blob: c55c9b47489a450b606e5cec2544b26ed8b96f64 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "HidlSensorHalWrapper.h"
#include "android/hardware/sensors/2.0/types.h"
#include "android/hardware/sensors/2.1/ISensorsCallback.h"
#include "android/hardware/sensors/2.1/types.h"
#include "convertV2_1.h"
#include <android-base/logging.h>
using android::hardware::hidl_vec;
using android::hardware::sensors::V1_0::RateLevel;
using android::hardware::sensors::V1_0::Result;
using android::hardware::sensors::V1_0::SharedMemFormat;
using android::hardware::sensors::V1_0::SharedMemInfo;
using android::hardware::sensors::V1_0::SharedMemType;
using android::hardware::sensors::V2_0::EventQueueFlagBits;
using android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using android::hardware::sensors::V2_1::Event;
using android::hardware::sensors::V2_1::ISensorsCallback;
using android::hardware::sensors::V2_1::implementation::convertFromSensorEvent;
using android::hardware::sensors::V2_1::implementation::convertToNewEvents;
using android::hardware::sensors::V2_1::implementation::convertToNewSensorInfos;
using android::hardware::sensors::V2_1::implementation::convertToSensor;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV1_0;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_0;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_1;
namespace android {
namespace {
status_t statusFromResult(Result result) {
switch (result) {
case Result::OK:
return OK;
case Result::BAD_VALUE:
return BAD_VALUE;
case Result::PERMISSION_DENIED:
return PERMISSION_DENIED;
case Result::INVALID_OPERATION:
return INVALID_OPERATION;
case Result::NO_MEMORY:
return NO_MEMORY;
}
}
template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
} // anonymous namespace
void SensorsHalDeathReceiver::serviceDied(
uint64_t /* cookie */, const wp<::android::hidl::base::V1_0::IBase>& /* service */) {
ALOGW("Sensors HAL died, attempting to reconnect.");
mHidlSensorHalWrapper->prepareForReconnect();
}
struct HidlSensorsCallback : public ISensorsCallback {
using Result = ::android::hardware::sensors::V1_0::Result;
using SensorInfo = ::android::hardware::sensors::V2_1::SensorInfo;
HidlSensorsCallback(ISensorHalWrapper::SensorDeviceCallback* sensorDeviceCallback) {
mSensorDeviceCallback = sensorDeviceCallback;
}
Return<void> onDynamicSensorsConnected_2_1(
const hidl_vec<SensorInfo>& dynamicSensorsAdded) override {
std::vector<sensor_t> sensors;
for (const android::hardware::sensors::V2_1::SensorInfo& info : dynamicSensorsAdded) {
sensor_t sensor;
convertToSensor(info, &sensor);
sensors.push_back(sensor);
}
mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
return Return<void>();
}
Return<void> onDynamicSensorsConnected(
const hidl_vec<android::hardware::sensors::V1_0::SensorInfo>& dynamicSensorsAdded)
override {
return onDynamicSensorsConnected_2_1(convertToNewSensorInfos(dynamicSensorsAdded));
}
Return<void> onDynamicSensorsDisconnected(
const hidl_vec<int32_t>& dynamicSensorHandlesRemoved) override {
mSensorDeviceCallback->onDynamicSensorsDisconnected(dynamicSensorHandlesRemoved);
return Return<void>();
}
private:
ISensorHalWrapper::SensorDeviceCallback* mSensorDeviceCallback;
};
bool HidlSensorHalWrapper::supportsPolling() {
return mSensors->supportsPolling();
}
bool HidlSensorHalWrapper::supportsMessageQueues() {
return mSensors->supportsMessageQueues();
}
bool HidlSensorHalWrapper::connect(SensorDeviceCallback* callback) {
mSensorDeviceCallback = callback;
bool ret = connectHidlService();
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
return ret;
}
void HidlSensorHalWrapper::prepareForReconnect() {
mReconnecting = true;
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
}
ssize_t HidlSensorHalWrapper::poll(sensors_event_t* buffer, size_t count) {
ssize_t err;
int numHidlTransportErrors = 0;
bool hidlTransportError = false;
do {
auto ret = mSensors->poll(count,
[&](auto result, const auto& events,
const auto& dynamicSensorsAdded) {
if (result == Result::OK) {
convertToSensorEvents(convertToNewEvents(events),
convertToNewSensorInfos(
dynamicSensorsAdded),
buffer);
err = (ssize_t)events.size();
} else {
err = statusFromResult(result);
}
});
if (ret.isOk()) {
hidlTransportError = false;
} else {
hidlTransportError = true;
numHidlTransportErrors++;
if (numHidlTransportErrors > 50) {
// Log error and bail
ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
handleHidlDeath(ret.description());
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
} while (hidlTransportError);
if (numHidlTransportErrors > 0) {
ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors);
mHidlTransportErrors.add(errLog);
mTotalHidlTransportErrors++;
}
return err;
}
ssize_t HidlSensorHalWrapper::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) {
ssize_t eventsRead = 0;
size_t availableEvents = mSensors->getEventQueue()->availableToRead();
if (availableEvents == 0) {
uint32_t eventFlagState = 0;
// Wait for events to become available. This is necessary so that the Event FMQ's read() is
// able to be called with the correct number of events to read. If the specified number of
// events is not available, then read() would return no events, possibly introducing
// additional latency in delivering events to applications.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) |
asBaseType(INTERNAL_WAKE),
&eventFlagState);
}
availableEvents = mSensors->getEventQueue()->availableToRead();
if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
ALOGD("Event FMQ internal wake, returning from poll with no events");
return DEAD_OBJECT;
}
}
size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
if (eventsToRead > 0) {
if (mSensors->getEventQueue()->read(mEventBuffer.data(), eventsToRead)) {
// Notify the Sensors HAL that sensor events have been read. This is required to support
// the use of writeBlocking by the Sensors HAL.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
}
for (size_t i = 0; i < eventsToRead; i++) {
convertToSensorEvent(mEventBuffer[i], &buffer[i]);
}
eventsRead = eventsToRead;
} else {
ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
availableEvents);
}
}
return eventsRead;
}
std::vector<sensor_t> HidlSensorHalWrapper::getSensorsList() {
std::vector<sensor_t> sensorsFound;
if (mSensors != nullptr) {
checkReturn(mSensors->getSensorsList([&](const auto& list) {
for (size_t i = 0; i < list.size(); i++) {
sensor_t sensor;
convertToSensor(list[i], &sensor);
sensorsFound.push_back(sensor);
// Only disable all sensors on HAL 1.0 since HAL 2.0
// handles this in its initialize method
if (!mSensors->supportsMessageQueues()) {
checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
}
}
}));
}
return sensorsFound;
}
status_t HidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(
mSensors->setOperationMode(static_cast<hardware::sensors::V1_0::OperationMode>(mode)));
}
status_t HidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->activate(sensorHandle, enabled));
}
status_t HidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(
mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
}
status_t HidlSensorHalWrapper::flush(int32_t sensorHandle) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->flush(sensorHandle));
}
status_t HidlSensorHalWrapper::injectSensorData(const sensors_event_t* event) {
if (mSensors == nullptr) return NO_INIT;
Event ev;
convertFromSensorEvent(*event, &ev);
return checkReturnAndGetStatus(mSensors->injectSensorData(ev));
}
status_t HidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t* memory,
int32_t* outChannelHandle) {
if (mSensors == nullptr) return NO_INIT;
SharedMemType type;
switch (memory->type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
type = SharedMemType::ASHMEM;
break;
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
type = SharedMemType::GRALLOC;
break;
default:
return BAD_VALUE;
}
SharedMemFormat format;
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
return BAD_VALUE;
}
format = SharedMemFormat::SENSORS_EVENT;
SharedMemInfo mem = {
.type = type,
.format = format,
.size = static_cast<uint32_t>(memory->size),
.memoryHandle = memory->handle,
};
status_t ret = OK;
checkReturn(mSensors->registerDirectChannel(mem,
[&ret, &outChannelHandle](auto result,
auto channelHandle) {
if (result == Result::OK) {
*outChannelHandle = channelHandle;
} else {
ret = statusFromResult(result);
}
}));
return ret;
}
status_t HidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->unregisterDirectChannel(channelHandle));
}
status_t HidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
const struct sensors_direct_cfg_t* config) {
if (mSensors == nullptr) return NO_INIT;
RateLevel rate;
switch (config->rate_level) {
case SENSOR_DIRECT_RATE_STOP:
rate = RateLevel::STOP;
break;
case SENSOR_DIRECT_RATE_NORMAL:
rate = RateLevel::NORMAL;
break;
case SENSOR_DIRECT_RATE_FAST:
rate = RateLevel::FAST;
break;
case SENSOR_DIRECT_RATE_VERY_FAST:
rate = RateLevel::VERY_FAST;
break;
default:
return BAD_VALUE;
}
status_t ret;
checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
[&ret, rate](auto result, auto token) {
if (rate == RateLevel::STOP) {
ret = statusFromResult(result);
} else {
if (result == Result::OK) {
ret = token;
} else {
ret = statusFromResult(result);
}
}
}));
return ret;
}
void HidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
if (mWakeLockQueue->write(&count)) {
mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN));
} else {
ALOGW("Failed to write wake lock handled");
}
}
status_t HidlSensorHalWrapper::checkReturnAndGetStatus(const hardware::Return<Result>& ret) {
checkReturn(ret);
return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret);
}
void HidlSensorHalWrapper::handleHidlDeath(const std::string& detail) {
if (!mSensors->supportsMessageQueues()) {
// restart is the only option at present.
LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
} else {
ALOGD("ISensors HAL died, death recipient will attempt reconnect");
}
}
bool HidlSensorHalWrapper::connectHidlService() {
HalConnectionStatus status = connectHidlServiceV2_1();
if (status == HalConnectionStatus::DOES_NOT_EXIST) {
status = connectHidlServiceV2_0();
}
if (status == HalConnectionStatus::DOES_NOT_EXIST) {
status = connectHidlServiceV1_0();
}
return (status == HalConnectionStatus::CONNECTED);
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV1_0() {
// SensorDevice will wait for HAL service to start if HAL is declared in device manifest.
size_t retry = 10;
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
while (retry-- > 0) {
sp<android::hardware::sensors::V1_0::ISensors> sensors =
android::hardware::sensors::V1_0::ISensors::getService();
if (sensors == nullptr) {
// no sensor hidl service found
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
break;
}
mSensors = new ISensorsWrapperV1_0(sensors);
mRestartWaiter->reset();
// Poke ISensor service. If it has lingering connection from previous generation of
// system server, it will kill itself. There is no intention to handle the poll result,
// which will be done since the size is 0.
if (mSensors->poll(0, [](auto, const auto&, const auto&) {}).isOk()) {
// ok to continue
connectionStatus = HalConnectionStatus::CONNECTED;
break;
}
// hidl service is restarting, pointer is invalid.
mSensors = nullptr;
connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry);
mRestartWaiter->wait();
}
return connectionStatus;
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV2_0() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
sp<android::hardware::sensors::V2_0::ISensors> sensors =
android::hardware::sensors::V2_0::ISensors::getService();
if (sensors == nullptr) {
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
} else {
mSensors = new ISensorsWrapperV2_0(sensors);
connectionStatus = initializeHidlServiceV2_X();
}
return connectionStatus;
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV2_1() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
sp<android::hardware::sensors::V2_1::ISensors> sensors =
android::hardware::sensors::V2_1::ISensors::getService();
if (sensors == nullptr) {
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
} else {
mSensors = new ISensorsWrapperV2_1(sensors);
connectionStatus = initializeHidlServiceV2_X();
}
return connectionStatus;
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::initializeHidlServiceV2_X() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
mWakeLockQueue =
std::make_unique<WakeLockQueue>(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
true /* configureEventFlagWord */);
hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
hardware::EventFlag::createEventFlag(mSensors->getEventQueue()->getEventFlagWord(),
&mEventQueueFlag);
hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
CHECK(mSensors != nullptr && mWakeLockQueue != nullptr && mEventQueueFlag != nullptr &&
mWakeLockQueueFlag != nullptr);
mCallback = sp<HidlSensorsCallback>::make(mSensorDeviceCallback);
status_t status =
checkReturnAndGetStatus(mSensors->initialize(*mWakeLockQueue->getDesc(), mCallback));
if (status != NO_ERROR) {
connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status));
} else {
connectionStatus = HalConnectionStatus::CONNECTED;
mSensorsHalDeathReceiver = new SensorsHalDeathReceiver(this);
mSensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */);
}
return connectionStatus;
}
void HidlSensorHalWrapper::convertToSensorEvent(const Event& src, sensors_event_t* dst) {
android::hardware::sensors::V2_1::implementation::convertToSensorEvent(src, dst);
}
void HidlSensorHalWrapper::convertToSensorEvents(const hidl_vec<Event>& src,
const hidl_vec<SensorInfo>& dynamicSensorsAdded,
sensors_event_t* dst) {
if (dynamicSensorsAdded.size() > 0 && mCallback != nullptr) {
mCallback->onDynamicSensorsConnected_2_1(dynamicSensorsAdded);
}
for (size_t i = 0; i < src.size(); ++i) {
convertToSensorEvent(src[i], &dst[i]);
}
}
} // namespace android