_MOTION, args.eventTime, args.action,
args.displayId);
}
void assertFilterInputEventWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_EQ(nullptr, mFilteredEvent);
}
void assertNotifyConfigurationChangedWasCalled(nsecs_t when) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mConfigurationChangedTime)
<< "Timed out waiting for configuration changed call";
ASSERT_EQ(*mConfigurationChangedTime, when);
mConfigurationChangedTime = std::nullopt;
}
void assertNotifySwitchWasCalled(const NotifySwitchArgs& args) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mLastNotifySwitch);
// We do not check id because it is not exposed to the policy
EXPECT_EQ(args.eventTime, mLastNotifySwitch->eventTime);
EXPECT_EQ(args.policyFlags, mLastNotifySwitch->policyFlags);
EXPECT_EQ(args.switchValues, mLastNotifySwitch->switchValues);
EXPECT_EQ(args.switchMask, mLastNotifySwitch->switchMask);
mLastNotifySwitch = std::nullopt;
}
void assertOnPointerDownEquals(const sp<IBinder>& touchedToken) {
std::scoped_lock lock(mLock);
ASSERT_EQ(touchedToken, mOnPointerDownToken);
mOnPointerDownToken.clear();
}
void assertOnPointerDownWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mOnPointerDownToken == nullptr)
<< "Expected onPointerDownOutsideFocus to not have been called";
}
// This function must be called soon after the expected ANR timer starts,
// because we are also checking how much time has passed.
void assertNotifyAnrWasCalled(std::chrono::nanoseconds timeout,
const sp<InputApplicationHandle>& expectedApplication,
const sp<IBinder>& expectedToken) {
std::pair<sp<InputApplicationHandle>, sp<IBinder>> anrData;
ASSERT_NO_FATAL_FAILURE(anrData = getNotifyAnrData(timeout));
ASSERT_EQ(expectedApplication, anrData.first);
ASSERT_EQ(expectedToken, anrData.second);
}
std::pair<sp<InputApplicationHandle>, sp<IBinder>> getNotifyAnrData(
std::chrono::nanoseconds timeout) {
const std::chrono::time_point start = std::chrono::steady_clock::now();
std::unique_lock lock(mLock);
std::chrono::duration timeToWait = timeout + 100ms; // provide some slack
android::base::ScopedLockAssertion assumeLocked(mLock);
// If there is an ANR, Dispatcher won't be idle because there are still events
// in the waitQueue that we need to check on. So we can't wait for dispatcher to be idle
// before checking if ANR was called.
// Since dispatcher is not guaranteed to call notifyAnr right away, we need to provide
// it some time to act. 100ms seems reasonable.
mNotifyAnr.wait_for(lock, timeToWait, [this]() REQUIRES(mLock) {
return !mAnrApplications.empty() && !mAnrWindowTokens.empty();
});
const std::chrono::duration waited = std::chrono::steady_clock::now() - start;
if (mAnrApplications.empty() || mAnrWindowTokens.empty()) {
ADD_FAILURE() << "Did not receive ANR callback";
}
// Ensure that the ANR didn't get raised too early. We can't be too strict here because
// the dispatcher started counting before this function was called
if (std::chrono::abs(timeout - waited) > 100ms) {
ADD_FAILURE() << "ANR was raised too early or too late. Expected "
<< std::chrono::duration_cast<std::chrono::milliseconds>(timeout).count()
<< "ms, but waited "
<< std::chrono::duration_cast<std::chrono::milliseconds>(waited).count()
<< "ms instead";
}
std::pair<sp<InputApplicationHandle>, sp<IBinder>> result =
std::make_pair(mAnrApplications.front(), mAnrWindowTokens.front());
mAnrApplications.pop();
mAnrWindowTokens.pop();
return result;
}
void assertNotifyAnrWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mAnrApplications.empty());
ASSERT_TRUE(mAnrWindowTokens.empty());
}
void setKeyRepeatConfiguration(nsecs_t timeout, nsecs_t delay) {
mConfig.keyRepeatTimeout = timeout;
mConfig.keyRepeatDelay = delay;
}
void setAnrTimeout(std::chrono::nanoseconds timeout) { mAnrTimeout = timeout; }
private:
std::mutex mLock;
std::unique_ptr<InputEvent> mFilteredEvent GUARDED_BY(mLock);
std::optional<nsecs_t> mConfigurationChangedTime GUARDED_BY(mLock);
sp<IBinder> mOnPointerDownToken GUARDED_BY(mLock);
std::optional<NotifySwitchArgs> mLastNotifySwitch GUARDED_BY(mLock);
// ANR handling
std::queue<sp<InputApplicationHandle>> mAnrApplications GUARDED_BY(mLock);
std::queue<sp<IBinder>> mAnrWindowTokens GUARDED_BY(mLock);
std::condition_variable mNotifyAnr;
std::chrono::nanoseconds mAnrTimeout = 0ms;
virtual void notifyConfigurationChanged(nsecs_t when) override {
std::scoped_lock lock(mLock);
mConfigurationChangedTime = when;
}
virtual nsecs_t notifyAnr(const sp<InputApplicationHandle>& application,
const sp<IBinder>& windowToken, const std::string&) override {
std::scoped_lock lock(mLock);
mAnrApplications.push(application);
mAnrWindowTokens.push(windowToken);
mNotifyAnr.notify_all();
return mAnrTimeout.count();
}
virtual void notifyInputChannelBroken(const sp<IBinder>&) override {}
virtual void notifyFocusChanged(const sp<IBinder>&, const sp<IBinder>&) override {}
virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) override {
*outConfig = mConfig;
}
virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) override {
std::scoped_lock lock(mLock);
switch (inputEvent->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent* keyEvent = static_cast<const KeyEvent*>(inputEvent);
mFilteredEvent = std::make_unique<KeyEvent>(*keyEvent);
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(inputEvent);
mFilteredEvent = std::make_unique<MotionEvent>(*motionEvent);
break;
}
}
return true;
}
virtual void interceptKeyBeforeQueueing(const KeyEvent*, uint32_t&) override {}
virtual void interceptMotionBeforeQueueing(int32_t, nsecs_t, uint32_t&) override {}
virtual nsecs_t interceptKeyBeforeDispatching(const sp<IBinder>&, const KeyEvent*,
uint32_t) override {
return 0;
}
virtual bool dispatchUnhandledKey(const sp<IBinder>&, const KeyEvent*, uint32_t,
KeyEvent*) override {
return false;
}
virtual void notifySwitch(nsecs_t when, uint32_t switchValues, uint32_t switchMask,
uint32_t policyFlags) override {
std::scoped_lock lock(mLock);
/** We simply reconstruct NotifySwitchArgs in policy because InputDispatcher is
* essentially a passthrough for notifySwitch.
*/
mLastNotifySwitch = NotifySwitchArgs(1 /*id*/, when, policyFlags, switchValues, switchMask);
}
virtual void pokeUserActivity(nsecs_t, int32_t) override {}
virtual bool checkInjectEventsPermissionNonReentrant(int32_t, int32_t) override {
return false;
}
virtual void onPointerDownOutsideFocus(const sp<IBinder>& newToken) override {
std::scoped_lock lock(mLock);
mOnPointerDownToken = newToken;
}
void assertFilterInputEventWasCalled(int type, nsecs_t eventTime, int32_t action,
int32_t displayId) {
std::scoped_lock lock(mLock);
ASSERT_NE(nullptr, mFilteredEvent) << "Expected filterInputEvent() to have been called.";
ASSERT_EQ(mFilteredEvent->getType(), type);
if (type == AINPUT_EVENT_TYPE_KEY) {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(*mFilteredEvent);
EXPECT_EQ(keyEvent.getEventTime(), eventTime);
EXPECT_EQ(keyEvent.getAction(), action);
EXPECT_EQ(keyEvent.getDisplayId(), displayId);
} else if (type == AINPUT_EVENT_TYPE_MOTION) {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*mFilteredEvent);
EXPECT_EQ(motionEvent.getEventTime(), eventTime);
EXPECT_EQ(motionEvent.getAction(), action);
EXPECT_EQ(motionEvent.getDisplayId(), displayId);
} else {
FAIL() << "Unknown type: " << type;
}
mFilteredEvent = nullptr;
}
};
// --- HmacKeyManagerTest ---
class HmacKeyManagerTest : public testing::Test {
protected:
HmacKeyManager mHmacKeyManager;
};
/**
* Ensure that separate calls to sign the same data are generating the same key.
* We avoid asserting against INVALID_HMAC. Since the key is random, there is a non-zero chance
* that a specific key and data combination would produce INVALID_HMAC, which would cause flaky
* tests.
*/
TEST_F(HmacKeyManagerTest, GeneratedHmac_IsConsistent) {
KeyEvent event = getTestKeyEvent();
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event);
std::array<uint8_t, 32> hmac1 = mHmacKeyManager.sign(verifiedEvent);
std::array<uint8_t, 32> hmac2 = mHmacKeyManager.sign(verifiedEvent);
ASSERT_EQ(hmac1, hmac2);
}
/**
* Ensure that changes in VerifiedKeyEvent produce a different hmac.
*/
TEST_F(HmacKeyManagerTest, GeneratedHmac_ChangesWhenFieldsChange) {
KeyEvent event = getTestKeyEvent();
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event);
std::array<uint8_t, 32> initialHmac = mHmacKeyManager.sign(verifiedEvent);
verifiedEvent.deviceId += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.source += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.eventTimeNanos += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.displayId += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.action += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.downTimeNanos += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.flags += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.keyCode += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.scanCode += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.metaState += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
verifiedEvent.repeatCount += 1;
ASSERT_NE(initialHmac, mHmacKeyManager.sign(verifiedEvent));
}
// --- InputDispatcherTest ---
class InputDispatcherTest : public testing::Test {
protected:
sp<FakeInputDispatcherPolicy> mFakePolicy;
sp<InputDispatcher> mDispatcher;
virtual void SetUp() override {
mFakePolicy = new FakeInputDispatcherPolicy();
mDispatcher = new InputDispatcher(mFakePolicy);
mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false);
//Start InputDispatcher thread
ASSERT_EQ(OK, mDispatcher->start());
}
virtual void TearDown() override {
ASSERT_EQ(OK, mDispatcher->stop());
mFakePolicy.clear();
mDispatcher.clear();
}
/**
* Used for debugging when writing the test
*/
void dumpDispatcherState() {
std::string dump;
mDispatcher->dump(dump);
std::stringstream ss(dump);
std::string to;
while (std::getline(ss, to, '\n')) {
ALOGE("%s", to.c_str());
}
}
};
TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesKeyEvents) {
KeyEvent event;
// Rejects undefined key actions.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC,
/*action*/ -1, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0, ARBITRARY_TIME,
ARBITRARY_TIME);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject key events with undefined action.";
// Rejects ACTION_MULTIPLE since it is not supported despite being defined in the API.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_MULTIPLE, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0,
ARBITRARY_TIME, ARBITRARY_TIME);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject key events with ACTION_MULTIPLE.";
}
TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesMotionEvents) {
MotionEvent event;
PointerProperties pointerProperties[MAX_POINTERS + 1];
PointerCoords pointerCoords[MAX_POINTERS + 1];
for (int i = 0; i <= MAX_POINTERS; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerCoords[i].clear();
}
// Some constants commonly used below
constexpr int32_t source = AINPUT_SOURCE_TOUCHSCREEN;
constexpr int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
constexpr int32_t metaState = AMETA_NONE;
constexpr MotionClassification classification = MotionClassification::NONE;
// Rejects undefined motion actions.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
/*action*/ -1, 0, 0, edgeFlags, metaState, 0, classification, 1 /* xScale */,
1 /* yScale */, 0, 0, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with undefined action.";
// Rejects pointer down with invalid index.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_DOWN |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, 1 /* xScale */, 1 /* yScale */,
0, 0, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with pointer down index too large.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_DOWN |
(~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, 1 /* xScale */, 1 /* yScale */,
0, 0, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with pointer down index too small.";
// Rejects pointer up with invalid index.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_UP |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, 1 /* xScale */, 1 /* yScale */,
0, 0, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with pointer up index too large.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_UP |
(~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, 1 /* xScale */, 1 /* yScale */,
0, 0, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with pointer up index too small.";
// Rejects motion events with invalid number of pointers.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
1 /* xScale */, 1 /* yScale */, 0, 0, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 0, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with 0 pointers.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
1 /* xScale */, 1 /* yScale */, 0, 0, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ MAX_POINTERS + 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with more than MAX_POINTERS pointers.";
// Rejects motion events with invalid pointer ids.
pointerProperties[0].id = -1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
1 /* xScale */, 1 /* yScale */, 0, 0, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with pointer ids less than 0.";
pointerProperties[0].id = MAX_POINTER_ID + 1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
1 /* xScale */, 1 /* yScale */, 0, 0, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with pointer ids greater than MAX_POINTER_ID.";
// Rejects motion events with duplicate pointer ids.
pointerProperties[0].id = 1;
pointerProperties[1].id = 1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
1 /* xScale */, 1 /* yScale */, 0, 0, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 2, pointerProperties, pointerCoords);
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
INPUT_EVENT_INJECTION_SYNC_NONE, 0ms, 0))
<< "Should reject motion events with duplicate pointer ids.";
}
/* Test InputDispatcher for notifyConfigurationChanged and notifySwitch events */
TEST_F(InputDispatcherTest, NotifyConfigurationChanged_CallsPolicy) {
constexpr nsecs_t eventTime = 20;
NotifyConfigurationChangedArgs args(10 /*id*/, eventTime);
mDispatcher->notifyConfigurationChanged(&args);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyConfigurationChangedWasCalled(eventTime);
}
TEST_F(InputDispatcherTest, NotifySwitch_CallsPolicy) {
NotifySwitchArgs args(10 /*id*/, 20 /*eventTime*/, 0 /*policyFlags*/, 1 /*switchValues*/,
2 /*switchMask*/);
mDispatcher->notifySwitch(&args);
// InputDispatcher adds POLICY_FLAG_TRUSTED because the event went through InputListener
args.policyFlags |= POLICY_FLAG_TRUSTED;
mFakePolicy->assertNotifySwitchWasCalled(args);
}
// --- InputDispatcherTest SetInputWindowTest ---
static constexpr std::chrono::duration INJECT_EVENT_TIMEOUT = 500ms;
static constexpr std::chrono::nanoseconds DISPATCHING_TIMEOUT = 5s;
class FakeApplicationHandle : public InputApplicationHandle {
public:
FakeApplicationHandle() {
mInfo.name = "Fake Application";
mInfo.token = new BBinder();
mInfo.dispatchingTimeout = DISPATCHING_TIMEOUT.count();
}
virtual ~FakeApplicationHandle() {}
virtual bool updateInfo() override {
return true;
}
void setDispatchingTimeout(std::chrono::nanoseconds timeout) {
mInfo.dispatchingTimeout = timeout.count();
}
};
class FakeInputReceiver {
public:
explicit FakeInputReceiver(const sp<InputChannel>& clientChannel, const std::string name)
: mName(name) {
mConsumer = std::make_unique<InputConsumer>(clientChannel);
}
InputEvent* consume() {
InputEvent* event;
std::optional<uint32_t> consumeSeq = receiveEvent(&event);
if (!consumeSeq) {
return nullptr;
}
finishEvent(*consumeSeq);
return event;
}
/**
* Receive an event without acknowledging it.
* Return the sequence number that could later be used to send finished signal.
*/
std::optional<uint32_t> receiveEvent(InputEvent** outEvent = nullptr) {
uint32_t consumeSeq;
InputEvent* event;
std::chrono::time_point start = std::chrono::steady_clock::now();
status_t status = WOULD_BLOCK;
while (status == WOULD_BLOCK) {
status = mConsumer->consume(&mEventFactory, true /*consumeBatches*/, -1, &consumeSeq,
&event);
std::chrono::duration elapsed = std::chrono::steady_clock::now() - start;
if (elapsed > 100ms) {
break;
}
}
if (status == WOULD_BLOCK) {
// Just means there's no event available.
return std::nullopt;
}
if (status != OK) {
ADD_FAILURE() << mName.c_str() << ": consumer consume should return OK.";
return std::nullopt;
}
if (event == nullptr) {
ADD_FAILURE() << "Consumed correctly, but received NULL event from consumer";
return std::nullopt;
}
if (outEvent != nullptr) {
*outEvent = event;
}
return consumeSeq;
}
/**
* To be used together with "receiveEvent" to complete the consumption of an event.
*/
void finishEvent(uint32_t consumeSeq) {
const status_t status = mConsumer->sendFinishedSignal(consumeSeq, true);
ASSERT_EQ(OK, status) << mName.c_str() << ": consumer sendFinishedSignal should return OK.";
}
void consumeEvent(int32_t expectedEventType, int32_t expectedAction, int32_t expectedDisplayId,
int32_t expectedFlags) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(expectedEventType, event->getType())
<< mName.c_str() << " expected " << inputEventTypeToString(expectedEventType)
<< " event, got " << inputEventTypeToString(event->getType()) << " event";
EXPECT_EQ(expectedDisplayId, event->getDisplayId());
switch (expectedEventType) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(*event);
EXPECT_EQ(expectedAction, keyEvent.getAction());
EXPECT_EQ(expectedFlags, keyEvent.getFlags());
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
EXPECT_EQ(expectedAction, motionEvent.getAction());
EXPECT_EQ(expectedFlags, motionEvent.getFlags());
break;
}
case AINPUT_EVENT_TYPE_FOCUS: {
FAIL() << "Use 'consumeFocusEvent' for FOCUS events";
}
default: {
FAIL() << mName.c_str() << ": invalid event type: " << expectedEventType;
}
}
}
void consumeFocusEvent(bool hasFocus, bool inTouchMode) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(AINPUT_EVENT_TYPE_FOCUS, event->getType())
<< "Got " << inputEventTypeToString(event->getType())
<< " event instead of FOCUS event";
ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
FocusEvent* focusEvent = static_cast<FocusEvent*>(event);
EXPECT_EQ(hasFocus, focusEvent->getHasFocus());
EXPECT_EQ(inTouchMode, focusEvent->getInTouchMode());
}
void assertNoEvents() {
InputEvent* event = consume();
if (event == nullptr) {
return;
}
if (event->getType() == AINPUT_EVENT_TYPE_KEY) {
KeyEvent& keyEvent = static_cast<KeyEvent&>(*event);
ADD_FAILURE() << "Received key event "
<< KeyEvent::actionToString(keyEvent.getAction());
} else if (event->getType() == AINPUT_EVENT_TYPE_MOTION) {
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
ADD_FAILURE() << "Received motion event "
<< MotionEvent::actionToString(motionEvent.getAction());
} else if (event->getType() == AINPUT_EVENT_TYPE_FOCUS) {
FocusEvent& focusEvent = static_cast<FocusEvent&>(*event);
ADD_FAILURE() << "Received focus event, hasFocus = "
<< (focusEvent.getHasFocus() ? "true" : "false");
}
FAIL() << mName.c_str()
<< ": should not have received any events, so consume() should return NULL";
}
sp<IBinder> getToken() { return mConsumer->getChannel()->getConnectionToken(); }
protected:
std::unique_ptr<InputConsumer> mConsumer;
PreallocatedInputEventFactory mEventFactory;
std::string mName;
};
class FakeWindowHandle : public InputWindowHandle {
public:
static const int32_t WIDTH = 600;
static const int32_t HEIGHT = 800;
FakeWindowHandle(const sp<InputApplicationHandle>& inputApplicationHandle,
const sp<InputDispatcher>& dispatcher, const std::string name,
int32_t displayId, sp<IBinder> token = nullptr)
: mName(name) {
if (token == nullptr) {
sp<InputChannel> serverChannel, clientChannel;
InputChannel::openInputChannelPair(name, serverChannel, clientChannel);
mInputReceiver = std::make_unique<FakeInputReceiver>(clientChannel, name);
dispatcher->registerInputChannel(serverChannel);
token = serverChannel->getConnectionToken();
}
inputApplicationHandle->updateInfo();
mInfo.applicationInfo = *inputApplicationHandle->getInfo();
mInfo.token = token;
mInfo.id = sId++;
mInfo.name = name;
mInfo.layoutParamsFlags = 0;
mInfo.layoutParamsType = InputWindowInfo::TYPE_APPLICATION;
mInfo.dispatchingTimeout = DISPATCHING_TIMEOUT.count();
mInfo.frameLeft = 0;
mInfo.frameTop = 0;
mInfo.frameRight = WIDTH;
mInfo.frameBottom = HEIGHT;
mInfo.globalScaleFactor = 1.0;
mInfo.touchableRegion.clear();
mInfo.addTouchableRegion(Rect(0, 0, WIDTH, HEIGHT));
mInfo.visible = true;
mInfo.canReceiveKeys = true;
mInfo.hasFocus = false;
mInfo.hasWallpaper = false;
mInfo.paused = false;
mInfo.ownerPid = INJECTOR_PID;
mInfo.ownerUid = INJECTOR_UID;
mInfo.inputFeatures = 0;
mInfo.displayId = displayId;
}
virtual bool updateInfo() { return true; }
void setFocus(bool hasFocus) { mInfo.hasFocus = hasFocus; }
void setDispatchingTimeout(std::chrono::nanoseconds timeout) {
mInfo.dispatchingTimeout = timeout.count();
}
void setPaused(bool paused) { mInfo.paused = paused; }
void setFrame(const Rect& frame) {
mInfo.frameLeft = frame.left;
mInfo.frameTop = frame.top;
mInfo.frameRight = frame.right;
mInfo.frameBottom = frame.bottom;
mInfo.touchableRegion.clear();
mInfo.addTouchableRegion(frame);
}
void setLayoutParamFlags(int32_t flags) { mInfo.layoutParamsFlags = flags; }
void setWindowScale(float xScale, float yScale) {
mInfo.windowXScale = xScale;
mInfo.windowYScale = yScale;
}
void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_DOWN, expectedDisplayId,
expectedFlags);
}
void consumeKeyUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, expectedDisplayId, expectedFlags);
}
void consumeMotionCancel(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, expectedDisplayId,
expectedFlags);
}
void consumeMotionMove(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_MOVE, expectedDisplayId,
expectedFlags);
}
void consumeMotionDown(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_DOWN, expectedDisplayId,
expectedFlags);
}
void consumeMotionPointerDown(int32_t pointerIdx,
int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT, int32_t expectedFlags = 0) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_DOWN
| (pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, expectedDisplayId, expectedFlags);
}
void consumeMotionPointerUp(int32_t pointerIdx, int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_UP
| (pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, expectedDisplayId, expectedFlags);
}
void consumeMotionUp(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_UP, expectedDisplayId,
expectedFlags);
}
void consumeFocusEvent(bool hasFocus, bool inTouchMode = true) {
ASSERT_NE(mInputReceiver, nullptr)
<< "Cannot consume events from a window with no receiver";
mInputReceiver->consumeFocusEvent(hasFocus, inTouchMode);
}
void consumeEvent(int32_t expectedEventType, int32_t expectedAction, int32_t expectedDisplayId,
int32_t expectedFlags) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid consume event on window with no receiver";
mInputReceiver->consumeEvent(expectedEventType, expectedAction, expectedDisplayId,
expectedFlags);
}
std::optional<uint32_t> receiveEvent(InputEvent** outEvent = nullptr) {
if (mInputReceiver == nullptr) {
ADD_FAILURE() << "Invalid receive event on window with no receiver";
return std::nullopt;
}
return mInputReceiver->receiveEvent(outEvent);
}
void finishEvent(uint32_t sequenceNum) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver";
mInputReceiver->finishEvent(sequenceNum);
}
InputEvent* consume() {
if (mInputReceiver == nullptr) {
return nullptr;
}
return mInputReceiver->consume();
}
void assertNoEvents() {
ASSERT_NE(mInputReceiver, nullptr)
<< "Call 'assertNoEvents' on a window with an InputReceiver";
mInputReceiver->assertNoEvents();
}
sp<IBinder> getToken() { return mInfo.token; }
const std::string& getName() { return mName; }
private:
const std::string mName;
std::unique_ptr<FakeInputReceiver> mInputReceiver;
static std::atomic<int32_t> sId; // each window gets a unique id, like in surfaceflinger
};
std::atomic<int32_t> FakeWindowHandle::sId{1};
static int32_t injectKey(const sp<InputDispatcher>& dispatcher, int32_t action, int32_t repeatCount,
int32_t displayId = ADISPLAY_ID_NONE,
int32_t syncMode = INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT,
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT) {
KeyEvent event;
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key down event.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, displayId,
INVALID_HMAC, action, /* flags */ 0, AKEYCODE_A, KEY_A, AMETA_NONE,
repeatCount, currentTime, currentTime);
// Inject event until dispatch out.
return dispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, syncMode,
injectionTimeout,
POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER);
}
static int32_t injectKeyDown(const sp<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /* repeatCount */ 0, displayId);
}
static int32_t injectKeyUp(const sp<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_UP, /* repeatCount */ 0, displayId);
}
static int32_t injectMotionEvent(
const sp<InputDispatcher>& dispatcher, int32_t action, int32_t source, int32_t displayId,
const PointF& position,
const PointF& cursorPosition = {AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
int32_t injectionMode = INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT,
nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC)) {
MotionEvent event;
PointerProperties pointerProperties[1];
PointerCoords pointerCoords[1];
pointerProperties[0].clear();
pointerProperties[0].id = 0;
pointerProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
pointerCoords[0].clear();
pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, position.x);
pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, position.y);
// Define a valid motion down event.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, displayId, INVALID_HMAC, action,
/* actionButton */ 0,
/* flags */ 0,
/* edgeFlags */ 0, AMETA_NONE, /* buttonState */ 0, MotionClassification::NONE,
/* xScale */ 1, /* yScale */ 1, /* xOffset */ 0, /* yOffset */ 0,
/* xPrecision */ 0, /* yPrecision */ 0, cursorPosition.x, cursorPosition.y,
eventTime, eventTime,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
// Inject event until dispatch out.
return dispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, injectionMode,
injectionTimeout,
POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER);
}
static int32_t injectMotionDown(const sp<InputDispatcher>& dispatcher, int32_t source,
int32_t displayId, const PointF& location = {100, 200}) {
return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_DOWN, source, displayId, location);
}
static int32_t injectMotionUp(const sp<InputDispatcher>& dispatcher, int32_t source,
int32_t displayId, const PointF& location = {100, 200}) {
return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_UP, source, displayId, location);
}
static NotifyKeyArgs generateKeyArgs(int32_t action, int32_t displayId = ADISPLAY_ID_NONE) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key event.
NotifyKeyArgs args(/* id */ 0, currentTime, DEVICE_ID, AINPUT_SOURCE_KEYBOARD, displayId,
POLICY_FLAG_PASS_TO_USER, action, /* flags */ 0, AKEYCODE_A, KEY_A,
AMETA_NONE, currentTime);
return args;
}
static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId,
const std::vector<PointF>& points) {
size_t pointerCount = points.size();
if (action == AMOTION_EVENT_ACTION_DOWN || action == AMOTION_EVENT_ACTION_UP) {
EXPECT_EQ(1U, pointerCount) << "Actions DOWN and UP can only contain a single pointer";
}
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerProperties[i].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
pointerCoords[i].clear();
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, points[i].x);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, points[i].y);
}
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid motion event.
NotifyMotionArgs args(/* id */ 0, currentTime, DEVICE_ID, source, displayId,
POLICY_FLAG_PASS_TO_USER, action, /* actionButton */ 0, /* flags */ 0,
AMETA_NONE, /* buttonState */ 0, MotionClassification::NONE,
AMOTION_EVENT_EDGE_FLAG_NONE, pointerCount, pointerProperties,
pointerCoords, /* xPrecision */ 0, /* yPrecision */ 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, currentTime, /* videoFrames */ {});
return args;
}
static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId) {
return generateMotionArgs(action, source, displayId, {PointF{100, 200}});
}
TEST_F(InputDispatcherTest, SetInputWindow_SingleWindowTouch) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window = new FakeWindowHandle(application, mDispatcher, "Fake Window",
ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Calling setInputWindows once with FLAG_NOT_TOUCH_MODAL should not cause any issues.
* To ensure that window receives only events that were directly inside of it, add
* FLAG_NOT_TOUCH_MODAL. This will enforce using the touchableRegion of the input
* when finding touched windows.
* This test serves as a sanity check for the next test, where setInputWindows is
* called twice.
*/
TEST_F(InputDispatcherTest, SetInputWindowOnce_SingleWindowTouch) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
window->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Calling setInputWindows twice, with the same info, should not cause any issues.
* To ensure that window receives only events that were directly inside of it, add
* FLAG_NOT_TOUCH_MODAL. This will enforce using the touchableRegion of the input
* when finding touched windows.
*/
TEST_F(InputDispatcherTest, SetInputWindowTwice_SingleWindowTouch) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
window->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
// The foreground window should receive the first touch down event.
TEST_F(InputDispatcherTest, SetInputWindow_MultiWindowsTouch) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> windowTop = new FakeWindowHandle(application, mDispatcher, "Top",
ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond = new FakeWindowHandle(application, mDispatcher, "Second",
ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Top window should receive the touch down event. Second window should not receive anything.
windowTop->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowSecond->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetInputWindow_FocusedWindow) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> windowTop = new FakeWindowHandle(application, mDispatcher, "Top",
ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond = new FakeWindowHandle(application, mDispatcher, "Second",
ADISPLAY_ID_DEFAULT);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// Display should have only one focused window
windowSecond->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
windowSecond->consumeFocusEvent(true);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Focused window should receive event.
windowTop->assertNoEvents();
windowSecond->consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherTest, SetInputWindow_FocusPriority) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> windowTop = new FakeWindowHandle(application, mDispatcher, "Top",
ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond = new FakeWindowHandle(application, mDispatcher, "Second",
ADISPLAY_ID_DEFAULT);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// Display has two focused windows. Add them to inputWindowsHandles in z-order (top most first)
windowTop->setFocus(true);
windowSecond->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
windowTop->consumeFocusEvent(true);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Top focused window should receive event.
windowTop->consumeKeyDown(ADISPLAY_ID_NONE);
windowSecond->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetInputWindow_InputWindowInfo) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> windowTop = new FakeWindowHandle(application, mDispatcher, "Top",
ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond = new FakeWindowHandle(application, mDispatcher, "Second",
ADISPLAY_ID_DEFAULT);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
windowTop->setFocus(true);
windowSecond->setFocus(true);
// Release channel for window is no longer valid.
windowTop->releaseChannel();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
windowSecond->consumeFocusEvent(true);
// Test inject a key down, should dispatch to a valid window.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
// Top window is invalid, so it should not receive any input event.
windowTop->assertNoEvents();
windowSecond->consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherTest, DispatchMouseEventsUnderCursor) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> windowLeft =
new FakeWindowHandle(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
windowLeft->setFrame(Rect(0, 0, 600, 800));
windowLeft->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
sp<FakeWindowHandle> windowRight =
new FakeWindowHandle(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
windowRight->setFrame(Rect(600, 0, 1200, 800));
windowRight->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}});
// Inject an event with coordinate in the area of right window, with mouse cursor in the area of
// left window. This event should be dispatched to the left window.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE,
ADISPLAY_ID_DEFAULT, {610, 400}, {599, 400}));
windowLeft->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowRight->assertNoEvents();
}
TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsKeyStream) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true);
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// When device reset happens, that key stream should be terminated with FLAG_CANCELED
// on the app side.
NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID);
mDispatcher->notifyDeviceReset(&args);
window->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT,
AKEY_EVENT_FLAG_CANCELED);
}
TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsMotionStream) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
// Window should receive motion down event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// When device reset happens, that motion stream should be terminated with ACTION_CANCEL
// on the app side.
NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID);
mDispatcher->notifyDeviceReset(&args);
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, ADISPLAY_ID_DEFAULT,
0 /*expectedFlags*/);
}
TEST_F(InputDispatcherTest, TransferTouchFocus_OnePointer) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
// Create a couple of windows
sp<FakeWindowHandle> firstWindow = new FakeWindowHandle(application, mDispatcher,
"First Window", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> secondWindow = new FakeWindowHandle(application, mDispatcher,
"Second Window", ADISPLAY_ID_DEFAULT);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
// Send down to the first window
NotifyMotionArgs downMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&downMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Transfer touch focus to the second window
mDispatcher->transferTouchFocus(firstWindow->getToken(), secondWindow->getToken());
// The first window gets cancel and the second gets down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
// Send up event to the second window
NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets no events and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
TEST_F(InputDispatcherTest, TransferTouchFocus_TwoPointerNoSplitTouch) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
PointF touchPoint = {10, 10};
// Create a couple of windows
sp<FakeWindowHandle> firstWindow = new FakeWindowHandle(application, mDispatcher,
"First Window", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> secondWindow = new FakeWindowHandle(application, mDispatcher,
"Second Window", ADISPLAY_ID_DEFAULT);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
// Send down to the first window
NotifyMotionArgs downMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchPoint});
mDispatcher->notifyMotion(&downMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send pointer down to the first window
NotifyMotionArgs pointerDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN
| (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchPoint, touchPoint});
mDispatcher->notifyMotion(&pointerDownMotionArgs);
// Only the first window should get the pointer down event
firstWindow->consumeMotionPointerDown(1);
secondWindow->assertNoEvents();
// Transfer touch focus to the second window
mDispatcher->transferTouchFocus(firstWindow->getToken(), secondWindow->getToken());
// The first window gets cancel and the second gets down and pointer down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
secondWindow->consumeMotionPointerDown(1);
// Send pointer up to the second window
NotifyMotionArgs pointerUpMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP
| (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {touchPoint, touchPoint});
mDispatcher->notifyMotion(&pointerUpMotionArgs);
// The first window gets nothing and the second gets pointer up
firstWindow->assertNoEvents();
secondWindow->consumeMotionPointerUp(1);
// Send up event to the second window
NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets nothing and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
TEST_F(InputDispatcherTest, TransferTouchFocus_TwoPointersSplitTouch) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
// Create a non touch modal window that supports split touch
sp<FakeWindowHandle> firstWindow = new FakeWindowHandle(application, mDispatcher,
"First Window", ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
firstWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL
| InputWindowInfo::FLAG_SPLIT_TOUCH);
// Create a non touch modal window that supports split touch
sp<FakeWindowHandle> secondWindow = new FakeWindowHandle(application, mDispatcher,
"Second Window", ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
secondWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL
| InputWindowInfo::FLAG_SPLIT_TOUCH);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
NotifyMotionArgs firstDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst});
mDispatcher->notifyMotion(&firstDownMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
NotifyMotionArgs secondDownMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN
| (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&secondDownMotionArgs);
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Transfer touch focus to the second window
mDispatcher->transferTouchFocus(firstWindow->getToken(), secondWindow->getToken());
// The first window gets cancel and the new gets pointer down (it already saw down)
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionPointerDown(1);
// Send pointer up to the second window
NotifyMotionArgs pointerUpMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP
| (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&pointerUpMotionArgs);
// The first window gets nothing and the second gets pointer up
firstWindow->assertNoEvents();
secondWindow->consumeMotionPointerUp(1);
// Send up event to the second window
NotifyMotionArgs upMotionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets nothing and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
TEST_F(InputDispatcherTest, FocusedWindow_ReceivesFocusEventAndKeyEvent) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true);
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, UnfocusedWindow_DoesNotReceiveFocusEventOrKeyEvent) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
mDispatcher->waitForIdle();
window->assertNoEvents();
}
// If a window is touchable, but does not have focus, it should receive motion events, but not keys
TEST_F(InputDispatcherTest, UnfocusedWindow_ReceivesMotionsButNotKeys) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Send key
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
// Send motion
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
// Window should receive only the motion event
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->assertNoEvents(); // Key event or focus event will not be received
}
class FakeMonitorReceiver {
public:
FakeMonitorReceiver(const sp<InputDispatcher>& dispatcher, const std::string name,
int32_t displayId, bool isGestureMonitor = false) {
sp<InputChannel> serverChannel, clientChannel;
InputChannel::openInputChannelPair(name, serverChannel, clientChannel);
mInputReceiver = std::make_unique<FakeInputReceiver>(clientChannel, name);
dispatcher->registerInputMonitor(serverChannel, displayId, isGestureMonitor);
}
sp<IBinder> getToken() { return mInputReceiver->getToken(); }
void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_DOWN,
expectedDisplayId, expectedFlags);
}
std::optional<int32_t> receiveEvent() { return mInputReceiver->receiveEvent(); }
void finishEvent(uint32_t consumeSeq) { return mInputReceiver->finishEvent(consumeSeq); }
void consumeMotionDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_DOWN,
expectedDisplayId, expectedFlags);
}
void consumeMotionUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_UP,
expectedDisplayId, expectedFlags);
}
void assertNoEvents() { mInputReceiver->assertNoEvents(); }
private:
std::unique_ptr<FakeInputReceiver> mInputReceiver;
};
// Tests for gesture monitors
TEST_F(InputDispatcherTest, GestureMonitor_ReceivesMotionEvents) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, GestureMonitor_DoesNotReceiveKeyEvents) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true);
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
monitor.assertNoEvents();
}
TEST_F(InputDispatcherTest, GestureMonitor_CanPilferAfterWindowIsRemovedMidStream) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->releaseChannel();
mDispatcher->pilferPointers(monitor.getToken());
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, UnresponsiveGestureMonitor_GetsAnr) {
FakeMonitorReceiver monitor =
FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
std::optional<uint32_t> consumeSeq = monitor.receiveEvent();
ASSERT_TRUE(consumeSeq);
mFakePolicy->assertNotifyAnrWasCalled(DISPATCHING_TIMEOUT, nullptr, monitor.getToken());
monitor.finishEvent(*consumeSeq);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
TEST_F(InputDispatcherTest, TestMoveEvent) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
// Window should receive motion down event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
motionArgs.action = AMOTION_EVENT_ACTION_MOVE;
motionArgs.id += 1;
motionArgs.eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
motionArgs.pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
motionArgs.pointerCoords[0].getX() - 10);
mDispatcher->notifyMotion(&motionArgs);
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_MOVE, ADISPLAY_ID_DEFAULT,
0 /*expectedFlags*/);
}
/**
* Dispatcher has touch mode enabled by default. Typically, the policy overrides that value to
* the device default right away. In the test scenario, we check both the default value,
* and the action of enabling / disabling.
*/
TEST_F(InputDispatcherTest, TouchModeState_IsSentToApps) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocus(true);
SCOPED_TRACE("Check default value of touch mode");
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/);
SCOPED_TRACE("Remove the window to trigger focus loss");
window->setFocus(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(false /*hasFocus*/, true /*inTouchMode*/);
SCOPED_TRACE("Disable touch mode");
mDispatcher->setInTouchMode(false);
window->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true /*hasFocus*/, false /*inTouchMode*/);
SCOPED_TRACE("Remove the window to trigger focus loss");
window->setFocus(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(false /*hasFocus*/, false /*inTouchMode*/);
SCOPED_TRACE("Enable touch mode again");
mDispatcher->setInTouchMode(true);
window->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/);
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, VerifyInputEvent_KeyEvent) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/);
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN);
mDispatcher->notifyKey(&keyArgs);
InputEvent* event = window->consume();
ASSERT_NE(event, nullptr);
std::unique_ptr<VerifiedInputEvent> verified = mDispatcher->verifyInputEvent(*event);
ASSERT_NE(verified, nullptr);
ASSERT_EQ(verified->type, VerifiedInputEvent::Type::KEY);
ASSERT_EQ(keyArgs.eventTime, verified->eventTimeNanos);
ASSERT_EQ(keyArgs.deviceId, verified->deviceId);
ASSERT_EQ(keyArgs.source, verified->source);
ASSERT_EQ(keyArgs.displayId, verified->displayId);
const VerifiedKeyEvent& verifiedKey = static_cast<const VerifiedKeyEvent&>(*verified);
ASSERT_EQ(keyArgs.action, verifiedKey.action);
ASSERT_EQ(keyArgs.downTime, verifiedKey.downTimeNanos);
ASSERT_EQ(keyArgs.flags & VERIFIED_KEY_EVENT_FLAGS, verifiedKey.flags);
ASSERT_EQ(keyArgs.keyCode, verifiedKey.keyCode);
ASSERT_EQ(keyArgs.scanCode, verifiedKey.scanCode);
ASSERT_EQ(keyArgs.metaState, verifiedKey.metaState);
ASSERT_EQ(0, verifiedKey.repeatCount);
}
TEST_F(InputDispatcherTest, VerifyInputEvent_MotionEvent) {
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
InputEvent* event = window->consume();
ASSERT_NE(event, nullptr);
std::unique_ptr<VerifiedInputEvent> verified = mDispatcher->verifyInputEvent(*event);
ASSERT_NE(verified, nullptr);
ASSERT_EQ(verified->type, VerifiedInputEvent::Type::MOTION);
EXPECT_EQ(motionArgs.eventTime, verified->eventTimeNanos);
EXPECT_EQ(motionArgs.deviceId, verified->deviceId);
EXPECT_EQ(motionArgs.source, verified->source);
EXPECT_EQ(motionArgs.displayId, verified->displayId);
const VerifiedMotionEvent& verifiedMotion = static_cast<const VerifiedMotionEvent&>(*verified);
EXPECT_EQ(motionArgs.pointerCoords[0].getX(), verifiedMotion.rawX);
EXPECT_EQ(motionArgs.pointerCoords[0].getY(), verifiedMotion.rawY);
EXPECT_EQ(motionArgs.action & AMOTION_EVENT_ACTION_MASK, verifiedMotion.actionMasked);
EXPECT_EQ(motionArgs.downTime, verifiedMotion.downTimeNanos);
EXPECT_EQ(motionArgs.flags & VERIFIED_MOTION_EVENT_FLAGS, verifiedMotion.flags);
EXPECT_EQ(motionArgs.metaState, verifiedMotion.metaState);
EXPECT_EQ(motionArgs.buttonState, verifiedMotion.buttonState);
}
class InputDispatcherKeyRepeatTest : public InputDispatcherTest {
protected:
static constexpr nsecs_t KEY_REPEAT_TIMEOUT = 40 * 1000000; // 40 ms
static constexpr nsecs_t KEY_REPEAT_DELAY = 40 * 1000000; // 40 ms
sp<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
virtual void SetUp() override {
mFakePolicy = new FakeInputDispatcherPolicy();
mFakePolicy->setKeyRepeatConfiguration(KEY_REPEAT_TIMEOUT, KEY_REPEAT_DELAY);
mDispatcher = new InputDispatcher(mFakePolicy);
mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false);
ASSERT_EQ(OK, mDispatcher->start());
setUpWindow();
}
void setUpWindow() {
mApp = new FakeApplicationHandle();
mWindow = new FakeWindowHandle(mApp, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mWindow->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(true);
}
void sendAndConsumeKeyDown() {
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Otherwise it won't generate repeat event
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
void expectKeyRepeatOnce(int32_t repeatCount) {
SCOPED_TRACE(StringPrintf("Checking event with repeat count %" PRId32, repeatCount));
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent);
uint32_t eventType = repeatEvent->getType();
ASSERT_EQ(AINPUT_EVENT_TYPE_KEY, eventType);
KeyEvent* repeatKeyEvent = static_cast<KeyEvent*>(repeatEvent);
uint32_t eventAction = repeatKeyEvent->getAction();
EXPECT_EQ(AKEY_EVENT_ACTION_DOWN, eventAction);
EXPECT_EQ(repeatCount, repeatKeyEvent->getRepeatCount());
}
void sendAndConsumeKeyUp() {
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT);
keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Unless it won't generate repeat event
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
mWindow->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT,
0 /*expectedFlags*/);
}
};
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeat) {
sendAndConsumeKeyDown();
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_StopsKeyRepeatAfterUp) {
sendAndConsumeKeyDown();
expectKeyRepeatOnce(1 /*repeatCount*/);
sendAndConsumeKeyUp();
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseEventIdFromInputDispatcher) {
sendAndConsumeKeyDown();
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount;
EXPECT_EQ(IdGenerator::Source::INPUT_DISPATCHER,
IdGenerator::getSource(repeatEvent->getId()));
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseUniqueEventId) {
sendAndConsumeKeyDown();
std::unordered_set<int32_t> idSet;
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount;
int32_t id = repeatEvent->getId();
EXPECT_EQ(idSet.end(), idSet.find(id));
idSet.insert(id);
}
}
/* Test InputDispatcher for MultiDisplay */
class InputDispatcherFocusOnTwoDisplaysTest : public InputDispatcherTest {
public:
static constexpr int32_t SECOND_DISPLAY_ID = 1;
virtual void SetUp() override {
InputDispatcherTest::SetUp();
application1 = new FakeApplicationHandle();
windowInPrimary = new FakeWindowHandle(application1, mDispatcher, "D_1",
ADISPLAY_ID_DEFAULT);
// Set focus window for primary display, but focused display would be second one.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application1);
windowInPrimary->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary}}});
windowInPrimary->consumeFocusEvent(true);
application2 = new FakeApplicationHandle();
windowInSecondary = new FakeWindowHandle(application2, mDispatcher, "D_2",
SECOND_DISPLAY_ID);
// Set focus to second display window.
// Set focus display to second one.
mDispatcher->setFocusedDisplay(SECOND_DISPLAY_ID);
// Set focus window for second display.
mDispatcher->setFocusedApplication(SECOND_DISPLAY_ID, application2);
windowInSecondary->setFocus(true);
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {windowInSecondary}}});
windowInSecondary->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
application1.clear();
windowInPrimary.clear();
application2.clear();
windowInSecondary.clear();
}
protected:
sp<FakeApplicationHandle> application1;
sp<FakeWindowHandle> windowInPrimary;
sp<FakeApplicationHandle> application2;
sp<FakeWindowHandle> windowInSecondary;
};
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayTouch) {
// Test touch down on primary display.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
// Test touch down on second display.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
}
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayFocus) {
// Test inject a key down with display id specified.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
// Test inject a key down without display id specified.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE);
// Remove all windows in secondary display.
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {}}});
// Expect old focus should receive a cancel event.
windowInSecondary->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_NONE,
AKEY_EVENT_FLAG_CANCELED);
// Test inject a key down, should timeout because of no target window.
ASSERT_EQ(INPUT_EVENT_INJECTION_TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return INPUT_EVENT_INJECTION_TIMED_OUT";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeFocusEvent(false);
windowInSecondary->assertNoEvents();
}
// Test per-display input monitors for motion event.
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorMotionEvent_MultiDisplay) {
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test touch down on primary display.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitorInPrimary.consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
monitorInSecondary.assertNoEvents();
// Test touch down on second display.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
monitorInSecondary.consumeMotionDown(SECOND_DISPLAY_ID);
// Test inject a non-pointer motion event.
// If specific a display, it will dispatch to the focused window of particular display,
// or it will dispatch to the focused window of focused display.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectMotionDown(mDispatcher,
AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_NONE))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeMotionDown(ADISPLAY_ID_NONE);
monitorInSecondary.consumeMotionDown(ADISPLAY_ID_NONE);
}
// Test per-display input monitors for key event.
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorKeyEvent_MultiDisplay) {
//Input monitor per display.
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test inject a key down.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE);
monitorInSecondary.consumeKeyDown(ADISPLAY_ID_NONE);
}
class InputFilterTest : public InputDispatcherTest {
protected:
static constexpr int32_t SECOND_DISPLAY_ID = 1;
void testNotifyMotion(int32_t displayId, bool expectToBeFiltered) {
NotifyMotionArgs motionArgs;
motionArgs = generateMotionArgs(
AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, displayId);
mDispatcher->notifyMotion(&motionArgs);
motionArgs = generateMotionArgs(
AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, displayId);
mDispatcher->notifyMotion(&motionArgs);
ASSERT_TRUE(mDispatcher->waitForIdle());
if (expectToBeFiltered) {
mFakePolicy->assertFilterInputEventWasCalled(motionArgs);
} else {
mFakePolicy->assertFilterInputEventWasNotCalled();
}
}
void testNotifyKey(bool expectToBeFiltered) {
NotifyKeyArgs keyArgs;
keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN);
mDispatcher->notifyKey(&keyArgs);
keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP);
mDispatcher->notifyKey(&keyArgs);
ASSERT_TRUE(mDispatcher->waitForIdle());
if (expectToBeFiltered) {
mFakePolicy->assertFilterInputEventWasCalled(keyArgs);
} else {
mFakePolicy->assertFilterInputEventWasNotCalled();
}
}
};
// Test InputFilter for MotionEvent
TEST_F(InputFilterTest, MotionEvent_InputFilter) {
// Since the InputFilter is disabled by default, check if touch events aren't filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false);
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Test touch on both primary and second display, and check if both events are filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ true);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ true);
// Disable InputFilter
mDispatcher->setInputFilterEnabled(false);
// Test touch on both primary and second display, and check if both events aren't filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false);
}
// Test InputFilter for KeyEvent
TEST_F(InputFilterTest, KeyEvent_InputFilter) {
// Since the InputFilter is disabled by default, check if key event aren't filtered.
testNotifyKey(/*expectToBeFiltered*/ false);
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Send a key event, and check if it is filtered.
testNotifyKey(/*expectToBeFiltered*/ true);
// Disable InputFilter
mDispatcher->setInputFilterEnabled(false);
// Send a key event, and check if it isn't filtered.
testNotifyKey(/*expectToBeFiltered*/ false);
}
class InputDispatcherOnPointerDownOutsideFocus : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
mUnfocusedWindow = new FakeWindowHandle(application, mDispatcher, "Top",
ADISPLAY_ID_DEFAULT);
mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30));
// Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this
// window.
mUnfocusedWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
mFocusedWindow =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mFocusedWindow->setFrame(Rect(50, 50, 100, 100));
mFocusedWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mFocusedWindow->setFocus(true);
// Expect one focus window exist in display.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
mFocusedWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mUnfocusedWindow.clear();
mFocusedWindow.clear();
}
protected:
sp<FakeWindowHandle> mUnfocusedWindow;
sp<FakeWindowHandle> mFocusedWindow;
static constexpr PointF FOCUSED_WINDOW_TOUCH_POINT = {60, 60};
};
// Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action
// DOWN on the window that doesn't have focus. Ensure the window that didn't have focus received
// the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_Success) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{20, 20}))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
mUnfocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownEquals(mUnfocusedWindow->getToken());
}
// Have two windows, one with focus. Inject MotionEvent with source TRACKBALL and action
// DOWN on the window that doesn't have focus. Ensure no window received the
// onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonPointerSource) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_DEFAULT, {20, 20}))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
mFocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Inject KeyEvent with action DOWN on the window that doesn't
// have focus. Ensure no window received the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonMotionFailure) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return INPUT_EVENT_INJECTION_SUCCEEDED";
mFocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action
// DOWN on the window that already has focus. Ensure no window received the
// onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus,
OnPointerDownOutsideFocus_OnAlreadyFocusedWindow) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_TOUCH_POINT))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
mFocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// These tests ensures we can send touch events to a single client when there are multiple input
// windows that point to the same client token.
class InputDispatcherMultiWindowSameTokenTests : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
sp<FakeApplicationHandle> application = new FakeApplicationHandle();
mWindow1 = new FakeWindowHandle(application, mDispatcher, "Fake Window 1",
ADISPLAY_ID_DEFAULT);
// Adding FLAG_NOT_TOUCH_MODAL otherwise all taps will go to the top most window.
// We also need FLAG_SPLIT_TOUCH or we won't be able to get touches for both windows.
mWindow1->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL |
InputWindowInfo::FLAG_SPLIT_TOUCH);
mWindow1->setFrame(Rect(0, 0, 100, 100));
mWindow2 = new FakeWindowHandle(application, mDispatcher, "Fake Window 2",
ADISPLAY_ID_DEFAULT, mWindow1->getToken());
mWindow2->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL |
InputWindowInfo::FLAG_SPLIT_TOUCH);
mWindow2->setFrame(Rect(100, 100, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow1, mWindow2}}});
}
protected:
sp<FakeWindowHandle> mWindow1;
sp<FakeWindowHandle> mWindow2;
// Helper function to convert the point from screen coordinates into the window's space
static PointF getPointInWindow(const InputWindowInfo* windowInfo, const PointF& point) {
float x = windowInfo->windowXScale * (point.x - windowInfo->frameLeft);
float y = windowInfo->windowYScale * (point.y - windowInfo->frameTop);
return {x, y};
}
void consumeMotionEvent(const sp<FakeWindowHandle>& window, int32_t expectedAction,
const std::vector<PointF>& points) {
const std::string name = window->getName();
InputEvent* event = window->consume();
ASSERT_NE(nullptr, event) << name.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(AINPUT_EVENT_TYPE_MOTION, event->getType())
<< name.c_str() << "expected " << inputEventTypeToString(AINPUT_EVENT_TYPE_MOTION)
<< " event, got " << inputEventTypeToString(event->getType()) << " event";
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
EXPECT_EQ(expectedAction, motionEvent.getAction());
for (size_t i = 0; i < points.size(); i++) {
float expectedX = points[i].x;
float expectedY = points[i].y;
EXPECT_EQ(expectedX, motionEvent.getX(i))
<< "expected " << expectedX << " for x[" << i << "] coord of " << name.c_str()
<< ", got " << motionEvent.getX(i);
EXPECT_EQ(expectedY, motionEvent.getY(i))
<< "expected " << expectedY << " for y[" << i << "] coord of " << name.c_str()
<< ", got " << motionEvent.getY(i);
}
}
};
TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchSameScale) {
// Touch Window 1
PointF touchedPoint = {10, 10};
PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint);
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, {expectedPoint});
// Release touch on Window 1
motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
// consume the UP event
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_UP, {expectedPoint});
// Touch Window 2
touchedPoint = {150, 150};
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
// Consuming from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, {expectedPoint});
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchDifferentScale) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
PointF touchedPoint = {10, 10};
PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint);
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, {expectedPoint});
// Release touch on Window 1
motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
// consume the UP event
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_UP, {expectedPoint});
// Touch Window 2
touchedPoint = {150, 150};
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
// Consuming from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, {expectedPoint});
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchDifferentScale) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, expectedPoints);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchedPoints.emplace_back(PointF{150, 150});
expectedPoints.emplace_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
motionArgs = generateMotionArgs(actionPointerDown, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
// Consuming from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, actionPointerDown, expectedPoints);
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchMoveDifferentScale) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, expectedPoints);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchedPoints.emplace_back(PointF{150, 150});
expectedPoints.emplace_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
motionArgs = generateMotionArgs(actionPointerDown, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
// Consuming from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, actionPointerDown, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_MOVE, expectedPoints);
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleWindowsFirstTouchWithScale) {
mWindow1->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_DOWN, expectedPoints);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchedPoints.emplace_back(PointF{150, 150});
expectedPoints.emplace_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
motionArgs = generateMotionArgs(actionPointerDown, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
// Consuming from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, actionPointerDown, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
motionArgs = generateMotionArgs(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
consumeMotionEvent(mWindow1, AMOTION_EVENT_ACTION_MOVE, expectedPoints);
}
class InputDispatcherSingleWindowAnr : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = new FakeApplicationHandle();
mApplication->setDispatchingTimeout(20ms);
mWindow =
new FakeWindowHandle(mApplication, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFrame(Rect(0, 0, 30, 30));
mWindow->setDispatchingTimeout(10ms);
mWindow->setFocus(true);
// Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this
// window.
mWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mWindow.clear();
}
protected:
sp<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mWindow;
static constexpr PointF WINDOW_LOCATION = {20, 20};
void tapOnWindow() {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
}
};
// Send a tap and respond, which should not cause an ANR.
TEST_F(InputDispatcherSingleWindowAnr, WhenTouchIsConsumed_NoAnr) {
tapOnWindow();
mWindow->consumeMotionDown();
mWindow->consumeMotionUp();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Send a regular key and respond, which should not cause an ANR.
TEST_F(InputDispatcherSingleWindowAnr, WhenKeyIsConsumed_NoAnr) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher));
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Send an event to the app and have the app not respond right away.
// When ANR is raised, policy will tell the dispatcher to cancel the events for that window.
// So InputDispatcher will enqueue ACTION_CANCEL event as well.
TEST_F(InputDispatcherSingleWindowAnr, OnPointerDown_BasicAnr) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/, mWindow->getToken());
// The remaining lines are not really needed for the test, but kept as a sanity check
mWindow->finishEvent(*sequenceNum);
mWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// Send a key to the app and have the app not respond right away.
TEST_F(InputDispatcherSingleWindowAnr, OnKeyDown_BasicAnr) {
// Inject a key, and don't respond - expect that ANR is called.
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher));
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/, mWindow->getToken());
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
TEST_F(InputDispatcherSingleWindowAnr, FocusedApplication_NoFocusedWindow) {
mWindow->setFocus(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// taps on the window work as normal
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
ASSERT_NO_FATAL_FAILURE(mWindow->consumeMotionDown());
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyAnrWasNotCalled();
// Once a focused event arrives, we get an ANR for this application
// We specify the injection timeout to be smaller than the application timeout, to ensure that
// injection times out (instead of failing).
const int32_t result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(INPUT_EVENT_INJECTION_TIMED_OUT, result);
const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, mApplication, nullptr /*windowToken*/);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
// If the policy wants to keep waiting on the focused window to be added, make sure
// that this timeout extension is honored and ANR is raised again.
TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_ExtendsAnr) {
mWindow->setFocus(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
const std::chrono::duration timeout = 5ms;
mFakePolicy->setAnrTimeout(timeout);
// Once a focused event arrives, we get an ANR for this application
// We specify the injection timeout to be smaller than the application timeout, to ensure that
// injection times out (instead of failing).
const int32_t result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(INPUT_EVENT_INJECTION_TIMED_OUT, result);
const std::chrono::duration appTimeout =
mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(appTimeout, mApplication, nullptr /*windowToken*/);
// After the extended time has passed, ANR should be raised again
mFakePolicy->assertNotifyAnrWasCalled(timeout, mApplication, nullptr /*windowToken*/);
// If we stop extending the timeout, dispatcher should go to idle.
// Another ANR may be raised during this time
mFakePolicy->setAnrTimeout(0ms);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DropsFocusedEvents) {
mWindow->setFocus(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// Once a focused event arrives, we get an ANR for this application
const int32_t result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(INPUT_EVENT_INJECTION_TIMED_OUT, result);
const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, mApplication, nullptr /*windowToken*/);
// Future focused events get dropped right away
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED, injectKeyDown(mDispatcher));
ASSERT_TRUE(mDispatcher->waitForIdle());
mWindow->assertNoEvents();
}
/**
* Ensure that the implementation is valid. Since we are using multiset to keep track of the
* ANR timeouts, we are allowing entries with identical timestamps in the same connection.
* If we process 1 of the events, but ANR on the second event with the same timestamp,
* the ANR mechanism should still work.
*
* In this test, we are injecting DOWN and UP events with the same timestamps, and acknowledging the
* DOWN event, while not responding on the second one.
*/
TEST_F(InputDispatcherSingleWindowAnr, Anr_HandlesEventsWithIdenticalTimestamps) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, WINDOW_LOCATION,
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
500ms, INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT, currentTime);
// Now send ACTION_UP, with identical timestamp
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, WINDOW_LOCATION,
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
500ms, INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT, currentTime);
// We have now sent down and up. Let's consume first event and then ANR on the second.
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/, mWindow->getToken());
}
// If an app is not responding to a key event, gesture monitors should continue to receive
// new motion events
TEST_F(InputDispatcherSingleWindowAnr, GestureMonitors_ReceiveEventsDuringAppAnrOnKey) {
FakeMonitorReceiver monitor =
FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT));
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, injectKeyUp(mDispatcher, ADISPLAY_ID_DEFAULT));
// Stuck on the ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr, mWindow->getToken());
// New tap will go to the gesture monitor, but not to the window
tapOnWindow();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeKeyUp(ADISPLAY_ID_DEFAULT); // still the previous motion
mDispatcher->waitForIdle();
mWindow->assertNoEvents();
monitor.assertNoEvents();
}
// If an app is not responding to a motion event, gesture monitors should continue to receive
// new motion events
TEST_F(InputDispatcherSingleWindowAnr, GestureMonitors_ReceiveEventsDuringAppAnrOnMotion) {
FakeMonitorReceiver monitor =
FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
tapOnWindow();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeMotionDown();
// Stuck on the ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr, mWindow->getToken());
// New tap will go to the gesture monitor, but not to the window
tapOnWindow();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); // still the previous motion
mDispatcher->waitForIdle();
mWindow->assertNoEvents();
monitor.assertNoEvents();
}
// If a window is unresponsive, then you get anr. if the window later catches up and starts to
// process events, you don't get an anr. When the window later becomes unresponsive again, you
// get an ANR again.
// 1. tap -> block on ACTION_UP -> receive ANR
// 2. consume all pending events (= queue becomes healthy again)
// 3. tap again -> block on ACTION_UP again -> receive ANR second time
TEST_F(InputDispatcherSingleWindowAnr, SameWindow_CanReceiveAnrTwice) {
tapOnWindow();
mWindow->consumeMotionDown();
// Block on ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/, mWindow->getToken());
mWindow->consumeMotionUp(); // Now the connection should be healthy again
mDispatcher->waitForIdle();
mWindow->assertNoEvents();
tapOnWindow();
mWindow->consumeMotionDown();
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/, mWindow->getToken());
mWindow->consumeMotionUp();
mDispatcher->waitForIdle();
mWindow->assertNoEvents();
}
// If the policy tells us to raise ANR again after some time, ensure that the timeout extension
// is honored
TEST_F(InputDispatcherSingleWindowAnr, Policy_CanExtendTimeout) {
const std::chrono::duration timeout = 5ms;
mFakePolicy->setAnrTimeout(timeout);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
const std::chrono::duration windowTimeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(windowTimeout, nullptr /*application*/,
mWindow->getToken());
// Since the policy wanted to extend ANR, make sure it is called again after the extension
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/, mWindow->getToken());
mFakePolicy->setAnrTimeout(0ms);
std::this_thread::sleep_for(windowTimeout);
// We are not checking if ANR has been called, because it may have been called again by the
// time we set the timeout to 0
// When the policy finally says stop, we should get ACTION_CANCEL
mWindow->consumeMotionDown();
mWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
mWindow->assertNoEvents();
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not to to the focused window until the motion is processed.
*
* Warning!!!
* This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT
* and the injection timeout that we specify when injecting the key.
* We must have the injection timeout (10ms) be smaller than
* KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms).
*
* If that value changes, this test should also change.
*/
TEST_F(InputDispatcherSingleWindowAnr, Key_StaysPendingWhileMotionIsProcessed) {
mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
tapOnWindow();
std::optional<uint32_t> downSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection will "succeed" because we will eventually give up and send the key to the focused
// window even if motions are still being processed. But because the injection timeout is short,
// we will receive INJECTION_TIMED_OUT as the result.
int32_t result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(INPUT_EVENT_INJECTION_TIMED_OUT, result);
// Key will not be sent to the window, yet, because the window is still processing events
// and the key remains pending, waiting for the touch events to be processed
std::optional<uint32_t> keySequenceNum = mWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
std::this_thread::sleep_for(500ms);
// if we wait long enough though, dispatcher will give up, and still send the key
// to the focused window, even though we have not yet finished the motion event
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
mWindow->finishEvent(*downSequenceNum);
mWindow->finishEvent(*upSequenceNum);
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not go to the focused window until the motion is processed.
* If then a new motion comes in, then the pending key event should be going to the currently
* focused window right away.
*/
TEST_F(InputDispatcherSingleWindowAnr,
PendingKey_IsDroppedWhileMotionIsProcessedAndNewTouchComesIn) {
mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
tapOnWindow();
std::optional<uint32_t> downSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection is async, so it will succeed
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */,
ADISPLAY_ID_DEFAULT, INPUT_EVENT_INJECTION_SYNC_NONE));
// At this point, key is still pending, and should not be sent to the application yet.
std::optional<uint32_t> keySequenceNum = mWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
// Now tap down again. It should cause the pending key to go to the focused window right away.
tapOnWindow();
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); // it doesn't matter that we haven't ack'd
// the other events yet. We can finish events in any order.
mWindow->finishEvent(*downSequenceNum); // first tap's ACTION_DOWN
mWindow->finishEvent(*upSequenceNum); // first tap's ACTION_UP
mWindow->consumeMotionDown();
mWindow->consumeMotionUp();
mWindow->assertNoEvents();
}
class InputDispatcherMultiWindowAnr : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = new FakeApplicationHandle();
mApplication->setDispatchingTimeout(10ms);
mUnfocusedWindow =
new FakeWindowHandle(mApplication, mDispatcher, "Unfocused", ADISPLAY_ID_DEFAULT);
mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30));
// Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this
// window.
// Adding FLAG_WATCH_OUTSIDE_TOUCH to receive ACTION_OUTSIDE when another window is tapped
mUnfocusedWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL |
InputWindowInfo::FLAG_WATCH_OUTSIDE_TOUCH |
InputWindowInfo::FLAG_SPLIT_TOUCH);
mFocusedWindow =
new FakeWindowHandle(mApplication, mDispatcher, "Focused", ADISPLAY_ID_DEFAULT);
mFocusedWindow->setDispatchingTimeout(10ms);
mFocusedWindow->setFrame(Rect(50, 50, 100, 100));
mFocusedWindow->setLayoutParamFlags(InputWindowInfo::FLAG_NOT_TOUCH_MODAL |
InputWindowInfo::FLAG_SPLIT_TOUCH);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication);
mFocusedWindow->setFocus(true);
// Expect one focus window exist in display.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
mFocusedWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mUnfocusedWindow.clear();
mFocusedWindow.clear();
}
protected:
sp<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mUnfocusedWindow;
sp<FakeWindowHandle> mFocusedWindow;
static constexpr PointF UNFOCUSED_WINDOW_LOCATION = {20, 20};
static constexpr PointF FOCUSED_WINDOW_LOCATION = {75, 75};
static constexpr PointF LOCATION_OUTSIDE_ALL_WINDOWS = {40, 40};
void tapOnFocusedWindow() { tap(FOCUSED_WINDOW_LOCATION); }
void tapOnUnfocusedWindow() { tap(UNFOCUSED_WINDOW_LOCATION); }
private:
void tap(const PointF& location) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
location));
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
location));
}
};
// If we have 2 windows that are both unresponsive, the one with the shortest timeout
// should be ANR'd first.
TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsive) {
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION))
<< "Inject motion event should return INPUT_EVENT_INJECTION_SUCCEEDED";
mFocusedWindow->consumeMotionDown();
mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
// We consumed all events, so no ANR
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
std::optional<uint32_t> unfocusedSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(unfocusedSequenceNum);
std::optional<uint32_t> focusedSequenceNum = mFocusedWindow->receiveEvent();
ASSERT_TRUE(focusedSequenceNum);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/,
mFocusedWindow->getToken());
mFocusedWindow->finishEvent(*focusedSequenceNum);
mUnfocusedWindow->finishEvent(*unfocusedSequenceNum);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// If we have 2 windows with identical timeouts that are both unresponsive,
// it doesn't matter which order they should have ANR.
// But we should receive ANR for both.
TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsiveWithSameTimeout) {
// Set the timeout for unfocused window to match the focused window
mUnfocusedWindow->setDispatchingTimeout(10ms);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
tapOnFocusedWindow();
// we should have ACTION_DOWN/ACTION_UP on focused window and ACTION_OUTSIDE on unfocused window
std::pair<sp<InputApplicationHandle>, sp<IBinder>> anrData1 =
mFakePolicy->getNotifyAnrData(10ms);
std::pair<sp<InputApplicationHandle>, sp<IBinder>> anrData2 =
mFakePolicy->getNotifyAnrData(0ms);
// We don't know which window will ANR first. But both of them should happen eventually.
ASSERT_TRUE(mFocusedWindow->getToken() == anrData1.second ||
mFocusedWindow->getToken() == anrData2.second);
ASSERT_TRUE(mUnfocusedWindow->getToken() == anrData1.second ||
mUnfocusedWindow->getToken() == anrData2.second);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If a window is already not responding, the second tap on the same window should be ignored.
// We should also log an error to account for the dropped event (not tested here).
// At the same time, FLAG_WATCH_OUTSIDE_TOUCH targets should not receive any events.
TEST_F(InputDispatcherMultiWindowAnr, DuringAnr_SecondTapIsIgnored) {
tapOnFocusedWindow();
mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
// Receive the events, but don't respond
std::optional<uint32_t> downEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(downEventSequenceNum);
std::optional<uint32_t> upEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_UP
ASSERT_TRUE(upEventSequenceNum);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/,
mFocusedWindow->getToken());
// Tap once again
// We cannot use "tapOnFocusedWindow" because it asserts the injection result to be success
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
// Unfocused window does not receive ACTION_OUTSIDE because the tapped window is not a
// valid touch target
mUnfocusedWindow->assertNoEvents();
// Consume the first tap
mFocusedWindow->finishEvent(*downEventSequenceNum);
mFocusedWindow->finishEvent(*upEventSequenceNum);
ASSERT_TRUE(mDispatcher->waitForIdle());
// The second tap did not go to the focused window
mFocusedWindow->assertNoEvents();
// should not have another ANR after the window just became healthy again
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If you tap outside of all windows, there will not be ANR
TEST_F(InputDispatcherMultiWindowAnr, TapOutsideAllWindows_DoesNotAnr) {
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
LOCATION_OUTSIDE_ALL_WINDOWS));
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Since the focused window is paused, tapping on it should not produce any events
TEST_F(InputDispatcherMultiWindowAnr, Window_CanBePaused) {
mFocusedWindow->setPaused(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
ASSERT_EQ(INPUT_EVENT_INJECTION_FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
std::this_thread::sleep_for(mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT));
ASSERT_TRUE(mDispatcher->waitForIdle());
// Should not ANR because the window is paused, and touches shouldn't go to it
mFakePolicy->assertNotifyAnrWasNotCalled();
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not to to the focused window until the motion is processed.
* If a different window becomes focused at this time, the key should go to that window instead.
*
* Warning!!!
* This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT
* and the injection timeout that we specify when injecting the key.
* We must have the injection timeout (10ms) be smaller than
* KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms).
*
* If that value changes, this test should also change.
*/
TEST_F(InputDispatcherMultiWindowAnr, PendingKey_GoesToNewlyFocusedWindow) {
// Set a long ANR timeout to prevent it from triggering
mFocusedWindow->setDispatchingTimeout(2s);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
tapOnUnfocusedWindow();
std::optional<uint32_t> downSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection will succeed because we will eventually give up and send the key to the focused
// window even if motions are still being processed.
int32_t result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT,
INPUT_EVENT_INJECTION_SYNC_NONE, 10ms /*injectionTimeout*/);
ASSERT_EQ(INPUT_EVENT_INJECTION_SUCCEEDED, result);
// Key will not be sent to the window, yet, because the window is still processing events
// and the key remains pending, waiting for the touch events to be processed
std::optional<uint32_t> keySequenceNum = mFocusedWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
// Switch the focus to the "unfocused" window that we tapped. Expect the key to go there
mFocusedWindow->setFocus(false);
mUnfocusedWindow->setFocus(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
// Focus events should precede the key events
mUnfocusedWindow->consumeFocusEvent(true);
mFocusedWindow->consumeFocusEvent(false);
// Finish the tap events, which should unblock dispatcher
mUnfocusedWindow->finishEvent(*downSequenceNum);
mUnfocusedWindow->finishEvent(*upSequenceNum);
// Now that all queues are cleared and no backlog in the connections, the key event
// can finally go to the newly focused "mUnfocusedWindow".
mUnfocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
}
// When the touch stream is split across 2 windows, and one of them does not respond,
// then ANR should be raised and the touch should be canceled for the unresponsive window.
// The other window should not be affected by that.
TEST_F(InputDispatcherMultiWindowAnr, SplitTouch_SingleWindowAnr) {
// Touch Window 1
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {FOCUSED_WINDOW_LOCATION});
mDispatcher->notifyMotion(&motionArgs);
mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
motionArgs =
generateMotionArgs(actionPointerDown, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{FOCUSED_WINDOW_LOCATION, UNFOCUSED_WINDOW_LOCATION});
mDispatcher->notifyMotion(&motionArgs);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyAnrWasCalled(timeout, nullptr /*application*/,
mFocusedWindow->getToken());
mUnfocusedWindow->consumeMotionDown();
mFocusedWindow->consumeMotionDown();
// Focused window may or may not receive ACTION_MOVE
// But it should definitely receive ACTION_CANCEL due to the ANR
InputEvent* event;
std::optional<int32_t> moveOrCancelSequenceNum = mFocusedWindow->receiveEvent(&event);
ASSERT_TRUE(moveOrCancelSequenceNum);
mFocusedWindow->finishEvent(*moveOrCancelSequenceNum);
ASSERT_NE(nullptr, event);
ASSERT_EQ(event->getType(), AINPUT_EVENT_TYPE_MOTION);
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
if (motionEvent.getAction() == AMOTION_EVENT_ACTION_MOVE) {
mFocusedWindow->consumeMotionCancel();
} else {
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionEvent.getAction());
}
ASSERT_TRUE(mDispatcher->waitForIdle());
mUnfocusedWindow->assertNoEvents();
mFocusedWindow->assertNoEvents();
}
} // namespace android::inputdispatcher