blob: fe0b12aa4417d6f24e33f6eba5ae60d660926970 [file] [log] [blame]
#include <base/logging.h>
#include <private/dvr/buffer_hub_client.h>
#include <private/dvr/buffer_hub_queue_client.h>
#include <gtest/gtest.h>
#include <vector>
namespace android {
namespace dvr {
using pdx::LocalHandle;
namespace {
constexpr int kBufferWidth = 100;
constexpr int kBufferHeight = 1;
constexpr int kBufferLayerCount = 1;
constexpr int kBufferFormat = HAL_PIXEL_FORMAT_BLOB;
constexpr int kBufferUsage = GRALLOC_USAGE_SW_READ_RARELY;
class BufferHubQueueTest : public ::testing::Test {
public:
template <typename Meta>
bool CreateProducerQueue(uint64_t usage_set_mask = 0,
uint64_t usage_clear_mask = 0,
uint64_t usage_deny_set_mask = 0,
uint64_t usage_deny_clear_mask = 0) {
producer_queue_ =
ProducerQueue::Create<Meta>(usage_set_mask, usage_clear_mask,
usage_deny_set_mask, usage_deny_clear_mask);
return producer_queue_ != nullptr;
}
bool CreateConsumerQueue() {
if (producer_queue_) {
consumer_queue_ = producer_queue_->CreateConsumerQueue();
return consumer_queue_ != nullptr;
} else {
return false;
}
}
template <typename Meta>
bool CreateQueues(int usage_set_mask = 0, int usage_clear_mask = 0,
int usage_deny_set_mask = 0,
int usage_deny_clear_mask = 0) {
return CreateProducerQueue<Meta>(usage_set_mask, usage_clear_mask,
usage_deny_set_mask,
usage_deny_clear_mask) &&
CreateConsumerQueue();
}
void AllocateBuffer() {
// Create producer buffer.
size_t slot;
int ret = producer_queue_->AllocateBuffer(kBufferWidth, kBufferHeight,
kBufferLayerCount, kBufferFormat,
kBufferUsage, &slot);
ASSERT_EQ(ret, 0);
}
protected:
std::unique_ptr<ProducerQueue> producer_queue_;
std::unique_ptr<ConsumerQueue> consumer_queue_;
};
TEST_F(BufferHubQueueTest, TestDequeue) {
const size_t nb_dequeue_times = 16;
ASSERT_TRUE(CreateQueues<size_t>());
// Allocate only one buffer.
AllocateBuffer();
// But dequeue multiple times.
for (size_t i = 0; i < nb_dequeue_times; i++) {
size_t slot;
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_NE(nullptr, p1);
size_t mi = i;
ASSERT_EQ(p1->Post(LocalHandle(), &mi, sizeof(mi)), 0);
size_t mo;
auto c1_status = consumer_queue_->Dequeue(100, &slot, &mo, &fence);
ASSERT_TRUE(c1_status.ok());
auto c1 = c1_status.take();
ASSERT_NE(nullptr, c1);
ASSERT_EQ(mi, mo);
c1->Release(LocalHandle());
}
}
TEST_F(BufferHubQueueTest, TestProducerConsumer) {
const size_t nb_buffer = 16;
size_t slot;
uint64_t seq;
ASSERT_TRUE(CreateQueues<uint64_t>());
for (size_t i = 0; i < nb_buffer; i++) {
AllocateBuffer();
// Producer queue has all the available buffers on initialize.
ASSERT_EQ(producer_queue_->count(), i + 1);
ASSERT_EQ(producer_queue_->capacity(), i + 1);
// Consumer queue has no avaiable buffer on initialize.
ASSERT_EQ(consumer_queue_->count(), 0U);
// Consumer queue does not import buffers until a dequeue is issued.
ASSERT_EQ(consumer_queue_->capacity(), i);
// Dequeue returns timeout since no buffer is ready to consumer, but
// this implicitly triggers buffer import and bump up |capacity|.
LocalHandle fence;
auto status = consumer_queue_->Dequeue(0, &slot, &seq, &fence);
ASSERT_FALSE(status.ok());
ASSERT_EQ(ETIMEDOUT, status.error());
ASSERT_EQ(consumer_queue_->capacity(), i + 1);
}
for (size_t i = 0; i < nb_buffer; i++) {
LocalHandle fence;
// First time, there is no buffer available to dequeue.
auto consumer_status = consumer_queue_->Dequeue(0, &slot, &seq, &fence);
ASSERT_FALSE(consumer_status.ok());
ASSERT_EQ(ETIMEDOUT, consumer_status.error());
// Make sure Producer buffer is Post()'ed so that it's ready to Accquire
// in the consumer's Dequeue() function.
auto producer_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(producer_status.ok());
auto producer = producer_status.take();
ASSERT_NE(nullptr, producer);
uint64_t seq_in = static_cast<uint64_t>(i);
ASSERT_EQ(producer->Post({}, &seq_in, sizeof(seq_in)), 0);
// Second time, the just |Post()|'ed buffer should be dequeued.
uint64_t seq_out = 0;
consumer_status = consumer_queue_->Dequeue(0, &slot, &seq_out, &fence);
ASSERT_TRUE(consumer_status.ok());
auto consumer = consumer_status.take();
ASSERT_NE(nullptr, consumer);
ASSERT_EQ(seq_in, seq_out);
}
}
TEST_F(BufferHubQueueTest, TestMultipleConsumers) {
ASSERT_TRUE(CreateProducerQueue<void>());
// Allocate buffers.
const size_t kBufferCount = 4u;
for (size_t i = 0; i < kBufferCount; i++) {
AllocateBuffer();
}
ASSERT_EQ(kBufferCount, producer_queue_->count());
// Build a silent consumer queue to test multi-consumer queue features.
auto silent_queue = producer_queue_->CreateSilentConsumerQueue();
ASSERT_NE(nullptr, silent_queue);
// Check that buffers are correctly imported on construction.
EXPECT_EQ(kBufferCount, silent_queue->capacity());
// Dequeue and post a buffer.
size_t slot;
LocalHandle fence;
auto producer_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(producer_status.ok());
auto producer_buffer = producer_status.take();
ASSERT_NE(nullptr, producer_buffer);
ASSERT_EQ(0, producer_buffer->Post<void>({}));
// Currently we expect no buffer to be available prior to calling
// WaitForBuffers/HandleQueueEvents.
// TODO(eieio): Note this behavior may change in the future.
EXPECT_EQ(0u, silent_queue->count());
EXPECT_FALSE(silent_queue->HandleQueueEvents());
EXPECT_EQ(0u, silent_queue->count());
// Build a new consumer queue to test multi-consumer queue features.
consumer_queue_ = silent_queue->CreateConsumerQueue();
ASSERT_NE(nullptr, consumer_queue_);
// Check that buffers are correctly imported on construction.
EXPECT_EQ(kBufferCount, consumer_queue_->capacity());
EXPECT_EQ(1u, consumer_queue_->count());
// Reclaim released/ignored buffers.
producer_queue_->HandleQueueEvents();
ASSERT_EQ(kBufferCount - 1, producer_queue_->count());
// Post another buffer.
producer_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(producer_status.ok());
producer_buffer = producer_status.take();
ASSERT_NE(nullptr, producer_buffer);
ASSERT_EQ(0, producer_buffer->Post<void>({}));
// Verify that the consumer queue receives it.
EXPECT_EQ(1u, consumer_queue_->count());
EXPECT_TRUE(consumer_queue_->HandleQueueEvents());
EXPECT_EQ(2u, consumer_queue_->count());
// Dequeue and acquire/release (discard) buffers on the consumer end.
auto consumer_status = consumer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(consumer_status.ok());
auto consumer_buffer = consumer_status.take();
ASSERT_NE(nullptr, consumer_buffer);
consumer_buffer->Discard();
// Buffer should be returned to the producer queue without being handled by
// the silent consumer queue.
EXPECT_EQ(1u, consumer_queue_->count());
EXPECT_EQ(kBufferCount - 2, producer_queue_->count());
EXPECT_TRUE(producer_queue_->HandleQueueEvents());
EXPECT_EQ(kBufferCount - 1, producer_queue_->count());
}
struct TestMetadata {
char a;
int32_t b;
int64_t c;
};
TEST_F(BufferHubQueueTest, TestMetadata) {
ASSERT_TRUE(CreateQueues<TestMetadata>());
AllocateBuffer();
std::vector<TestMetadata> ms = {
{'0', 0, 0}, {'1', 10, 3333}, {'@', 123, 1000000000}};
for (auto mi : ms) {
size_t slot;
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_NE(nullptr, p1);
ASSERT_EQ(p1->Post(LocalHandle(-1), &mi, sizeof(mi)), 0);
TestMetadata mo;
auto c1_status = consumer_queue_->Dequeue(0, &slot, &mo, &fence);
ASSERT_TRUE(c1_status.ok());
auto c1 = c1_status.take();
ASSERT_EQ(mi.a, mo.a);
ASSERT_EQ(mi.b, mo.b);
ASSERT_EQ(mi.c, mo.c);
c1->Release(LocalHandle(-1));
}
}
TEST_F(BufferHubQueueTest, TestMetadataMismatch) {
ASSERT_TRUE(CreateQueues<int64_t>());
AllocateBuffer();
int64_t mi = 3;
size_t slot;
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_NE(nullptr, p1);
ASSERT_EQ(p1->Post(LocalHandle(-1), &mi, sizeof(mi)), 0);
int32_t mo;
// Acquire a buffer with mismatched metadata is not OK.
auto c1_status = consumer_queue_->Dequeue(0, &slot, &mo, &fence);
ASSERT_FALSE(c1_status.ok());
}
TEST_F(BufferHubQueueTest, TestEnqueue) {
ASSERT_TRUE(CreateQueues<int64_t>());
AllocateBuffer();
size_t slot;
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_NE(nullptr, p1);
int64_t mo;
producer_queue_->Enqueue(p1, slot);
auto c1_status = consumer_queue_->Dequeue(0, &slot, &mo, &fence);
ASSERT_FALSE(c1_status.ok());
}
TEST_F(BufferHubQueueTest, TestAllocateBuffer) {
ASSERT_TRUE(CreateQueues<int64_t>());
size_t s1;
AllocateBuffer();
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &s1, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_NE(nullptr, p1);
// producer queue is exhausted
size_t s2;
auto p2_status = producer_queue_->Dequeue(0, &s2, &fence);
ASSERT_FALSE(p2_status.ok());
ASSERT_EQ(ETIMEDOUT, p2_status.error());
// dynamically add buffer.
AllocateBuffer();
ASSERT_EQ(producer_queue_->count(), 1U);
ASSERT_EQ(producer_queue_->capacity(), 2U);
// now we can dequeue again
p2_status = producer_queue_->Dequeue(0, &s2, &fence);
ASSERT_TRUE(p2_status.ok());
auto p2 = p2_status.take();
ASSERT_NE(nullptr, p2);
ASSERT_EQ(producer_queue_->count(), 0U);
// p1 and p2 should have different slot number
ASSERT_NE(s1, s2);
// Consumer queue does not import buffers until |Dequeue| or |ImportBuffers|
// are called. So far consumer_queue_ should be empty.
ASSERT_EQ(consumer_queue_->count(), 0U);
int64_t seq = 1;
ASSERT_EQ(p1->Post(LocalHandle(), seq), 0);
size_t cs1, cs2;
auto c1_status = consumer_queue_->Dequeue(0, &cs1, &seq, &fence);
ASSERT_TRUE(c1_status.ok());
auto c1 = c1_status.take();
ASSERT_NE(nullptr, c1);
ASSERT_EQ(consumer_queue_->count(), 0U);
ASSERT_EQ(consumer_queue_->capacity(), 2U);
ASSERT_EQ(cs1, s1);
ASSERT_EQ(p2->Post(LocalHandle(), seq), 0);
auto c2_status = consumer_queue_->Dequeue(0, &cs2, &seq, &fence);
ASSERT_TRUE(c2_status.ok());
auto c2 = c2_status.take();
ASSERT_NE(nullptr, c2);
ASSERT_EQ(cs2, s2);
}
TEST_F(BufferHubQueueTest, TestUsageSetMask) {
const uint32_t set_mask = GRALLOC_USAGE_SW_WRITE_OFTEN;
ASSERT_TRUE(CreateQueues<int64_t>(set_mask, 0, 0, 0));
// When allocation, leave out |set_mask| from usage bits on purpose.
size_t slot;
int ret = producer_queue_->AllocateBuffer(kBufferWidth, kBufferHeight,
kBufferFormat, kBufferLayerCount,
kBufferUsage & ~set_mask, &slot);
ASSERT_EQ(0, ret);
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_EQ(p1->usage() & set_mask, set_mask);
}
TEST_F(BufferHubQueueTest, TestUsageClearMask) {
const uint32_t clear_mask = GRALLOC_USAGE_SW_WRITE_OFTEN;
ASSERT_TRUE(CreateQueues<int64_t>(0, clear_mask, 0, 0));
// When allocation, add |clear_mask| into usage bits on purpose.
size_t slot;
int ret = producer_queue_->AllocateBuffer(kBufferWidth, kBufferHeight,
kBufferLayerCount, kBufferFormat,
kBufferUsage | clear_mask, &slot);
ASSERT_EQ(0, ret);
LocalHandle fence;
auto p1_status = producer_queue_->Dequeue(0, &slot, &fence);
ASSERT_TRUE(p1_status.ok());
auto p1 = p1_status.take();
ASSERT_EQ(0u, p1->usage() & clear_mask);
}
TEST_F(BufferHubQueueTest, TestUsageDenySetMask) {
const uint32_t deny_set_mask = GRALLOC_USAGE_SW_WRITE_OFTEN;
ASSERT_TRUE(CreateQueues<int64_t>(0, 0, deny_set_mask, 0));
// Now that |deny_set_mask| is illegal, allocation without those bits should
// be able to succeed.
size_t slot;
int ret = producer_queue_->AllocateBuffer(
kBufferWidth, kBufferHeight, kBufferLayerCount, kBufferFormat,
kBufferUsage & ~deny_set_mask, &slot);
ASSERT_EQ(ret, 0);
// While allocation with those bits should fail.
ret = producer_queue_->AllocateBuffer(kBufferWidth, kBufferHeight,
kBufferLayerCount, kBufferFormat,
kBufferUsage | deny_set_mask, &slot);
ASSERT_EQ(ret, -EINVAL);
}
TEST_F(BufferHubQueueTest, TestUsageDenyClearMask) {
const uint32_t deny_clear_mask = GRALLOC_USAGE_SW_WRITE_OFTEN;
ASSERT_TRUE(CreateQueues<int64_t>(0, 0, 0, deny_clear_mask));
// Now that clearing |deny_clear_mask| is illegal (i.e. setting these bits are
// mandatory), allocation with those bits should be able to succeed.
size_t slot;
int ret = producer_queue_->AllocateBuffer(
kBufferWidth, kBufferHeight, kBufferLayerCount, kBufferFormat,
kBufferUsage | deny_clear_mask, &slot);
ASSERT_EQ(ret, 0);
// While allocation without those bits should fail.
ret = producer_queue_->AllocateBuffer(kBufferWidth, kBufferHeight,
kBufferLayerCount, kBufferFormat,
kBufferUsage & ~deny_clear_mask, &slot);
ASSERT_EQ(ret, -EINVAL);
}
} // namespace
} // namespace dvr
} // namespace android