blob: 44e20b504dc319919b6e8979d0c609957d0f1352 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "FlattenableHelpersTest"
#include <ui/FlattenableHelpers.h>
#include <gtest/gtest.h>
#include <utils/Flattenable.h>
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <vector>
namespace android {
namespace {
struct TestLightFlattenable : LightFlattenable<TestLightFlattenable> {
std::unique_ptr<int32_t> ptr;
bool isFixedSize() const { return true; }
size_t getFlattenedSize() const { return sizeof(int32_t); }
status_t flatten(void* buffer, size_t size) const {
FlattenableUtils::write(buffer, size, *ptr);
return OK;
}
status_t unflatten(void const* buffer, size_t size) {
int32_t value;
FlattenableUtils::read(buffer, size, value);
ptr = std::make_unique<int32_t>(value);
return OK;
}
};
class FlattenableHelpersTest : public testing::Test {
public:
template <class T>
void testWriteThenRead(const T& value, size_t bufferSize) {
std::vector<int8_t> buffer(bufferSize);
auto rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
size = buffer.size();
T valueRead;
ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
EXPECT_EQ(value, valueRead);
}
template <class T>
void testTriviallyCopyable(const T& value) {
testWriteThenRead(value, sizeof(T));
}
template <class T>
void testWriteThenRead(const T& value) {
testWriteThenRead(value, FlattenableHelpers::getFlattenedSize(value));
}
};
TEST_F(FlattenableHelpersTest, TriviallyCopyable) {
testTriviallyCopyable(42);
testTriviallyCopyable(1LL << 63);
testTriviallyCopyable(false);
testTriviallyCopyable(true);
testTriviallyCopyable(std::optional<int>());
testTriviallyCopyable(std::optional<int>(4));
}
TEST_F(FlattenableHelpersTest, String) {
testWriteThenRead(std::string("Android"));
testWriteThenRead(std::string());
}
TEST_F(FlattenableHelpersTest, Vector) {
testWriteThenRead(std::vector<int>({1, 2, 3}));
testWriteThenRead(std::vector<int>());
}
TEST_F(FlattenableHelpersTest, OptionalOfLightFlattenable) {
std::vector<size_t> buffer;
constexpr int kInternalValue = 16;
{
std::optional<TestLightFlattenable> value =
TestLightFlattenable{.ptr = std::make_unique<int32_t>(kInternalValue)};
buffer.assign(FlattenableHelpers::getFlattenedSize(value), 0);
void* rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
}
const void* rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
size_t size = buffer.size();
std::optional<TestLightFlattenable> valueRead;
ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
ASSERT_TRUE(valueRead.has_value());
EXPECT_EQ(kInternalValue, *valueRead->ptr);
}
TEST_F(FlattenableHelpersTest, NullOptionalOfLightFlattenable) {
std::vector<size_t> buffer;
{
std::optional<TestLightFlattenable> value;
buffer.assign(FlattenableHelpers::getFlattenedSize(value), 0);
void* rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
}
const void* rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
size_t size = buffer.size();
std::optional<TestLightFlattenable> valueRead;
ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
ASSERT_FALSE(valueRead.has_value());
}
// If a struct is both trivially copyable and light flattenable we should treat it
// as LigthFlattenable.
TEST_F(FlattenableHelpersTest, TriviallyCopyableAndLightFlattenableIsFlattenedAsLightFlattenable) {
static constexpr int32_t kSizeTag = 1234567;
static constexpr int32_t kFlattenTag = 987654;
static constexpr int32_t kUnflattenTag = 5926582;
struct LightFlattenableAndTriviallyCopyable
: LightFlattenable<LightFlattenableAndTriviallyCopyable> {
int32_t value;
bool isFixedSize() const { return true; }
size_t getFlattenedSize() const { return kSizeTag; }
status_t flatten(void* buffer, size_t size) const {
FlattenableUtils::write(buffer, size, kFlattenTag);
return OK;
}
status_t unflatten(void const*, size_t) {
value = kUnflattenTag;
return OK;
}
};
{
// Verify that getFlattenedSize uses the LightFlattenable overload
LightFlattenableAndTriviallyCopyable foo;
EXPECT_EQ(kSizeTag, FlattenableHelpers::getFlattenedSize(foo));
}
{
// Verify that flatten uses the LightFlattenable overload
std::vector<int8_t> buffer(sizeof(int32_t));
auto rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
LightFlattenableAndTriviallyCopyable foo;
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, foo));
auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
int32_t value;
FlattenableHelpers::unflatten(&rawReadBuffer, &size, &value);
EXPECT_EQ(kFlattenTag, value);
}
{
// Verify that unflatten uses the LightFlattenable overload
std::vector<int8_t> buffer(sizeof(int32_t));
auto rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
int32_t value = 4;
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
LightFlattenableAndTriviallyCopyable foo;
FlattenableHelpers::unflatten(&rawReadBuffer, &size, &foo);
EXPECT_EQ(kUnflattenTag, foo.value);
}
}
} // namespace
} // namespace android