blob: a59a1e00869a61faee432c18225ffbc5fb23fb76 [file] [log] [blame]
* Copyright (C) 2007 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#pragma once
#include <sys/types.h>
* NOTE: Make sure this file doesn't include anything from <gl/ > or <gl2/ >
#include <android-base/thread_annotations.h>
#include <cutils/atomic.h>
#include <cutils/compiler.h>
#include <gui/BufferQueue.h>
#include <gui/FrameTimestamps.h>
#include <gui/ISurfaceComposer.h>
#include <gui/ISurfaceComposerClient.h>
#include <gui/LayerState.h>
#include <gui/OccupancyTracker.h>
#include <hardware/hwcomposer_defs.h>
#include <input/ISetInputWindowsListener.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/mat4.h>
#include <serviceutils/PriorityDumper.h>
#include <system/graphics.h>
#include <ui/FenceTime.h>
#include <ui/PixelFormat.h>
#include <utils/Errors.h>
#include <utils/KeyedVector.h>
#include <utils/RefBase.h>
#include <utils/SortedVector.h>
#include <utils/Trace.h>
#include <utils/threads.h>
#include "ClientCache.h"
#include "DisplayDevice.h"
#include "DisplayHardware/HWC2.h"
#include "DisplayHardware/PowerAdvisor.h"
#include "Effects/Daltonizer.h"
#include "FrameTracker.h"
#include "LayerStats.h"
#include "LayerVector.h"
#include "Scheduler/RefreshRateConfigs.h"
#include "Scheduler/RefreshRateStats.h"
#include "Scheduler/Scheduler.h"
#include "Scheduler/VSyncModulator.h"
#include "SurfaceFlingerFactory.h"
#include "SurfaceTracing.h"
#include "TransactionCompletedThread.h"
#include <atomic>
#include <cstdint>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <queue>
#include <set>
#include <string>
#include <thread>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
using namespace android::surfaceflinger;
namespace android {
class Client;
class EventThread;
class HWComposer;
class IGraphicBufferProducer;
class IInputFlinger;
class InjectVSyncSource;
class Layer;
class MessageBase;
class RefreshRateOverlay;
class RegionSamplingThread;
class TimeStats;
namespace compositionengine {
class DisplaySurface;
} // namespace compositionengine
namespace renderengine {
class RenderEngine;
} // namespace renderengine
namespace dvr {
class VrFlinger;
} // namespace dvr
enum {
eTransactionNeeded = 0x01,
eTraversalNeeded = 0x02,
eDisplayTransactionNeeded = 0x04,
eDisplayLayerStackChanged = 0x08,
eTransactionFlushNeeded = 0x10,
eTransactionMask = 0x1f,
enum class DisplayColorSetting : int32_t {
class SurfaceFlingerBE
const std::string mHwcServiceName; // "default" for real use, something else for testing.
FenceTimeline mGlCompositionDoneTimeline;
FenceTimeline mDisplayTimeline;
// protected by mCompositorTimingLock;
mutable std::mutex mCompositorTimingLock;
CompositorTiming mCompositorTiming;
// Only accessed from the main thread.
struct CompositePresentTime {
nsecs_t composite = -1;
std::shared_ptr<FenceTime> display = FenceTime::NO_FENCE;
std::queue<CompositePresentTime> mCompositePresentTimes;
static const size_t NUM_BUCKETS = 8; // < 1-7, 7+
nsecs_t mFrameBuckets[NUM_BUCKETS] = {};
nsecs_t mTotalTime = 0;
std::atomic<nsecs_t> mLastSwapTime = 0;
// Double- vs. triple-buffering stats
struct BufferingStats {
size_t numSegments = 0;
nsecs_t totalTime = 0;
// "Two buffer" means that a third buffer was never used, whereas
// "double-buffered" means that on average the segment only used two
// buffers (though it may have used a third for some part of the
// segment)
nsecs_t twoBufferTime = 0;
nsecs_t doubleBufferedTime = 0;
nsecs_t tripleBufferedTime = 0;
mutable Mutex mBufferingStatsMutex;
std::unordered_map<std::string, BufferingStats> mBufferingStats;
// The composer sequence id is a monotonically increasing integer that we
// use to differentiate callbacks from different hardware composer
// instances. Each hardware composer instance gets a different sequence id.
int32_t mComposerSequenceId = 0;
class SurfaceFlinger : public BnSurfaceComposer,
public PriorityDumper,
public ClientCache::ErasedRecipient,
private IBinder::DeathRecipient,
private HWC2::ComposerCallback {
SurfaceFlingerBE& getBE() { return mBE; }
const SurfaceFlingerBE& getBE() const { return mBE; }
// This is the phase offset in nanoseconds of the software vsync event
// relative to the vsync event reported by HWComposer. The software vsync
// event is when SurfaceFlinger and Choreographer-based applications run each
// frame.
// This phase offset allows adjustment of the minimum latency from application
// wake-up time (by Choreographer) to the time at which the resulting window
// image is displayed. This value may be either positive (after the HW vsync)
// or negative (before the HW vsync). Setting it to 0 will result in a lower
// latency bound of two vsync periods because the app and SurfaceFlinger
// will run just after the HW vsync. Setting it to a positive number will
// result in the minimum latency being:
// (2 * VSYNC_PERIOD - (vsyncPhaseOffsetNs % VSYNC_PERIOD))
// Note that reducing this latency makes it more likely for the applications
// to not have their window content image ready in time. When this happens
// the latency will end up being an additional vsync period, and animations
// will hiccup. Therefore, this latency should be tuned somewhat
// conservatively (or at least with awareness of the trade-off being made).
static int64_t vsyncPhaseOffsetNs;
static int64_t sfVsyncPhaseOffsetNs;
// If fences from sync Framework are supported.
static bool hasSyncFramework;
// The offset in nanoseconds to use when DispSync timestamps present fence
// signaling time.
static int64_t dispSyncPresentTimeOffset;
// Some hardware can do RGB->YUV conversion more efficiently in hardware
// controlled by HWC than in hardware controlled by the video encoder.
// This instruct VirtualDisplaySurface to use HWC for such conversion on
// GL composition.
static bool useHwcForRgbToYuv;
// Maximum dimension supported by HWC for virtual display.
// Equal to min(max_height, max_width).
static uint64_t maxVirtualDisplaySize;
// Controls the number of buffers SurfaceFlinger will allocate for use in
// FramebufferSurface
static int64_t maxFrameBufferAcquiredBuffers;
// Indicate if a device has wide color gamut display. This is typically
// found on devices with wide color gamut (e.g. Display-P3) display.
static bool hasWideColorDisplay;
static int primaryDisplayOrientation;
// Indicate if device wants color management on its display.
static bool useColorManagement;
static bool useContextPriority;
// The data space and pixel format that SurfaceFlinger expects hardware composer
// to composite efficiently. Meaning under most scenarios, hardware composer
// will accept layers with the data space and pixel format.
static ui::Dataspace defaultCompositionDataspace;
static ui::PixelFormat defaultCompositionPixelFormat;
// The data space and pixel format that SurfaceFlinger expects hardware composer
// to composite efficiently for wide color gamut surfaces. Meaning under most scenarios,
// hardware composer will accept layers with the data space and pixel format.
static ui::Dataspace wideColorGamutCompositionDataspace;
static ui::PixelFormat wideColorGamutCompositionPixelFormat;
static char const* getServiceName() ANDROID_API {
return "SurfaceFlinger";
struct SkipInitializationTag {};
static constexpr SkipInitializationTag SkipInitialization;
SurfaceFlinger(surfaceflinger::Factory&, SkipInitializationTag) ANDROID_API;
explicit SurfaceFlinger(surfaceflinger::Factory&) ANDROID_API;
// must be called before clients can connect
void init() ANDROID_API;
// starts SurfaceFlinger main loop in the current thread
void run() ANDROID_API;
// post an asynchronous message to the main thread
status_t postMessageAsync(const sp<MessageBase>& msg, nsecs_t reltime = 0, uint32_t flags = 0);
// post a synchronous message to the main thread
status_t postMessageSync(const sp<MessageBase>& msg, nsecs_t reltime = 0, uint32_t flags = 0);
// force full composition on all displays
void repaintEverything();
// force full composition on all displays without resetting the scheduler idle timer.
void repaintEverythingForHWC();
surfaceflinger::Factory& getFactory() { return mFactory; }
// The CompositionEngine encapsulates all composition related interfaces and actions.
compositionengine::CompositionEngine& getCompositionEngine() const;
// returns the default Display
sp<const DisplayDevice> getDefaultDisplayDevice() {
Mutex::Autolock _l(mStateLock);
return getDefaultDisplayDeviceLocked();
// Obtains a name from the texture pool, or, if the pool is empty, posts a
// synchronous message to the main thread to obtain one on the fly
uint32_t getNewTexture();
// utility function to delete a texture on the main thread
void deleteTextureAsync(uint32_t texture);
// enable/disable h/w composer event
// TODO: this should be made accessible only to EventThread
void setPrimaryVsyncEnabled(bool enabled);
// main thread function to enable/disable h/w composer event
void setPrimaryVsyncEnabledInternal(bool enabled);
// called on the main thread by MessageQueue when an internal message
// is received
// TODO: this should be made accessible only to MessageQueue
void onMessageReceived(int32_t what);
// populates the expected present time for this frame.
// When we are in negative offsets, we perform a correction so that the
// predicted vsync for the *next* frame is used instead.
void populateExpectedPresentTime();
nsecs_t getExpectedPresentTime() const { return mExpectedPresentTime; }
// for debugging only
// TODO: this should be made accessible only to HWComposer
const Vector<sp<Layer>>& getLayerSortedByZForHwcDisplay(DisplayId displayId);
renderengine::RenderEngine& getRenderEngine() const;
bool authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const;
inline void onLayerCreated() { mNumLayers++; }
inline void onLayerDestroyed(Layer* layer) {
TransactionCompletedThread& getTransactionCompletedThread() {
return mTransactionCompletedThread;
sp<Layer> fromHandle(const sp<IBinder>& handle) REQUIRES(mStateLock);
// Inherit from ClientCache::ErasedRecipient
void bufferErased(const client_cache_t& clientCacheId) override;
friend class BufferLayer;
friend class BufferQueueLayer;
friend class BufferStateLayer;
friend class Client;
friend class Layer;
friend class MonitoredProducer;
friend class RefreshRateOverlay;
friend class RegionSamplingThread;
friend class SurfaceTracing;
// For unit tests
friend class TestableSurfaceFlinger;
// This value is specified in number of frames. Log frame stats at most
// every half hour.
enum { LOG_FRAME_STATS_PERIOD = 30*60*60 };
static const size_t MAX_LAYERS = 4096;
static const int MAX_TRACING_MEMORY = 100 * 1024 * 1024; // 100MB
// We're reference counted, never destroy SurfaceFlinger directly
virtual ~SurfaceFlinger();
/* ------------------------------------------------------------------------
* Internal data structures
class State {
explicit State(LayerVector::StateSet set) : stateSet(set), layersSortedByZ(set) {}
State& operator=(const State& other) {
// We explicitly don't copy stateSet so that, e.g., mDrawingState
// always uses the Drawing StateSet.
layersSortedByZ = other.layersSortedByZ;
displays = other.displays;
colorMatrixChanged = other.colorMatrixChanged;
if (colorMatrixChanged) {
colorMatrix = other.colorMatrix;
return *this;
const LayerVector::StateSet stateSet = LayerVector::StateSet::Invalid;
LayerVector layersSortedByZ;
DefaultKeyedVector< wp<IBinder>, DisplayDeviceState> displays;
bool colorMatrixChanged = true;
mat4 colorMatrix;
void traverseInZOrder(const LayerVector::Visitor& visitor) const;
void traverseInReverseZOrder(const LayerVector::Visitor& visitor) const;
/* ------------------------------------------------------------------------
* IBinder interface
status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) override;
status_t dump(int fd, const Vector<String16>& args) override { return priorityDump(fd, args); }
bool callingThreadHasUnscopedSurfaceFlingerAccess() EXCLUDES(mStateLock);
/* ------------------------------------------------------------------------
* ISurfaceComposer interface
sp<ISurfaceComposerClient> createConnection() override;
sp<IBinder> createDisplay(const String8& displayName, bool secure) override;
void destroyDisplay(const sp<IBinder>& displayToken) override;
std::vector<PhysicalDisplayId> getPhysicalDisplayIds() const override;
sp<IBinder> getPhysicalDisplayToken(PhysicalDisplayId displayId) const override;
void setTransactionState(const Vector<ComposerState>& state,
const Vector<DisplayState>& displays, uint32_t flags,
const sp<IBinder>& applyToken,
const InputWindowCommands& inputWindowCommands,
int64_t desiredPresentTime, const client_cache_t& uncacheBuffer,
const std::vector<ListenerCallbacks>& listenerCallbacks) override;
void bootFinished() override;
bool authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const override;
status_t getSupportedFrameTimestamps(std::vector<FrameEvent>* outSupported) const override;
sp<IDisplayEventConnection> createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource = eVsyncSourceApp,
ISurfaceComposer::ConfigChanged configChanged =
ISurfaceComposer::eConfigChangedSuppress) override;
status_t captureScreen(const sp<IBinder>& displayToken, sp<GraphicBuffer>* outBuffer,
bool& outCapturedSecureLayers, const ui::Dataspace reqDataspace,
const ui::PixelFormat reqPixelFormat, Rect sourceCrop,
uint32_t reqWidth, uint32_t reqHeight,
bool useIdentityTransform, ISurfaceComposer::Rotation rotation, bool captureSecureLayers) override;
status_t captureScreen(uint64_t displayOrLayerStack, ui::Dataspace* outDataspace,
sp<GraphicBuffer>* outBuffer) override;
status_t captureLayers(
const sp<IBinder>& parentHandle, sp<GraphicBuffer>* outBuffer,
const ui::Dataspace reqDataspace, const ui::PixelFormat reqPixelFormat,
const Rect& sourceCrop,
const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>& exclude,
float frameScale, bool childrenOnly) override;
status_t getDisplayStats(const sp<IBinder>& displayToken, DisplayStatInfo* stats) override;
status_t getDisplayConfigs(const sp<IBinder>& displayToken,
Vector<DisplayInfo>* configs) override;
int getActiveConfig(const sp<IBinder>& displayToken) override;
status_t getDisplayColorModes(const sp<IBinder>& displayToken,
Vector<ui::ColorMode>* configs) override;
status_t getDisplayNativePrimaries(const sp<IBinder>& displayToken,
ui::DisplayPrimaries &primaries);
ui::ColorMode getActiveColorMode(const sp<IBinder>& displayToken) override;
status_t setActiveColorMode(const sp<IBinder>& displayToken, ui::ColorMode colorMode) override;
void setPowerMode(const sp<IBinder>& displayToken, int mode) override;
status_t setActiveConfig(const sp<IBinder>& displayToken, int id) override;
status_t clearAnimationFrameStats() override;
status_t getAnimationFrameStats(FrameStats* outStats) const override;
status_t getHdrCapabilities(const sp<IBinder>& displayToken,
HdrCapabilities* outCapabilities) const override;
status_t enableVSyncInjections(bool enable) override;
status_t injectVSync(nsecs_t when) override;
status_t getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const override;
status_t getColorManagement(bool* outGetColorManagement) const override;
status_t getCompositionPreference(ui::Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
ui::Dataspace* outWideColorGamutDataspace,
ui::PixelFormat* outWideColorGamutPixelFormat) const override;
status_t getDisplayedContentSamplingAttributes(const sp<IBinder>& display,
ui::PixelFormat* outFormat,
ui::Dataspace* outDataspace,
uint8_t* outComponentMask) const override;
status_t setDisplayContentSamplingEnabled(const sp<IBinder>& display, bool enable,
uint8_t componentMask,
uint64_t maxFrames) const override;
status_t getDisplayedContentSample(const sp<IBinder>& display, uint64_t maxFrames,
uint64_t timestamp,
DisplayedFrameStats* outStats) const override;
status_t getProtectedContentSupport(bool* outSupported) const override;
status_t isWideColorDisplay(const sp<IBinder>& displayToken,
bool* outIsWideColorDisplay) const override;
status_t addRegionSamplingListener(const Rect& samplingArea, const sp<IBinder>& stopLayerHandle,
const sp<IRegionSamplingListener>& listener) override;
status_t removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) override;
status_t setAllowedDisplayConfigs(const sp<IBinder>& displayToken,
const std::vector<int32_t>& allowedConfigs) override;
status_t getAllowedDisplayConfigs(const sp<IBinder>& displayToken,
std::vector<int32_t>* outAllowedConfigs) override;
status_t getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) const override;
status_t setDisplayBrightness(const sp<IBinder>& displayToken, float brightness) const override;
status_t notifyPowerHint(int32_t hintId) override;
/* ------------------------------------------------------------------------
* DeathRecipient interface
void binderDied(const wp<IBinder>& who) override;
/* ------------------------------------------------------------------------
* RefBase interface
void onFirstRef() override;
/* ------------------------------------------------------------------------
* HWC2::ComposerCallback / HWComposer::EventHandler interface
void onVsyncReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
int64_t timestamp) override;
void onHotplugReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
HWC2::Connection connection) override;
void onRefreshReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId) override;
/* ------------------------------------------------------------------------
* Message handling
void waitForEvent();
// Can only be called from the main thread or with mStateLock held
void signalTransaction();
// Can only be called from the main thread or with mStateLock held
void signalLayerUpdate();
void signalRefresh();
using RefreshRateType = scheduler::RefreshRateConfigs::RefreshRateType;
struct ActiveConfigInfo {
RefreshRateType type;
int configId;
Scheduler::ConfigEvent event;
bool operator!=(const ActiveConfigInfo& other) const {
return type != other.type || configId != other.configId || event != other.event;
// called on the main thread in response to initializeDisplays()
void onInitializeDisplays() REQUIRES(mStateLock);
// Sets the desired active config bit. It obtains the lock, and sets mDesiredActiveConfig.
void setDesiredActiveConfig(const ActiveConfigInfo& info) REQUIRES(mStateLock);
// Once HWC has returned the present fence, this sets the active config and a new refresh
// rate in SF.
void setActiveConfigInternal() REQUIRES(mStateLock);
// Active config is updated on INVALIDATE call in a state machine-like manner. When the
// desired config was set, HWC needs to update the panel on the next refresh, and when
// we receive the fence back, we know that the process was complete. It returns whether
// we need to wait for the next invalidate
bool performSetActiveConfig() REQUIRES(mStateLock);
// Called when active config is no longer is progress
void desiredActiveConfigChangeDone() REQUIRES(mStateLock);
// called on the main thread in response to setPowerMode()
void setPowerModeInternal(const sp<DisplayDevice>& display, int mode) REQUIRES(mStateLock);
// Query the Scheduler or allowed display configs list for a matching config, and set it
void setPreferredDisplayConfig() REQUIRES(mStateLock);
// called on the main thread in response to setAllowedDisplayConfigs()
void setAllowedDisplayConfigsInternal(const sp<DisplayDevice>& display,
const std::vector<int32_t>& allowedConfigs)
// Returns whether the transaction actually modified any state
bool handleMessageTransaction();
// Returns whether a new buffer has been latched (see handlePageFlip())
bool handleMessageInvalidate();
void handleMessageRefresh();
void handleTransaction(uint32_t transactionFlags);
void handleTransactionLocked(uint32_t transactionFlags) REQUIRES(mStateLock);
void updateInputFlinger();
void updateInputWindowInfo();
void commitInputWindowCommands() REQUIRES(mStateLock);
void executeInputWindowCommands();
void setInputWindowsFinished();
void updateCursorAsync();
/* handlePageFlip - latch a new buffer if available and compute the dirty
* region. Returns whether a new buffer has been latched, i.e., whether it
* is necessary to perform a refresh during this vsync.
bool handlePageFlip();
/* ------------------------------------------------------------------------
* Transactions
void applyTransactionState(const Vector<ComposerState>& state,
const Vector<DisplayState>& displays, uint32_t flags,
const InputWindowCommands& inputWindowCommands,
const int64_t desiredPresentTime,
const client_cache_t& uncacheBuffer,
const std::vector<ListenerCallbacks>& listenerCallbacks,
const int64_t postTime, bool privileged, bool isMainThread = false)
// Returns true if at least one transaction was flushed
bool flushTransactionQueues();
// Returns true if there is at least one transaction that needs to be flushed
bool transactionFlushNeeded();
uint32_t getTransactionFlags(uint32_t flags);
uint32_t peekTransactionFlags();
// Can only be called from the main thread or with mStateLock held
uint32_t setTransactionFlags(uint32_t flags);
uint32_t setTransactionFlags(uint32_t flags, Scheduler::TransactionStart transactionStart);
void latchAndReleaseBuffer(const sp<Layer>& layer);
void commitTransaction() REQUIRES(mStateLock);
void commitOffscreenLayers();
bool containsAnyInvalidClientState(const Vector<ComposerState>& states);
bool transactionIsReadyToBeApplied(int64_t desiredPresentTime,
const Vector<ComposerState>& states);
uint32_t setClientStateLocked(const ComposerState& composerState, int64_t desiredPresentTime,
const std::vector<ListenerCallbacks>& listenerCallbacks,
int64_t postTime, bool privileged) REQUIRES(mStateLock);
uint32_t setDisplayStateLocked(const DisplayState& s) REQUIRES(mStateLock);
uint32_t addInputWindowCommands(const InputWindowCommands& inputWindowCommands)
/* ------------------------------------------------------------------------
* Layer management
status_t createLayer(const String8& name, const sp<Client>& client, uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer = nullptr);
status_t createBufferQueueLayer(const sp<Client>& client, const String8& name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
PixelFormat& format, sp<IBinder>* outHandle,
sp<IGraphicBufferProducer>* outGbp, sp<Layer>* outLayer);
status_t createBufferStateLayer(const sp<Client>& client, const String8& name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* outHandle, sp<Layer>* outLayer);
status_t createColorLayer(const sp<Client>& client, const String8& name, uint32_t w, uint32_t h,
uint32_t flags, LayerMetadata metadata, sp<IBinder>* outHandle,
sp<Layer>* outLayer);
status_t createContainerLayer(const sp<Client>& client, const String8& name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* outHandle, sp<Layer>* outLayer);
String8 getUniqueLayerName(const String8& name);
// called when all clients have released all their references to
// this layer meaning it is entirely safe to destroy all
// resources associated to this layer.
void onHandleDestroyed(sp<Layer>& layer);
void markLayerPendingRemovalLocked(const sp<Layer>& layer);
// add a layer to SurfaceFlinger
status_t addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer,
bool addToCurrentState);
// Traverse through all the layers and compute and cache its bounds.
void computeLayerBounds();
/* ------------------------------------------------------------------------
* Boot animation, on/off animations and screen capture
void startBootAnim();
using TraverseLayersFunction = std::function<void(const LayerVector::Visitor&)>;
void renderScreenImplLocked(const RenderArea& renderArea, TraverseLayersFunction traverseLayers,
ANativeWindowBuffer* buffer, bool useIdentityTransform,
int* outSyncFd);
status_t captureScreenCommon(RenderArea& renderArea, TraverseLayersFunction traverseLayers,
sp<GraphicBuffer>* outBuffer, const ui::PixelFormat reqPixelFormat,
bool useIdentityTransform, bool& outCapturedSecureLayers);
status_t captureScreenCommon(RenderArea& renderArea, TraverseLayersFunction traverseLayers,
const sp<GraphicBuffer>& buffer, bool useIdentityTransform,
bool& outCapturedSecureLayers);
const sp<DisplayDevice> getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack);
status_t captureScreenImplLocked(const RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
ANativeWindowBuffer* buffer, bool useIdentityTransform,
bool forSystem, int* outSyncFd, bool& outCapturedSecureLayers);
void traverseLayersInDisplay(const sp<const DisplayDevice>& display,
const LayerVector::Visitor& visitor);
sp<StartPropertySetThread> mStartPropertySetThread;
/* ------------------------------------------------------------------------
* Properties
void readPersistentProperties();
/* ------------------------------------------------------------------------
size_t getMaxTextureSize() const;
size_t getMaxViewportDims() const;
/* ------------------------------------------------------------------------
* Display and layer stack management
// called when starting, or restarting after system_server death
void initializeDisplays();
sp<const DisplayDevice> getDisplayDevice(const wp<IBinder>& displayToken) const {
Mutex::Autolock _l(mStateLock);
return getDisplayDeviceLocked(displayToken);
sp<DisplayDevice> getDisplayDevice(const wp<IBinder>& displayToken) {
Mutex::Autolock _l(mStateLock);
return getDisplayDeviceLocked(displayToken);
// NOTE: can only be called from the main thread or with mStateLock held
sp<const DisplayDevice> getDisplayDeviceLocked(const wp<IBinder>& displayToken) const {
return const_cast<SurfaceFlinger*>(this)->getDisplayDeviceLocked(displayToken);
// NOTE: can only be called from the main thread or with mStateLock held
sp<DisplayDevice> getDisplayDeviceLocked(const wp<IBinder>& displayToken) {
const auto it = mDisplays.find(displayToken);
return it == mDisplays.end() ? nullptr : it->second;
sp<const DisplayDevice> getDefaultDisplayDeviceLocked() const {
return const_cast<SurfaceFlinger*>(this)->getDefaultDisplayDeviceLocked();
sp<DisplayDevice> getDefaultDisplayDeviceLocked() {
if (const auto token = getInternalDisplayTokenLocked()) {
return getDisplayDeviceLocked(token);
return nullptr;
// mark a region of a layer stack dirty. this updates the dirty
// region of all screens presenting this layer stack.
void invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty);
/* ------------------------------------------------------------------------
* H/W composer
// The current hardware composer interface.
// The following thread safety rules apply when accessing mHwc, either
// directly or via getHwComposer():
// 1. When recreating mHwc, acquire mStateLock. We currently recreate mHwc
// only when switching into and out of vr. Recreating mHwc must only be
// done on the main thread.
// 2. When accessing mHwc on the main thread, it's not necessary to acquire
// mStateLock.
// 3. When accessing mHwc on a thread other than the main thread, we always
// need to acquire mStateLock. This is because the main thread could be
// in the process of destroying the current mHwc instance.
// The above thread safety rules only apply to SurfaceFlinger.cpp. In
// SurfaceFlinger_hwc1.cpp we create mHwc at surface flinger init and never
// destroy it, so it's always safe to access mHwc from any thread without
// acquiring mStateLock.
HWComposer& getHwComposer() const;
/* ------------------------------------------------------------------------
* Compositing
void invalidateHwcGeometry();
void computeVisibleRegions(const sp<const DisplayDevice>& display, Region& dirtyRegion,
Region& opaqueRegion);
void preComposition();
void postComposition();
void getCompositorTiming(CompositorTiming* compositorTiming);
void updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime);
void setCompositorTimingSnapped(const DisplayStatInfo& stats,
nsecs_t compositeToPresentLatency);
void rebuildLayerStacks();
ui::Dataspace getBestDataspace(const sp<DisplayDevice>& display, ui::Dataspace* outHdrDataSpace,
bool* outIsHdrClientComposition) const;
// Returns the appropriate ColorMode, Dataspace and RenderIntent for the
// DisplayDevice. The function only returns the supported ColorMode,
// Dataspace and RenderIntent.
void pickColorMode(const sp<DisplayDevice>& display, ui::ColorMode* outMode,
ui::Dataspace* outDataSpace, ui::RenderIntent* outRenderIntent) const;
void calculateWorkingSet();
* beginFrame - This function handles any pre-frame processing that needs to be
* prior to any CompositionInfo handling and is not dependent on data in
* CompositionInfo
void beginFrame(const sp<DisplayDevice>& display);
/* prepareFrame - This function will call into the DisplayDevice to prepare a
* frame after CompositionInfo has been programmed. This provides a mechanism
* to prepare the hardware composer
void prepareFrame(const sp<DisplayDevice>& display);
void doComposition(const sp<DisplayDevice>& display, bool repainEverything);
void doDebugFlashRegions(const sp<DisplayDevice>& display, bool repaintEverything);
void logLayerStats();
void doDisplayComposition(const sp<DisplayDevice>& display, const Region& dirtyRegion);
// This fails if using GL and the surface has been destroyed. readyFence
// will be populated if using GL and native fence sync is supported, to
// signal when drawing has completed.
bool doComposeSurfaces(const sp<DisplayDevice>& display, const Region& debugRegionm,
base::unique_fd* readyFence);
void postFramebuffer(const sp<DisplayDevice>& display);
void postFrame();
void drawWormhole(const Region& region) const;
/* ------------------------------------------------------------------------
* Display management
sp<DisplayDevice> setupNewDisplayDeviceInternal(
const wp<IBinder>& displayToken, const std::optional<DisplayId>& displayId,
const DisplayDeviceState& state,
const sp<compositionengine::DisplaySurface>& dispSurface,
const sp<IGraphicBufferProducer>& producer);
void processDisplayChangesLocked();
void processDisplayHotplugEventsLocked();
void dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected);
/* ------------------------------------------------------------------------
* VSync
nsecs_t getVsyncPeriod() const REQUIRES(mStateLock);
// Sets the refresh rate by switching active configs, if they are available for
// the desired refresh rate.
void setRefreshRateTo(RefreshRateType, Scheduler::ConfigEvent event) REQUIRES(mStateLock);
bool isDisplayConfigAllowed(int32_t configId) REQUIRES(mStateLock);
* Display identification
sp<IBinder> getPhysicalDisplayTokenLocked(DisplayId displayId) const {
const auto it = mPhysicalDisplayTokens.find(displayId);
return it != mPhysicalDisplayTokens.end() ? it->second : nullptr;
std::optional<DisplayId> getPhysicalDisplayIdLocked(const sp<IBinder>& displayToken) const {
for (const auto& [id, token] : mPhysicalDisplayTokens) {
if (token == displayToken) {
return id;
return {};
// TODO(b/74619554): Remove special cases for primary display.
sp<IBinder> getInternalDisplayTokenLocked() const {
const auto displayId = getInternalDisplayIdLocked();
return displayId ? getPhysicalDisplayTokenLocked(*displayId) : nullptr;
std::optional<DisplayId> getInternalDisplayIdLocked() const {
const auto hwcDisplayId = getHwComposer().getInternalHwcDisplayId();
return hwcDisplayId ? getHwComposer().toPhysicalDisplayId(*hwcDisplayId) : std::nullopt;
bool previousFrameMissed();
void setVsyncEnabledInHWC(DisplayId displayId, HWC2::Vsync enabled);
* Debugging & dumpsys
using DumpArgs = Vector<String16>;
using Dumper = std::function<void(const DumpArgs&, bool asProto, std::string&)>;
template <typename F, std::enable_if_t<!std::is_member_function_pointer_v<F>>* = nullptr>
static Dumper dumper(F&& dump) {
using namespace std::placeholders;
return std::bind(std::forward<F>(dump), _3);
template <typename F, std::enable_if_t<std::is_member_function_pointer_v<F>>* = nullptr>
Dumper dumper(F dump) {
using namespace std::placeholders;
return std::bind(dump, this, _3);
template <typename F>
Dumper argsDumper(F dump) {
using namespace std::placeholders;
return std::bind(dump, this, _1, _3);
template <typename F>
Dumper protoDumper(F dump) {
using namespace std::placeholders;
return std::bind(dump, this, _1, _2, _3);
void dumpAllLocked(const DumpArgs& args, std::string& result) const REQUIRES(mStateLock);
void appendSfConfigString(std::string& result) const;
void listLayersLocked(std::string& result) const;
void dumpStatsLocked(const DumpArgs& args, std::string& result) const REQUIRES(mStateLock);
void clearStatsLocked(const DumpArgs& args, std::string& result);
void dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const;
void logFrameStats();
void dumpVSync(std::string& result) const REQUIRES(mStateLock);
void dumpStaticScreenStats(std::string& result) const;
// Not const because each Layer needs to query Fences and cache timestamps.
void dumpFrameEventsLocked(std::string& result);
void recordBufferingStats(const char* layerName,
std::vector<OccupancyTracker::Segment>&& history);
void dumpBufferingStats(std::string& result) const;
void dumpDisplayIdentificationData(std::string& result) const;
void dumpWideColorInfo(std::string& result) const;
LayersProto dumpProtoInfo(LayerVector::StateSet stateSet,
uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const;
void withTracingLock(std::function<void()> operation) REQUIRES(mStateLock);
LayersProto dumpVisibleLayersProtoInfo(const sp<DisplayDevice>& display) const;
bool isLayerTripleBufferingDisabled() const {
return this->mLayerTripleBufferingDisabled;
status_t doDump(int fd, const DumpArgs& args, bool asProto);
status_t dumpCritical(int fd, const DumpArgs&, bool asProto);
status_t dumpAll(int fd, const DumpArgs& args, bool asProto) override {
return doDump(fd, args, asProto);
/* ------------------------------------------------------------------------
* VrFlinger
void resetDisplayState();
// Check to see if we should handoff to vr flinger.
void updateVrFlinger();
void updateColorMatrixLocked();
/* ------------------------------------------------------------------------
* Attributes
surfaceflinger::Factory& mFactory;
// access must be protected by mStateLock
mutable Mutex mStateLock;
State mCurrentState{LayerVector::StateSet::Current};
std::atomic<int32_t> mTransactionFlags = 0;
Condition mTransactionCV;
bool mTransactionPending = false;
bool mAnimTransactionPending = false;
SortedVector<sp<Layer>> mLayersPendingRemoval;
bool mTraversalNeededMainThread = false;
// guards access to the mDrawing state if tracing is enabled.
mutable std::mutex mDrawingStateLock;
// global color transform states
Daltonizer mDaltonizer;
float mGlobalSaturationFactor = 1.0f;
mat4 mClientColorMatrix;
// Can't be unordered_set because wp<> isn't hashable
std::set<wp<IBinder>> mGraphicBufferProducerList;
size_t mMaxGraphicBufferProducerListSize = MAX_LAYERS;
// protected by mStateLock (but we could use another lock)
bool mLayersRemoved = false;
bool mLayersAdded = false;
std::atomic<bool> mRepaintEverything = false;
// constant members (no synchronization needed for access)
const nsecs_t mBootTime = systemTime();
bool mGpuToCpuSupported = false;
std::unique_ptr<EventThread> mInjectorEventThread;
std::unique_ptr<InjectVSyncSource> mVSyncInjector;
// Calculates correct offsets.
VSyncModulator mVsyncModulator;
// Keeps track of all available phase offsets for different refresh types.
const std::unique_ptr<scheduler::PhaseOffsets> mPhaseOffsets;
// Can only accessed from the main thread, these members
// don't need synchronization
State mDrawingState{LayerVector::StateSet::Drawing};
bool mVisibleRegionsDirty = false;
// Set during transaction commit stage to track if the input info for a layer has changed.
bool mInputInfoChanged = false;
bool mGeometryInvalid = false;
bool mAnimCompositionPending = false;
std::vector<sp<Layer>> mLayersWithQueuedFrames;
// Tracks layers that need to update a display's dirty region.
std::vector<sp<Layer>> mLayersPendingRefresh;
std::array<sp<Fence>, 2> mPreviousPresentFences = {Fence::NO_FENCE, Fence::NO_FENCE};
// True if in the previous frame at least one layer was composed via the GPU.
bool mHadClientComposition = false;
// True if in the previous frame at least one layer was composed via HW Composer.
// Note that it is possible for a frame to be composed via both client and device
// composition, for example in the case of overlays.
bool mHadDeviceComposition = false;
enum class BootStage {
BootStage mBootStage = BootStage::BOOTLOADER;
struct HotplugEvent {
hwc2_display_t hwcDisplayId;
HWC2::Connection connection = HWC2::Connection::Invalid;
// protected by mStateLock
std::vector<HotplugEvent> mPendingHotplugEvents;
// this may only be written from the main thread with mStateLock held
// it may be read from other threads with mStateLock held
std::map<wp<IBinder>, sp<DisplayDevice>> mDisplays;
std::unordered_map<DisplayId, sp<IBinder>> mPhysicalDisplayTokens;
// protected by mStateLock
std::unordered_map<BBinder*, wp<Layer>> mLayersByLocalBinderToken;
// don't use a lock for these, we don't care
int mDebugRegion = 0;
bool mDebugDisableHWC = false;
bool mDebugDisableTransformHint = false;
volatile nsecs_t mDebugInTransaction = 0;
bool mForceFullDamage = false;
bool mPropagateBackpressure = true;
bool mPropagateBackpressureClientComposition = false;
std::unique_ptr<SurfaceInterceptor> mInterceptor;
SurfaceTracing mTracing{*this};
bool mTracingEnabled = false;
bool mTracingEnabledChanged GUARDED_BY(mStateLock) = false;
LayerStats mLayerStats;
const std::shared_ptr<TimeStats> mTimeStats;
bool mUseHwcVirtualDisplays = false;
std::atomic<uint32_t> mFrameMissedCount = 0;
std::atomic<uint32_t> mHwcFrameMissedCount = 0;
std::atomic<uint32_t> mGpuFrameMissedCount = 0;
TransactionCompletedThread mTransactionCompletedThread;
// Restrict layers to use two buffers in their bufferqueues.
bool mLayerTripleBufferingDisabled = false;
// these are thread safe
std::unique_ptr<MessageQueue> mEventQueue;
FrameTracker mAnimFrameTracker;
// protected by mDestroyedLayerLock;
mutable Mutex mDestroyedLayerLock;
Vector<Layer const *> mDestroyedLayers;
nsecs_t mRefreshStartTime = 0;
std::atomic<bool> mRefreshPending = false;
// We maintain a pool of pre-generated texture names to hand out to avoid
// layer creation needing to run on the main thread (which it would
// otherwise need to do to access RenderEngine).
std::mutex mTexturePoolMutex;
uint32_t mTexturePoolSize = 0;
std::vector<uint32_t> mTexturePool;
struct IBinderHash {
std::size_t operator()(const sp<IBinder>& strongPointer) const {
return std::hash<IBinder*>{}(strongPointer.get());
struct TransactionState {
TransactionState(const Vector<ComposerState>& composerStates,
const Vector<DisplayState>& displayStates, uint32_t transactionFlags,
int64_t desiredPresentTime, const client_cache_t& uncacheBuffer,
const std::vector<ListenerCallbacks>& listenerCallbacks, int64_t postTime,
bool privileged)
: states(composerStates),
privileged(privileged) {}
Vector<ComposerState> states;
Vector<DisplayState> displays;
uint32_t flags;
const int64_t desiredPresentTime;
client_cache_t buffer;
std::vector<ListenerCallbacks> callback;
const int64_t postTime;
bool privileged;
std::unordered_map<sp<IBinder>, std::queue<TransactionState>, IBinderHash> mTransactionQueues;
/* ------------------------------------------------------------------------
* Feature prototyping
bool mInjectVSyncs = false;
// Static screen stats
bool mHasPoweredOff = false;
size_t mNumLayers = 0;
// Verify that transaction is being called by an approved process:
status_t CheckTransactCodeCredentials(uint32_t code);
std::unique_ptr<dvr::VrFlinger> mVrFlinger;
std::atomic<bool> mVrFlingerRequestsDisplay = false;
static bool useVrFlinger;
std::thread::id mMainThreadId = std::this_thread::get_id();
DisplayColorSetting mDisplayColorSetting = DisplayColorSetting::ENHANCED;
// Color mode forced by setting persist.sys.sf.color_mode, it must:
// 1. not be NATIVE color mode, NATIVE color mode means no forced color mode;
// 2. be one of the supported color modes returned by hardware composer, otherwise
// it will not be respected.
// persist.sys.sf.color_mode will only take effect when persist.sys.sf.native_mode
// is not set to 1.
// This property can be used to force SurfaceFlinger to always pick a certain color mode.
ui::ColorMode mForceColorMode = ui::ColorMode::NATIVE;
ui::Dataspace mDefaultCompositionDataspace;
ui::Dataspace mWideColorGamutCompositionDataspace;
ui::Dataspace mColorSpaceAgnosticDataspace;
SurfaceFlingerBE mBE;
std::unique_ptr<compositionengine::CompositionEngine> mCompositionEngine;
/* ------------------------------------------------------------------------
* Scheduler
bool mUseSmart90ForVideo = false;
std::unique_ptr<Scheduler> mScheduler;
sp<Scheduler::ConnectionHandle> mAppConnectionHandle;
sp<Scheduler::ConnectionHandle> mSfConnectionHandle;
scheduler::RefreshRateConfigs mRefreshRateConfigs;
scheduler::RefreshRateStats mRefreshRateStats{mRefreshRateConfigs, *mTimeStats};
// All configs are allowed if the set is empty.
using DisplayConfigs = std::set<int32_t>;
DisplayConfigs mAllowedDisplayConfigs GUARDED_BY(mStateLock);
std::mutex mActiveConfigLock;
// This bit is set once we start setting the config. We read from this bit during the
// process. If at the end, this bit is different than mDesiredActiveConfig, we restart
// the process.
ActiveConfigInfo mUpcomingActiveConfig; // Always read and written on the main thread.
// This bit can be set at any point in time when the system wants the new config.
ActiveConfigInfo mDesiredActiveConfig GUARDED_BY(mActiveConfigLock);
// below flags are set by main thread only
bool mDesiredActiveConfigChanged GUARDED_BY(mActiveConfigLock) = false;
bool mCheckPendingFence = false;
bool mLumaSampling = true;
sp<RegionSamplingThread> mRegionSamplingThread;
ui::DisplayPrimaries mInternalDisplayPrimaries;
sp<IInputFlinger> mInputFlinger;
InputWindowCommands mPendingInputWindowCommands GUARDED_BY(mStateLock);
// Should only be accessed by the main thread.
InputWindowCommands mInputWindowCommands;
struct SetInputWindowsListener : BnSetInputWindowsListener {
explicit SetInputWindowsListener(sp<SurfaceFlinger> flinger)
: mFlinger(std::move(flinger)) {}
void onSetInputWindowsFinished() override;
const sp<SurfaceFlinger> mFlinger;
const sp<SetInputWindowsListener> mSetInputWindowsListener = new SetInputWindowsListener(this);
bool mPendingSyncInputWindows GUARDED_BY(mStateLock);
Hwc2::impl::PowerAdvisor mPowerAdvisor;
std::unique_ptr<RefreshRateOverlay> mRefreshRateOverlay;
// Flag used to set override allowed display configs from backdoor
bool mDebugDisplayConfigSetByBackdoor = false;
// A set of layers that have no parent so they are not drawn on screen.
// Should only be accessed by the main thread.
// The Layer pointer is removed from the set when the destructor is called so there shouldn't
// be any issues with a raw pointer referencing an invalid object.
std::unordered_set<Layer*> mOffscreenLayers;
// Flags to capture the state of Vsync in HWC
HWC2::Vsync mHWCVsyncState = HWC2::Vsync::Disable;
HWC2::Vsync mHWCVsyncPendingState = HWC2::Vsync::Disable;
nsecs_t mExpectedPresentTime;
} // namespace android