| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "Layer" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <stdlib.h> |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <math.h> |
| |
| #include <cutils/compiler.h> |
| #include <cutils/native_handle.h> |
| #include <cutils/properties.h> |
| |
| #include <utils/Errors.h> |
| #include <utils/Log.h> |
| #include <utils/NativeHandle.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Trace.h> |
| |
| #include <ui/GraphicBuffer.h> |
| #include <ui/PixelFormat.h> |
| |
| #include <gui/BufferItem.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/Surface.h> |
| |
| #include "clz.h" |
| #include "Colorizer.h" |
| #include "DisplayDevice.h" |
| #include "Layer.h" |
| #include "LayerRejecter.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| |
| #include "DisplayHardware/HWComposer.h" |
| |
| #include "RenderEngine/RenderEngine.h" |
| |
| #include <mutex> |
| |
| #define DEBUG_RESIZE 0 |
| |
| namespace android { |
| |
| // --------------------------------------------------------------------------- |
| |
| int32_t Layer::sSequence = 1; |
| |
| Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags) |
| : contentDirty(false), |
| sequence(uint32_t(android_atomic_inc(&sSequence))), |
| mFlinger(flinger), |
| mTextureName(-1U), |
| mPremultipliedAlpha(true), |
| mName("unnamed"), |
| mFormat(PIXEL_FORMAT_NONE), |
| mTransactionFlags(0), |
| mPendingStateMutex(), |
| mPendingStates(), |
| mQueuedFrames(0), |
| mSidebandStreamChanged(false), |
| mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT), |
| mCurrentTransform(0), |
| mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), |
| mOverrideScalingMode(-1), |
| mCurrentOpacity(true), |
| mBufferLatched(false), |
| mCurrentFrameNumber(0), |
| mPreviousFrameNumber(0), |
| mRefreshPending(false), |
| mFrameLatencyNeeded(false), |
| mFiltering(false), |
| mNeedsFiltering(false), |
| mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2), |
| #ifndef USE_HWC2 |
| mIsGlesComposition(false), |
| #endif |
| mProtectedByApp(false), |
| mHasSurface(false), |
| mClientRef(client), |
| mPotentialCursor(false), |
| mQueueItemLock(), |
| mQueueItemCondition(), |
| mQueueItems(), |
| mLastFrameNumberReceived(0), |
| mUpdateTexImageFailed(false), |
| mAutoRefresh(false), |
| mFreezeGeometryUpdates(false) |
| { |
| #ifdef USE_HWC2 |
| ALOGV("Creating Layer %s", name.string()); |
| #endif |
| |
| mCurrentCrop.makeInvalid(); |
| mFlinger->getRenderEngine().genTextures(1, &mTextureName); |
| mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); |
| |
| uint32_t layerFlags = 0; |
| if (flags & ISurfaceComposerClient::eHidden) |
| layerFlags |= layer_state_t::eLayerHidden; |
| if (flags & ISurfaceComposerClient::eOpaque) |
| layerFlags |= layer_state_t::eLayerOpaque; |
| if (flags & ISurfaceComposerClient::eSecure) |
| layerFlags |= layer_state_t::eLayerSecure; |
| |
| if (flags & ISurfaceComposerClient::eNonPremultiplied) |
| mPremultipliedAlpha = false; |
| |
| mName = name; |
| |
| mCurrentState.active.w = w; |
| mCurrentState.active.h = h; |
| mCurrentState.active.transform.set(0, 0); |
| mCurrentState.crop.makeInvalid(); |
| mCurrentState.finalCrop.makeInvalid(); |
| mCurrentState.requestedFinalCrop = mCurrentState.finalCrop; |
| mCurrentState.requestedCrop = mCurrentState.crop; |
| mCurrentState.z = 0; |
| #ifdef USE_HWC2 |
| mCurrentState.alpha = 1.0f; |
| #else |
| mCurrentState.alpha = 0xFF; |
| #endif |
| mCurrentState.layerStack = 0; |
| mCurrentState.flags = layerFlags; |
| mCurrentState.sequence = 0; |
| mCurrentState.requested = mCurrentState.active; |
| mCurrentState.dataSpace = HAL_DATASPACE_UNKNOWN; |
| mCurrentState.appId = 0; |
| mCurrentState.type = 0; |
| |
| // drawing state & current state are identical |
| mDrawingState = mCurrentState; |
| |
| #ifdef USE_HWC2 |
| const auto& hwc = flinger->getHwComposer(); |
| const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY); |
| nsecs_t displayPeriod = activeConfig->getVsyncPeriod(); |
| #else |
| nsecs_t displayPeriod = |
| flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY); |
| #endif |
| mFrameTracker.setDisplayRefreshPeriod(displayPeriod); |
| |
| CompositorTiming compositorTiming; |
| flinger->getCompositorTiming(&compositorTiming); |
| mFrameEventHistory.initializeCompositorTiming(compositorTiming); |
| } |
| |
| void Layer::onFirstRef() { |
| // Creates a custom BufferQueue for SurfaceFlingerConsumer to use |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer, true); |
| mProducer = new MonitoredProducer(producer, mFlinger, this); |
| mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, this); |
| mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); |
| mSurfaceFlingerConsumer->setContentsChangedListener(this); |
| mSurfaceFlingerConsumer->setName(mName); |
| |
| if (mFlinger->isLayerTripleBufferingDisabled()) { |
| mProducer->setMaxDequeuedBufferCount(2); |
| } |
| |
| const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice()); |
| updateTransformHint(hw); |
| } |
| |
| Layer::~Layer() { |
| sp<Client> c(mClientRef.promote()); |
| if (c != 0) { |
| c->detachLayer(this); |
| } |
| |
| for (auto& point : mRemoteSyncPoints) { |
| point->setTransactionApplied(); |
| } |
| for (auto& point : mLocalSyncPoints) { |
| point->setFrameAvailable(); |
| } |
| mFlinger->deleteTextureAsync(mTextureName); |
| mFrameTracker.logAndResetStats(mName); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // callbacks |
| // --------------------------------------------------------------------------- |
| |
| #ifdef USE_HWC2 |
| void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) { |
| if (mHwcLayers.empty()) { |
| return; |
| } |
| mSurfaceFlingerConsumer->setReleaseFence(releaseFence); |
| } |
| #else |
| void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */, |
| HWComposer::HWCLayerInterface* layer) { |
| if (layer) { |
| layer->onDisplayed(); |
| mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence()); |
| } |
| } |
| #endif |
| |
| void Layer::onFrameAvailable(const BufferItem& item) { |
| // Add this buffer from our internal queue tracker |
| { // Autolock scope |
| Mutex::Autolock lock(mQueueItemLock); |
| mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(), |
| item.mGraphicBuffer->getHeight(), item.mFrameNumber); |
| // Reset the frame number tracker when we receive the first buffer after |
| // a frame number reset |
| if (item.mFrameNumber == 1) { |
| mLastFrameNumberReceived = 0; |
| } |
| |
| // Ensure that callbacks are handled in order |
| while (item.mFrameNumber != mLastFrameNumberReceived + 1) { |
| status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, |
| ms2ns(500)); |
| if (result != NO_ERROR) { |
| ALOGE("[%s] Timed out waiting on callback", mName.string()); |
| } |
| } |
| |
| mQueueItems.push_back(item); |
| android_atomic_inc(&mQueuedFrames); |
| |
| // Wake up any pending callbacks |
| mLastFrameNumberReceived = item.mFrameNumber; |
| mQueueItemCondition.broadcast(); |
| } |
| |
| mFlinger->signalLayerUpdate(); |
| } |
| |
| void Layer::onFrameReplaced(const BufferItem& item) { |
| { // Autolock scope |
| Mutex::Autolock lock(mQueueItemLock); |
| |
| // Ensure that callbacks are handled in order |
| while (item.mFrameNumber != mLastFrameNumberReceived + 1) { |
| status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, |
| ms2ns(500)); |
| if (result != NO_ERROR) { |
| ALOGE("[%s] Timed out waiting on callback", mName.string()); |
| } |
| } |
| |
| if (mQueueItems.empty()) { |
| ALOGE("Can't replace a frame on an empty queue"); |
| return; |
| } |
| mQueueItems.editItemAt(mQueueItems.size() - 1) = item; |
| |
| // Wake up any pending callbacks |
| mLastFrameNumberReceived = item.mFrameNumber; |
| mQueueItemCondition.broadcast(); |
| } |
| } |
| |
| void Layer::onSidebandStreamChanged() { |
| if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) { |
| // mSidebandStreamChanged was false |
| mFlinger->signalLayerUpdate(); |
| } |
| } |
| |
| // called with SurfaceFlinger::mStateLock from the drawing thread after |
| // the layer has been remove from the current state list (and just before |
| // it's removed from the drawing state list) |
| void Layer::onRemoved() { |
| if (mCurrentState.zOrderRelativeOf != nullptr) { |
| sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); |
| if (strongRelative != nullptr) { |
| strongRelative->removeZOrderRelative(this); |
| } |
| mCurrentState.zOrderRelativeOf = nullptr; |
| } |
| |
| mSurfaceFlingerConsumer->abandon(); |
| |
| #ifdef USE_HWC2 |
| clearHwcLayers(); |
| #endif |
| |
| for (const auto& child : mCurrentChildren) { |
| child->onRemoved(); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| // set-up |
| // --------------------------------------------------------------------------- |
| |
| const String8& Layer::getName() const { |
| return mName; |
| } |
| |
| status_t Layer::setBuffers( uint32_t w, uint32_t h, |
| PixelFormat format, uint32_t flags) |
| { |
| uint32_t const maxSurfaceDims = min( |
| mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); |
| |
| // never allow a surface larger than what our underlying GL implementation |
| // can handle. |
| if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) { |
| ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); |
| return BAD_VALUE; |
| } |
| |
| mFormat = format; |
| |
| mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false; |
| mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false; |
| mCurrentOpacity = getOpacityForFormat(format); |
| |
| mSurfaceFlingerConsumer->setDefaultBufferSize(w, h); |
| mSurfaceFlingerConsumer->setDefaultBufferFormat(format); |
| mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); |
| |
| return NO_ERROR; |
| } |
| |
| sp<IBinder> Layer::getHandle() { |
| Mutex::Autolock _l(mLock); |
| |
| LOG_ALWAYS_FATAL_IF(mHasSurface, |
| "Layer::getHandle() has already been called"); |
| |
| mHasSurface = true; |
| |
| return new Handle(mFlinger, this); |
| } |
| |
| sp<IGraphicBufferProducer> Layer::getProducer() const { |
| return mProducer; |
| } |
| |
| // --------------------------------------------------------------------------- |
| // h/w composer set-up |
| // --------------------------------------------------------------------------- |
| |
| Rect Layer::getContentCrop() const { |
| // this is the crop rectangle that applies to the buffer |
| // itself (as opposed to the window) |
| Rect crop; |
| if (!mCurrentCrop.isEmpty()) { |
| // if the buffer crop is defined, we use that |
| crop = mCurrentCrop; |
| } else if (mActiveBuffer != NULL) { |
| // otherwise we use the whole buffer |
| crop = mActiveBuffer->getBounds(); |
| } else { |
| // if we don't have a buffer yet, we use an empty/invalid crop |
| crop.makeInvalid(); |
| } |
| return crop; |
| } |
| |
| static Rect reduce(const Rect& win, const Region& exclude) { |
| if (CC_LIKELY(exclude.isEmpty())) { |
| return win; |
| } |
| if (exclude.isRect()) { |
| return win.reduce(exclude.getBounds()); |
| } |
| return Region(win).subtract(exclude).getBounds(); |
| } |
| |
| Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const { |
| const Layer::State& s(getDrawingState()); |
| Rect win(s.active.w, s.active.h); |
| |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| |
| Transform t = getTransform(); |
| win = t.transform(win); |
| |
| if (!s.finalCrop.isEmpty()) { |
| win.intersect(s.finalCrop, &win); |
| } |
| |
| const sp<Layer>& p = mDrawingParent.promote(); |
| // Now we need to calculate the parent bounds, so we can clip ourselves to those. |
| // When calculating the parent bounds for purposes of clipping, |
| // we don't need to constrain the parent to its transparent region. |
| // The transparent region is an optimization based on the |
| // buffer contents of the layer, but does not affect the space allocated to |
| // it by policy, and thus children should be allowed to extend into the |
| // parent's transparent region. In fact one of the main uses, is to reduce |
| // buffer allocation size in cases where a child window sits behind a main window |
| // (by marking the hole in the parent window as a transparent region) |
| if (p != nullptr) { |
| Rect bounds = p->computeScreenBounds(false); |
| bounds.intersect(win, &win); |
| } |
| |
| if (reduceTransparentRegion) { |
| auto const screenTransparentRegion = t.transform(s.activeTransparentRegion); |
| win = reduce(win, screenTransparentRegion); |
| } |
| |
| return win; |
| } |
| |
| Rect Layer::computeBounds() const { |
| const Layer::State& s(getDrawingState()); |
| return computeBounds(s.activeTransparentRegion); |
| } |
| |
| Rect Layer::computeBounds(const Region& activeTransparentRegion) const { |
| const Layer::State& s(getDrawingState()); |
| Rect win(s.active.w, s.active.h); |
| |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| |
| Rect bounds = win; |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| // Look in computeScreenBounds recursive call for explanation of |
| // why we pass false here. |
| bounds = p->computeScreenBounds(false /* reduceTransparentRegion */); |
| } |
| |
| Transform t = getTransform(); |
| if (p != nullptr) { |
| win = t.transform(win); |
| win.intersect(bounds, &win); |
| win = t.inverse().transform(win); |
| } |
| |
| // subtract the transparent region and snap to the bounds |
| return reduce(win, activeTransparentRegion); |
| } |
| |
| Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& hw) const { |
| // the crop is the area of the window that gets cropped, but not |
| // scaled in any ways. |
| const State& s(getDrawingState()); |
| |
| // apply the projection's clipping to the window crop in |
| // layerstack space, and convert-back to layer space. |
| // if there are no window scaling involved, this operation will map to full |
| // pixels in the buffer. |
| // FIXME: the 3 lines below can produce slightly incorrect clipping when we have |
| // a viewport clipping and a window transform. we should use floating point to fix this. |
| |
| Rect activeCrop(s.active.w, s.active.h); |
| if (!s.crop.isEmpty()) { |
| activeCrop = s.crop; |
| } |
| |
| Transform t = getTransform(); |
| activeCrop = t.transform(activeCrop); |
| if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| if (!s.finalCrop.isEmpty()) { |
| if(!activeCrop.intersect(s.finalCrop, &activeCrop)) { |
| activeCrop.clear(); |
| } |
| } |
| return activeCrop; |
| } |
| |
| FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const { |
| // the content crop is the area of the content that gets scaled to the |
| // layer's size. This is in buffer space. |
| FloatRect crop = getContentCrop().toFloatRect(); |
| |
| // In addition there is a WM-specified crop we pull from our drawing state. |
| const State& s(getDrawingState()); |
| |
| // Screen space to make reduction to parent crop clearer. |
| Rect activeCrop = computeInitialCrop(hw); |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| auto parentCrop = p->computeInitialCrop(hw); |
| activeCrop.intersect(parentCrop, &activeCrop); |
| } |
| Transform t = getTransform(); |
| // Back to layer space to work with the content crop. |
| activeCrop = t.inverse().transform(activeCrop); |
| |
| // This needs to be here as transform.transform(Rect) computes the |
| // transformed rect and then takes the bounding box of the result before |
| // returning. This means |
| // transform.inverse().transform(transform.transform(Rect)) != Rect |
| // in which case we need to make sure the final rect is clipped to the |
| // display bounds. |
| if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| |
| // subtract the transparent region and snap to the bounds |
| activeCrop = reduce(activeCrop, s.activeTransparentRegion); |
| |
| // Transform the window crop to match the buffer coordinate system, |
| // which means using the inverse of the current transform set on the |
| // SurfaceFlingerConsumer. |
| uint32_t invTransform = mCurrentTransform; |
| if (getTransformToDisplayInverse()) { |
| /* |
| * the code below applies the primary display's inverse transform to the |
| * buffer |
| */ |
| uint32_t invTransformOrient = |
| DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| // calculate the inverse transform |
| if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| } |
| // and apply to the current transform |
| invTransform = (Transform(invTransformOrient) * Transform(invTransform)) |
| .getOrientation(); |
| } |
| |
| int winWidth = s.active.w; |
| int winHeight = s.active.h; |
| if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| // If the activeCrop has been rotate the ends are rotated but not |
| // the space itself so when transforming ends back we can't rely on |
| // a modification of the axes of rotation. To account for this we |
| // need to reorient the inverse rotation in terms of the current |
| // axes of rotation. |
| bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0; |
| bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0; |
| if (is_h_flipped == is_v_flipped) { |
| invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| } |
| winWidth = s.active.h; |
| winHeight = s.active.w; |
| } |
| const Rect winCrop = activeCrop.transform( |
| invTransform, s.active.w, s.active.h); |
| |
| // below, crop is intersected with winCrop expressed in crop's coordinate space |
| float xScale = crop.getWidth() / float(winWidth); |
| float yScale = crop.getHeight() / float(winHeight); |
| |
| float insetL = winCrop.left * xScale; |
| float insetT = winCrop.top * yScale; |
| float insetR = (winWidth - winCrop.right ) * xScale; |
| float insetB = (winHeight - winCrop.bottom) * yScale; |
| |
| crop.left += insetL; |
| crop.top += insetT; |
| crop.right -= insetR; |
| crop.bottom -= insetB; |
| |
| return crop; |
| } |
| |
| #ifdef USE_HWC2 |
| void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z) |
| #else |
| void Layer::setGeometry( |
| const sp<const DisplayDevice>& hw, |
| HWComposer::HWCLayerInterface& layer) |
| #endif |
| { |
| #ifdef USE_HWC2 |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| auto& hwcInfo = mHwcLayers[hwcId]; |
| #else |
| layer.setDefaultState(); |
| #endif |
| |
| // enable this layer |
| #ifdef USE_HWC2 |
| hwcInfo.forceClientComposition = false; |
| |
| if (isSecure() && !displayDevice->isSecure()) { |
| hwcInfo.forceClientComposition = true; |
| } |
| |
| auto& hwcLayer = hwcInfo.layer; |
| #else |
| layer.setSkip(false); |
| |
| if (isSecure() && !hw->isSecure()) { |
| layer.setSkip(true); |
| } |
| #endif |
| |
| // this gives us only the "orientation" component of the transform |
| const State& s(getDrawingState()); |
| #ifdef USE_HWC2 |
| auto blendMode = HWC2::BlendMode::None; |
| if (!isOpaque(s) || getAlpha() != 1.0f) { |
| blendMode = mPremultipliedAlpha ? |
| HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; |
| } |
| auto error = hwcLayer->setBlendMode(blendMode); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:" |
| " %s (%d)", mName.string(), to_string(blendMode).c_str(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| #else |
| if (!isOpaque(s) || getAlpha() != 0xFF) { |
| layer.setBlending(mPremultipliedAlpha ? |
| HWC_BLENDING_PREMULT : |
| HWC_BLENDING_COVERAGE); |
| } |
| #endif |
| |
| // apply the layer's transform, followed by the display's global transform |
| // here we're guaranteed that the layer's transform preserves rects |
| Region activeTransparentRegion(s.activeTransparentRegion); |
| Transform t = getTransform(); |
| if (!s.crop.isEmpty()) { |
| Rect activeCrop(s.crop); |
| activeCrop = t.transform(activeCrop); |
| #ifdef USE_HWC2 |
| if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) { |
| #else |
| if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) { |
| #endif |
| activeCrop.clear(); |
| } |
| activeCrop = t.inverse().transform(activeCrop, true); |
| // This needs to be here as transform.transform(Rect) computes the |
| // transformed rect and then takes the bounding box of the result before |
| // returning. This means |
| // transform.inverse().transform(transform.transform(Rect)) != Rect |
| // in which case we need to make sure the final rect is clipped to the |
| // display bounds. |
| if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| // mark regions outside the crop as transparent |
| activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top)); |
| activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom, |
| s.active.w, s.active.h)); |
| activeTransparentRegion.orSelf(Rect(0, activeCrop.top, |
| activeCrop.left, activeCrop.bottom)); |
| activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top, |
| s.active.w, activeCrop.bottom)); |
| } |
| |
| Rect frame(t.transform(computeBounds(activeTransparentRegion))); |
| if (!s.finalCrop.isEmpty()) { |
| if(!frame.intersect(s.finalCrop, &frame)) { |
| frame.clear(); |
| } |
| } |
| #ifdef USE_HWC2 |
| if (!frame.intersect(displayDevice->getViewport(), &frame)) { |
| frame.clear(); |
| } |
| const Transform& tr(displayDevice->getTransform()); |
| Rect transformedFrame = tr.transform(frame); |
| error = hwcLayer->setDisplayFrame(transformedFrame); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", |
| mName.string(), transformedFrame.left, transformedFrame.top, |
| transformedFrame.right, transformedFrame.bottom, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } else { |
| hwcInfo.displayFrame = transformedFrame; |
| } |
| |
| FloatRect sourceCrop = computeCrop(displayDevice); |
| error = hwcLayer->setSourceCrop(sourceCrop); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " |
| "%s (%d)", mName.string(), sourceCrop.left, sourceCrop.top, |
| sourceCrop.right, sourceCrop.bottom, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } else { |
| hwcInfo.sourceCrop = sourceCrop; |
| } |
| |
| float alpha = getAlpha(); |
| error = hwcLayer->setPlaneAlpha(alpha); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: " |
| "%s (%d)", mName.string(), alpha, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| |
| error = hwcLayer->setZOrder(z); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)", |
| mName.string(), z, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| |
| int type = s.type; |
| int appId = s.appId; |
| sp<Layer> parent = mDrawingParent.promote(); |
| if (parent.get()) { |
| auto& parentState = parent->getDrawingState(); |
| type = parentState.type; |
| appId = parentState.appId; |
| } |
| |
| error = hwcLayer->setInfo(type, appId); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)", |
| mName.string(), static_cast<int32_t>(error)); |
| #else |
| if (!frame.intersect(hw->getViewport(), &frame)) { |
| frame.clear(); |
| } |
| const Transform& tr(hw->getTransform()); |
| layer.setFrame(tr.transform(frame)); |
| layer.setCrop(computeCrop(hw)); |
| layer.setPlaneAlpha(getAlpha()); |
| #endif |
| |
| /* |
| * Transformations are applied in this order: |
| * 1) buffer orientation/flip/mirror |
| * 2) state transformation (window manager) |
| * 3) layer orientation (screen orientation) |
| * (NOTE: the matrices are multiplied in reverse order) |
| */ |
| |
| const Transform bufferOrientation(mCurrentTransform); |
| Transform transform(tr * t * bufferOrientation); |
| |
| if (getTransformToDisplayInverse()) { |
| /* |
| * the code below applies the primary display's inverse transform to the |
| * buffer |
| */ |
| uint32_t invTransform = |
| DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| // calculate the inverse transform |
| if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| } |
| |
| /* |
| * Here we cancel out the orientation component of the WM transform. |
| * The scaling and translate components are already included in our bounds |
| * computation so it's enough to just omit it in the composition. |
| * See comment in onDraw with ref to b/36727915 for why. |
| */ |
| transform = Transform(invTransform) * tr * bufferOrientation; |
| } |
| |
| // this gives us only the "orientation" component of the transform |
| const uint32_t orientation = transform.getOrientation(); |
| #ifdef USE_HWC2 |
| if (orientation & Transform::ROT_INVALID) { |
| // we can only handle simple transformation |
| hwcInfo.forceClientComposition = true; |
| } else { |
| auto transform = static_cast<HWC2::Transform>(orientation); |
| auto error = hwcLayer->setTransform(transform); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: " |
| "%s (%d)", mName.string(), to_string(transform).c_str(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| #else |
| if (orientation & Transform::ROT_INVALID) { |
| // we can only handle simple transformation |
| layer.setSkip(true); |
| } else { |
| layer.setTransform(orientation); |
| } |
| #endif |
| } |
| |
| #ifdef USE_HWC2 |
| void Layer::forceClientComposition(int32_t hwcId) { |
| if (mHwcLayers.count(hwcId) == 0) { |
| ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId); |
| return; |
| } |
| |
| mHwcLayers[hwcId].forceClientComposition = true; |
| } |
| |
| void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) { |
| // Apply this display's projection's viewport to the visible region |
| // before giving it to the HWC HAL. |
| const Transform& tr = displayDevice->getTransform(); |
| const auto& viewport = displayDevice->getViewport(); |
| Region visible = tr.transform(visibleRegion.intersect(viewport)); |
| auto hwcId = displayDevice->getHwcDisplayId(); |
| auto& hwcInfo = mHwcLayers[hwcId]; |
| auto& hwcLayer = hwcInfo.layer; |
| auto error = hwcLayer->setVisibleRegion(visible); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| visible.dump(LOG_TAG); |
| } |
| |
| error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| surfaceDamageRegion.dump(LOG_TAG); |
| } |
| |
| // Sideband layers |
| if (mSidebandStream.get()) { |
| setCompositionType(hwcId, HWC2::Composition::Sideband); |
| ALOGV("[%s] Requesting Sideband composition", mName.string()); |
| error = hwcLayer->setSidebandStream(mSidebandStream->handle()); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", |
| mName.string(), mSidebandStream->handle(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| return; |
| } |
| |
| // Client layers |
| if (hwcInfo.forceClientComposition || |
| (mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) { |
| ALOGV("[%s] Requesting Client composition", mName.string()); |
| setCompositionType(hwcId, HWC2::Composition::Client); |
| return; |
| } |
| |
| // SolidColor layers |
| if (mActiveBuffer == nullptr) { |
| setCompositionType(hwcId, HWC2::Composition::SolidColor); |
| |
| // For now, we only support black for DimLayer |
| error = hwcLayer->setColor({0, 0, 0, 255}); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set color: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| // Clear out the transform, because it doesn't make sense absent a |
| // source buffer |
| error = hwcLayer->setTransform(HWC2::Transform::None); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| return; |
| } |
| |
| // Device or Cursor layers |
| if (mPotentialCursor) { |
| ALOGV("[%s] Requesting Cursor composition", mName.string()); |
| setCompositionType(hwcId, HWC2::Composition::Cursor); |
| } else { |
| ALOGV("[%s] Requesting Device composition", mName.string()); |
| setCompositionType(hwcId, HWC2::Composition::Device); |
| } |
| |
| ALOGV("setPerFrameData: dataspace = %d", mCurrentState.dataSpace); |
| error = hwcLayer->setDataspace(mCurrentState.dataSpace); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), |
| mCurrentState.dataSpace, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| |
| uint32_t hwcSlot = 0; |
| sp<GraphicBuffer> hwcBuffer; |
| hwcInfo.bufferCache.getHwcBuffer(mActiveBufferSlot, mActiveBuffer, |
| &hwcSlot, &hwcBuffer); |
| |
| auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence(); |
| error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), |
| mActiveBuffer->handle, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| } |
| |
| android_dataspace Layer::getDataSpace() const { |
| return mCurrentState.dataSpace; |
| } |
| #else |
| void Layer::setPerFrameData(const sp<const DisplayDevice>& hw, |
| HWComposer::HWCLayerInterface& layer) { |
| // we have to set the visible region on every frame because |
| // we currently free it during onLayerDisplayed(), which is called |
| // after HWComposer::commit() -- every frame. |
| // Apply this display's projection's viewport to the visible region |
| // before giving it to the HWC HAL. |
| const Transform& tr = hw->getTransform(); |
| Region visible = tr.transform(visibleRegion.intersect(hw->getViewport())); |
| layer.setVisibleRegionScreen(visible); |
| layer.setSurfaceDamage(surfaceDamageRegion); |
| mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER); |
| |
| if (mSidebandStream.get()) { |
| layer.setSidebandStream(mSidebandStream); |
| } else { |
| // NOTE: buffer can be NULL if the client never drew into this |
| // layer yet, or if we ran out of memory |
| layer.setBuffer(mActiveBuffer); |
| } |
| } |
| #endif |
| |
| #ifdef USE_HWC2 |
| void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) { |
| auto hwcId = displayDevice->getHwcDisplayId(); |
| if (mHwcLayers.count(hwcId) == 0 || |
| getCompositionType(hwcId) != HWC2::Composition::Cursor) { |
| return; |
| } |
| |
| // This gives us only the "orientation" component of the transform |
| const State& s(getCurrentState()); |
| |
| // Apply the layer's transform, followed by the display's global transform |
| // Here we're guaranteed that the layer's transform preserves rects |
| Rect win(s.active.w, s.active.h); |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| // Subtract the transparent region and snap to the bounds |
| Rect bounds = reduce(win, s.activeTransparentRegion); |
| Rect frame(getTransform().transform(bounds)); |
| frame.intersect(displayDevice->getViewport(), &frame); |
| if (!s.finalCrop.isEmpty()) { |
| frame.intersect(s.finalCrop, &frame); |
| } |
| auto& displayTransform(displayDevice->getTransform()); |
| auto position = displayTransform.transform(frame); |
| |
| auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left, |
| position.top); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position " |
| "to (%d, %d): %s (%d)", mName.string(), position.left, |
| position.top, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| #else |
| void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */, |
| HWComposer::HWCLayerInterface& layer) { |
| int fenceFd = -1; |
| |
| // TODO: there is a possible optimization here: we only need to set the |
| // acquire fence the first time a new buffer is acquired on EACH display. |
| |
| if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) { |
| sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence(); |
| if (fence->isValid()) { |
| fenceFd = fence->dup(); |
| if (fenceFd == -1) { |
| ALOGW("failed to dup layer fence, skipping sync: %d", errno); |
| } |
| } |
| } |
| layer.setAcquireFenceFd(fenceFd); |
| } |
| |
| Rect Layer::getPosition( |
| const sp<const DisplayDevice>& hw) |
| { |
| // this gives us only the "orientation" component of the transform |
| const State& s(getCurrentState()); |
| |
| // apply the layer's transform, followed by the display's global transform |
| // here we're guaranteed that the layer's transform preserves rects |
| Rect win(s.active.w, s.active.h); |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| // subtract the transparent region and snap to the bounds |
| Rect bounds = reduce(win, s.activeTransparentRegion); |
| Rect frame(getTransform().transform(bounds)); |
| frame.intersect(hw->getViewport(), &frame); |
| if (!s.finalCrop.isEmpty()) { |
| frame.intersect(s.finalCrop, &frame); |
| } |
| const Transform& tr(hw->getTransform()); |
| return Rect(tr.transform(frame)); |
| } |
| #endif |
| |
| // --------------------------------------------------------------------------- |
| // drawing... |
| // --------------------------------------------------------------------------- |
| |
| void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const { |
| onDraw(hw, clip, false); |
| } |
| |
| void Layer::draw(const sp<const DisplayDevice>& hw, |
| bool useIdentityTransform) const { |
| onDraw(hw, Region(hw->bounds()), useIdentityTransform); |
| } |
| |
| void Layer::draw(const sp<const DisplayDevice>& hw) const { |
| onDraw(hw, Region(hw->bounds()), false); |
| } |
| |
| static constexpr mat4 inverseOrientation(uint32_t transform) { |
| const mat4 flipH(-1,0,0,0, 0,1,0,0, 0,0,1,0, 1,0,0,1); |
| const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1); |
| const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1); |
| mat4 tr; |
| |
| if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| tr = tr * rot90; |
| } |
| if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { |
| tr = tr * flipH; |
| } |
| if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { |
| tr = tr * flipV; |
| } |
| return inverse(tr); |
| } |
| |
| /* |
| * onDraw will draw the current layer onto the presentable buffer |
| */ |
| void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip, |
| bool useIdentityTransform) const |
| { |
| ATRACE_CALL(); |
| |
| if (CC_UNLIKELY(mActiveBuffer == 0)) { |
| // the texture has not been created yet, this Layer has |
| // in fact never been drawn into. This happens frequently with |
| // SurfaceView because the WindowManager can't know when the client |
| // has drawn the first time. |
| |
| // If there is nothing under us, we paint the screen in black, otherwise |
| // we just skip this update. |
| |
| // figure out if there is something below us |
| Region under; |
| bool finished = false; |
| mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (finished || layer == static_cast<Layer const*>(this)) { |
| finished = true; |
| return; |
| } |
| under.orSelf( hw->getTransform().transform(layer->visibleRegion) ); |
| }); |
| // if not everything below us is covered, we plug the holes! |
| Region holes(clip.subtract(under)); |
| if (!holes.isEmpty()) { |
| clearWithOpenGL(hw, 0, 0, 0, 1); |
| } |
| return; |
| } |
| |
| // Bind the current buffer to the GL texture, and wait for it to be |
| // ready for us to draw into. |
| status_t err = mSurfaceFlingerConsumer->bindTextureImage(); |
| if (err != NO_ERROR) { |
| ALOGW("onDraw: bindTextureImage failed (err=%d)", err); |
| // Go ahead and draw the buffer anyway; no matter what we do the screen |
| // is probably going to have something visibly wrong. |
| } |
| |
| bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure()); |
| |
| RenderEngine& engine(mFlinger->getRenderEngine()); |
| |
| if (!blackOutLayer) { |
| // TODO: we could be more subtle with isFixedSize() |
| const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize(); |
| |
| // Query the texture matrix given our current filtering mode. |
| float textureMatrix[16]; |
| mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering); |
| mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix); |
| |
| if (getTransformToDisplayInverse()) { |
| |
| /* |
| * the code below applies the primary display's inverse transform to |
| * the texture transform |
| */ |
| uint32_t transform = |
| DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| mat4 tr = inverseOrientation(transform); |
| |
| /** |
| * TODO(b/36727915): This is basically a hack. |
| * |
| * Ensure that regardless of the parent transformation, |
| * this buffer is always transformed from native display |
| * orientation to display orientation. For example, in the case |
| * of a camera where the buffer remains in native orientation, |
| * we want the pixels to always be upright. |
| */ |
| sp<Layer> p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| const auto parentTransform = p->getTransform(); |
| tr = tr * inverseOrientation(parentTransform.getOrientation()); |
| } |
| |
| // and finally apply it to the original texture matrix |
| const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); |
| memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); |
| } |
| |
| // Set things up for texturing. |
| mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); |
| mTexture.setFiltering(useFiltering); |
| mTexture.setMatrix(textureMatrix); |
| |
| engine.setupLayerTexturing(mTexture); |
| } else { |
| engine.setupLayerBlackedOut(); |
| } |
| drawWithOpenGL(hw, useIdentityTransform); |
| engine.disableTexturing(); |
| } |
| |
| |
| void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, |
| float red, float green, float blue, |
| float alpha) const |
| { |
| RenderEngine& engine(mFlinger->getRenderEngine()); |
| computeGeometry(hw, mMesh, false); |
| engine.setupFillWithColor(red, green, blue, alpha); |
| engine.drawMesh(mMesh); |
| } |
| |
| void Layer::clearWithOpenGL( |
| const sp<const DisplayDevice>& hw) const { |
| clearWithOpenGL(hw, 0,0,0,0); |
| } |
| |
| void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw, |
| bool useIdentityTransform) const { |
| const State& s(getDrawingState()); |
| |
| computeGeometry(hw, mMesh, useIdentityTransform); |
| |
| /* |
| * NOTE: the way we compute the texture coordinates here produces |
| * different results than when we take the HWC path -- in the later case |
| * the "source crop" is rounded to texel boundaries. |
| * This can produce significantly different results when the texture |
| * is scaled by a large amount. |
| * |
| * The GL code below is more logical (imho), and the difference with |
| * HWC is due to a limitation of the HWC API to integers -- a question |
| * is suspend is whether we should ignore this problem or revert to |
| * GL composition when a buffer scaling is applied (maybe with some |
| * minimal value)? Or, we could make GL behave like HWC -- but this feel |
| * like more of a hack. |
| */ |
| Rect win(computeBounds()); |
| |
| Transform t = getTransform(); |
| if (!s.finalCrop.isEmpty()) { |
| win = t.transform(win); |
| if (!win.intersect(s.finalCrop, &win)) { |
| win.clear(); |
| } |
| win = t.inverse().transform(win); |
| if (!win.intersect(computeBounds(), &win)) { |
| win.clear(); |
| } |
| } |
| |
| float left = float(win.left) / float(s.active.w); |
| float top = float(win.top) / float(s.active.h); |
| float right = float(win.right) / float(s.active.w); |
| float bottom = float(win.bottom) / float(s.active.h); |
| |
| // TODO: we probably want to generate the texture coords with the mesh |
| // here we assume that we only have 4 vertices |
| Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>()); |
| texCoords[0] = vec2(left, 1.0f - top); |
| texCoords[1] = vec2(left, 1.0f - bottom); |
| texCoords[2] = vec2(right, 1.0f - bottom); |
| texCoords[3] = vec2(right, 1.0f - top); |
| |
| RenderEngine& engine(mFlinger->getRenderEngine()); |
| engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), getAlpha()); |
| #ifdef USE_HWC2 |
| engine.setSourceDataSpace(mCurrentState.dataSpace); |
| #endif |
| engine.drawMesh(mMesh); |
| engine.disableBlending(); |
| } |
| |
| #ifdef USE_HWC2 |
| void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type, |
| bool callIntoHwc) { |
| if (mHwcLayers.count(hwcId) == 0) { |
| ALOGE("setCompositionType called without a valid HWC layer"); |
| return; |
| } |
| auto& hwcInfo = mHwcLayers[hwcId]; |
| auto& hwcLayer = hwcInfo.layer; |
| ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(), |
| to_string(type).c_str(), static_cast<int>(callIntoHwc)); |
| if (hwcInfo.compositionType != type) { |
| ALOGV(" actually setting"); |
| hwcInfo.compositionType = type; |
| if (callIntoHwc) { |
| auto error = hwcLayer->setCompositionType(type); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set " |
| "composition type %s: %s (%d)", mName.string(), |
| to_string(type).c_str(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| } |
| } |
| |
| HWC2::Composition Layer::getCompositionType(int32_t hwcId) const { |
| if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { |
| // If we're querying the composition type for a display that does not |
| // have a HWC counterpart, then it will always be Client |
| return HWC2::Composition::Client; |
| } |
| if (mHwcLayers.count(hwcId) == 0) { |
| ALOGE("getCompositionType called with an invalid HWC layer"); |
| return HWC2::Composition::Invalid; |
| } |
| return mHwcLayers.at(hwcId).compositionType; |
| } |
| |
| void Layer::setClearClientTarget(int32_t hwcId, bool clear) { |
| if (mHwcLayers.count(hwcId) == 0) { |
| ALOGE("setClearClientTarget called without a valid HWC layer"); |
| return; |
| } |
| mHwcLayers[hwcId].clearClientTarget = clear; |
| } |
| |
| bool Layer::getClearClientTarget(int32_t hwcId) const { |
| if (mHwcLayers.count(hwcId) == 0) { |
| ALOGE("getClearClientTarget called without a valid HWC layer"); |
| return false; |
| } |
| return mHwcLayers.at(hwcId).clearClientTarget; |
| } |
| #endif |
| |
| uint32_t Layer::getProducerStickyTransform() const { |
| int producerStickyTransform = 0; |
| int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform); |
| if (ret != OK) { |
| ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__, |
| strerror(-ret), ret); |
| return 0; |
| } |
| return static_cast<uint32_t>(producerStickyTransform); |
| } |
| |
| bool Layer::latchUnsignaledBuffers() { |
| static bool propertyLoaded = false; |
| static bool latch = false; |
| static std::mutex mutex; |
| std::lock_guard<std::mutex> lock(mutex); |
| if (!propertyLoaded) { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.latch_unsignaled", value, "0"); |
| latch = atoi(value); |
| propertyLoaded = true; |
| } |
| return latch; |
| } |
| |
| uint64_t Layer::getHeadFrameNumber() const { |
| Mutex::Autolock lock(mQueueItemLock); |
| if (!mQueueItems.empty()) { |
| return mQueueItems[0].mFrameNumber; |
| } else { |
| return mCurrentFrameNumber; |
| } |
| } |
| |
| bool Layer::headFenceHasSignaled() const { |
| #ifdef USE_HWC2 |
| if (latchUnsignaledBuffers()) { |
| return true; |
| } |
| |
| Mutex::Autolock lock(mQueueItemLock); |
| if (mQueueItems.empty()) { |
| return true; |
| } |
| if (mQueueItems[0].mIsDroppable) { |
| // Even though this buffer's fence may not have signaled yet, it could |
| // be replaced by another buffer before it has a chance to, which means |
| // that it's possible to get into a situation where a buffer is never |
| // able to be latched. To avoid this, grab this buffer anyway. |
| return true; |
| } |
| return mQueueItems[0].mFence->getSignalTime() != INT64_MAX; |
| #else |
| return true; |
| #endif |
| } |
| |
| bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { |
| if (point->getFrameNumber() <= mCurrentFrameNumber) { |
| // Don't bother with a SyncPoint, since we've already latched the |
| // relevant frame |
| return false; |
| } |
| |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| mLocalSyncPoints.push_back(point); |
| return true; |
| } |
| |
| void Layer::setFiltering(bool filtering) { |
| mFiltering = filtering; |
| } |
| |
| bool Layer::getFiltering() const { |
| return mFiltering; |
| } |
| |
| // As documented in libhardware header, formats in the range |
| // 0x100 - 0x1FF are specific to the HAL implementation, and |
| // are known to have no alpha channel |
| // TODO: move definition for device-specific range into |
| // hardware.h, instead of using hard-coded values here. |
| #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) |
| |
| bool Layer::getOpacityForFormat(uint32_t format) { |
| if (HARDWARE_IS_DEVICE_FORMAT(format)) { |
| return true; |
| } |
| switch (format) { |
| case HAL_PIXEL_FORMAT_RGBA_8888: |
| case HAL_PIXEL_FORMAT_BGRA_8888: |
| case HAL_PIXEL_FORMAT_RGBA_FP16: |
| case HAL_PIXEL_FORMAT_RGBA_1010102: |
| return false; |
| } |
| // in all other case, we have no blending (also for unknown formats) |
| return true; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // local state |
| // ---------------------------------------------------------------------------- |
| |
| static void boundPoint(vec2* point, const Rect& crop) { |
| if (point->x < crop.left) { |
| point->x = crop.left; |
| } |
| if (point->x > crop.right) { |
| point->x = crop.right; |
| } |
| if (point->y < crop.top) { |
| point->y = crop.top; |
| } |
| if (point->y > crop.bottom) { |
| point->y = crop.bottom; |
| } |
| } |
| |
| void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh, |
| bool useIdentityTransform) const |
| { |
| const Layer::State& s(getDrawingState()); |
| const Transform hwTransform(hw->getTransform()); |
| const uint32_t hw_h = hw->getHeight(); |
| Rect win = computeBounds(); |
| |
| vec2 lt = vec2(win.left, win.top); |
| vec2 lb = vec2(win.left, win.bottom); |
| vec2 rb = vec2(win.right, win.bottom); |
| vec2 rt = vec2(win.right, win.top); |
| |
| Transform layerTransform = getTransform(); |
| if (!useIdentityTransform) { |
| lt = layerTransform.transform(lt); |
| lb = layerTransform.transform(lb); |
| rb = layerTransform.transform(rb); |
| rt = layerTransform.transform(rt); |
| } |
| |
| if (!s.finalCrop.isEmpty()) { |
| boundPoint(<, s.finalCrop); |
| boundPoint(&lb, s.finalCrop); |
| boundPoint(&rb, s.finalCrop); |
| boundPoint(&rt, s.finalCrop); |
| } |
| |
| Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); |
| position[0] = hwTransform.transform(lt); |
| position[1] = hwTransform.transform(lb); |
| position[2] = hwTransform.transform(rb); |
| position[3] = hwTransform.transform(rt); |
| for (size_t i=0 ; i<4 ; i++) { |
| position[i].y = hw_h - position[i].y; |
| } |
| } |
| |
| bool Layer::isOpaque(const Layer::State& s) const |
| { |
| // if we don't have a buffer yet, we're translucent regardless of the |
| // layer's opaque flag. |
| if (mActiveBuffer == 0) { |
| return false; |
| } |
| |
| // if the layer has the opaque flag, then we're always opaque, |
| // otherwise we use the current buffer's format. |
| return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity; |
| } |
| |
| bool Layer::isSecure() const |
| { |
| const Layer::State& s(mDrawingState); |
| return (s.flags & layer_state_t::eLayerSecure); |
| } |
| |
| bool Layer::isProtected() const |
| { |
| const sp<GraphicBuffer>& activeBuffer(mActiveBuffer); |
| return (activeBuffer != 0) && |
| (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED); |
| } |
| |
| bool Layer::isFixedSize() const { |
| return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; |
| } |
| |
| bool Layer::isCropped() const { |
| return !mCurrentCrop.isEmpty(); |
| } |
| |
| bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const { |
| return mNeedsFiltering || hw->needsFiltering(); |
| } |
| |
| void Layer::setVisibleRegion(const Region& visibleRegion) { |
| // always called from main thread |
| this->visibleRegion = visibleRegion; |
| } |
| |
| void Layer::setCoveredRegion(const Region& coveredRegion) { |
| // always called from main thread |
| this->coveredRegion = coveredRegion; |
| } |
| |
| void Layer::setVisibleNonTransparentRegion(const Region& |
| setVisibleNonTransparentRegion) { |
| // always called from main thread |
| this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // transaction |
| // ---------------------------------------------------------------------------- |
| |
| void Layer::pushPendingState() { |
| if (!mCurrentState.modified) { |
| return; |
| } |
| |
| // If this transaction is waiting on the receipt of a frame, generate a sync |
| // point and send it to the remote layer. |
| if (mCurrentState.barrierLayer != nullptr) { |
| sp<Layer> barrierLayer = mCurrentState.barrierLayer.promote(); |
| if (barrierLayer == nullptr) { |
| ALOGE("[%s] Unable to promote barrier Layer.", mName.string()); |
| // If we can't promote the layer we are intended to wait on, |
| // then it is expired or otherwise invalid. Allow this transaction |
| // to be applied as per normal (no synchronization). |
| mCurrentState.barrierLayer = nullptr; |
| } else { |
| auto syncPoint = std::make_shared<SyncPoint>( |
| mCurrentState.frameNumber); |
| if (barrierLayer->addSyncPoint(syncPoint)) { |
| mRemoteSyncPoints.push_back(std::move(syncPoint)); |
| } else { |
| // We already missed the frame we're supposed to synchronize |
| // on, so go ahead and apply the state update |
| mCurrentState.barrierLayer = nullptr; |
| } |
| } |
| |
| // Wake us up to check if the frame has been received |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| mPendingStates.push_back(mCurrentState); |
| } |
| |
| void Layer::popPendingState(State* stateToCommit) { |
| auto oldFlags = stateToCommit->flags; |
| *stateToCommit = mPendingStates[0]; |
| stateToCommit->flags = (oldFlags & ~stateToCommit->mask) | |
| (stateToCommit->flags & stateToCommit->mask); |
| |
| mPendingStates.removeAt(0); |
| } |
| |
| bool Layer::applyPendingStates(State* stateToCommit) { |
| bool stateUpdateAvailable = false; |
| while (!mPendingStates.empty()) { |
| if (mPendingStates[0].barrierLayer != nullptr) { |
| if (mRemoteSyncPoints.empty()) { |
| // If we don't have a sync point for this, apply it anyway. It |
| // will be visually wrong, but it should keep us from getting |
| // into too much trouble. |
| ALOGE("[%s] No local sync point found", mName.string()); |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| continue; |
| } |
| |
| if (mRemoteSyncPoints.front()->getFrameNumber() != |
| mPendingStates[0].frameNumber) { |
| ALOGE("[%s] Unexpected sync point frame number found", |
| mName.string()); |
| |
| // Signal our end of the sync point and then dispose of it |
| mRemoteSyncPoints.front()->setTransactionApplied(); |
| mRemoteSyncPoints.pop_front(); |
| continue; |
| } |
| |
| if (mRemoteSyncPoints.front()->frameIsAvailable()) { |
| // Apply the state update |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| |
| // Signal our end of the sync point and then dispose of it |
| mRemoteSyncPoints.front()->setTransactionApplied(); |
| mRemoteSyncPoints.pop_front(); |
| } else { |
| break; |
| } |
| } else { |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| } |
| } |
| |
| // If we still have pending updates, wake SurfaceFlinger back up and point |
| // it at this layer so we can process them |
| if (!mPendingStates.empty()) { |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| |
| mCurrentState.modified = false; |
| return stateUpdateAvailable; |
| } |
| |
| void Layer::notifyAvailableFrames() { |
| auto headFrameNumber = getHeadFrameNumber(); |
| bool headFenceSignaled = headFenceHasSignaled(); |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| for (auto& point : mLocalSyncPoints) { |
| if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { |
| point->setFrameAvailable(); |
| } |
| } |
| } |
| |
| uint32_t Layer::doTransaction(uint32_t flags) { |
| ATRACE_CALL(); |
| |
| pushPendingState(); |
| Layer::State c = getCurrentState(); |
| if (!applyPendingStates(&c)) { |
| return 0; |
| } |
| |
| const Layer::State& s(getDrawingState()); |
| |
| const bool sizeChanged = (c.requested.w != s.requested.w) || |
| (c.requested.h != s.requested.h); |
| |
| if (sizeChanged) { |
| // the size changed, we need to ask our client to request a new buffer |
| ALOGD_IF(DEBUG_RESIZE, |
| "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" |
| " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" |
| " requested={ wh={%4u,%4u} }}\n" |
| " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" |
| " requested={ wh={%4u,%4u} }}\n", |
| this, getName().string(), mCurrentTransform, |
| getEffectiveScalingMode(), |
| c.active.w, c.active.h, |
| c.crop.left, |
| c.crop.top, |
| c.crop.right, |
| c.crop.bottom, |
| c.crop.getWidth(), |
| c.crop.getHeight(), |
| c.requested.w, c.requested.h, |
| s.active.w, s.active.h, |
| s.crop.left, |
| s.crop.top, |
| s.crop.right, |
| s.crop.bottom, |
| s.crop.getWidth(), |
| s.crop.getHeight(), |
| s.requested.w, s.requested.h); |
| |
| // record the new size, form this point on, when the client request |
| // a buffer, it'll get the new size. |
| mSurfaceFlingerConsumer->setDefaultBufferSize( |
| c.requested.w, c.requested.h); |
| } |
| |
| const bool resizePending = (c.requested.w != c.active.w) || |
| (c.requested.h != c.active.h); |
| if (!isFixedSize()) { |
| if (resizePending && mSidebandStream == NULL) { |
| // don't let Layer::doTransaction update the drawing state |
| // if we have a pending resize, unless we are in fixed-size mode. |
| // the drawing state will be updated only once we receive a buffer |
| // with the correct size. |
| // |
| // in particular, we want to make sure the clip (which is part |
| // of the geometry state) is latched together with the size but is |
| // latched immediately when no resizing is involved. |
| // |
| // If a sideband stream is attached, however, we want to skip this |
| // optimization so that transactions aren't missed when a buffer |
| // never arrives |
| |
| flags |= eDontUpdateGeometryState; |
| } |
| } |
| |
| // Here we apply various requested geometry states, depending on our |
| // latching configuration. See Layer.h for a detailed discussion of |
| // how geometry latching is controlled. |
| if (!(flags & eDontUpdateGeometryState)) { |
| Layer::State& editCurrentState(getCurrentState()); |
| |
| // If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize |
| // mode, which causes attributes which normally latch regardless of scaling mode, |
| // to be delayed. We copy the requested state to the active state making sure |
| // to respect these rules (again see Layer.h for a detailed discussion). |
| // |
| // There is an awkward asymmetry in the handling of the crop states in the position |
| // states, as can be seen below. Largely this arises from position and transform |
| // being stored in the same data structure while having different latching rules. |
| // b/38182305 |
| // |
| // Careful that "c" and editCurrentState may not begin as equivalent due to |
| // applyPendingStates in the presence of deferred transactions. |
| if (mFreezeGeometryUpdates) { |
| float tx = c.active.transform.tx(); |
| float ty = c.active.transform.ty(); |
| c.active = c.requested; |
| c.active.transform.set(tx, ty); |
| editCurrentState.active = c.active; |
| } else { |
| editCurrentState.active = editCurrentState.requested; |
| c.active = c.requested; |
| } |
| } |
| |
| if (s.active != c.active) { |
| // invalidate and recompute the visible regions if needed |
| flags |= Layer::eVisibleRegion; |
| } |
| |
| if (c.sequence != s.sequence) { |
| // invalidate and recompute the visible regions if needed |
| flags |= eVisibleRegion; |
| this->contentDirty = true; |
| |
| // we may use linear filtering, if the matrix scales us |
| const uint8_t type = c.active.transform.getType(); |
| mNeedsFiltering = (!c.active.transform.preserveRects() || |
| (type >= Transform::SCALE)); |
| } |
| |
| // If the layer is hidden, signal and clear out all local sync points so |
| // that transactions for layers depending on this layer's frames becoming |
| // visible are not blocked |
| if (c.flags & layer_state_t::eLayerHidden) { |
| clearSyncPoints(); |
| } |
| |
| // Commit the transaction |
| commitTransaction(c); |
| return flags; |
| } |
| |
| void Layer::commitTransaction(const State& stateToCommit) { |
| mDrawingState = stateToCommit; |
| } |
| |
| uint32_t Layer::getTransactionFlags(uint32_t flags) { |
| return android_atomic_and(~flags, &mTransactionFlags) & flags; |
| } |
| |
| uint32_t Layer::setTransactionFlags(uint32_t flags) { |
| return android_atomic_or(flags, &mTransactionFlags); |
| } |
| |
| bool Layer::setPosition(float x, float y, bool immediate) { |
| if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y) |
| return false; |
| mCurrentState.sequence++; |
| |
| // We update the requested and active position simultaneously because |
| // we want to apply the position portion of the transform matrix immediately, |
| // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. |
| mCurrentState.requested.transform.set(x, y); |
| if (immediate && !mFreezeGeometryUpdates) { |
| // Here we directly update the active state |
| // unlike other setters, because we store it within |
| // the transform, but use different latching rules. |
| // b/38182305 |
| mCurrentState.active.transform.set(x, y); |
| } |
| mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) { |
| ssize_t idx = mCurrentChildren.indexOf(childLayer); |
| if (idx < 0) { |
| return false; |
| } |
| if (childLayer->setLayer(z)) { |
| mCurrentChildren.removeAt(idx); |
| mCurrentChildren.add(childLayer); |
| } |
| return true; |
| } |
| |
| bool Layer::setLayer(int32_t z) { |
| if (mCurrentState.z == z) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.z = z; |
| mCurrentState.modified = true; |
| |
| // Discard all relative layering. |
| if (mCurrentState.zOrderRelativeOf != nullptr) { |
| sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); |
| if (strongRelative != nullptr) { |
| strongRelative->removeZOrderRelative(this); |
| } |
| mCurrentState.zOrderRelativeOf = nullptr; |
| } |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| void Layer::removeZOrderRelative(const wp<Layer>& relative) { |
| mCurrentState.zOrderRelatives.remove(relative); |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| void Layer::addZOrderRelative(const wp<Layer>& relative) { |
| mCurrentState.zOrderRelatives.add(relative); |
| mCurrentState.modified = true; |
| mCurrentState.sequence++; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t z) { |
| sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get()); |
| if (handle == nullptr) { |
| return false; |
| } |
| sp<Layer> relative = handle->owner.promote(); |
| if (relative == nullptr) { |
| return false; |
| } |
| |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| mCurrentState.z = z; |
| |
| mCurrentState.zOrderRelativeOf = relative; |
| relative->addZOrderRelative(this); |
| |
| setTransactionFlags(eTransactionNeeded); |
| |
| return true; |
| } |
| |
| bool Layer::setSize(uint32_t w, uint32_t h) { |
| if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) |
| return false; |
| mCurrentState.requested.w = w; |
| mCurrentState.requested.h = h; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| #ifdef USE_HWC2 |
| bool Layer::setAlpha(float alpha) { |
| #else |
| bool Layer::setAlpha(uint8_t alpha) { |
| #endif |
| if (mCurrentState.alpha == alpha) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.alpha = alpha; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) { |
| mCurrentState.sequence++; |
| mCurrentState.requested.transform.set( |
| matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| bool Layer::setTransparentRegionHint(const Region& transparent) { |
| mCurrentState.requestedTransparentRegion = transparent; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| bool Layer::setFlags(uint8_t flags, uint8_t mask) { |
| const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); |
| if (mCurrentState.flags == newFlags) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.flags = newFlags; |
| mCurrentState.mask = mask; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setCrop(const Rect& crop, bool immediate) { |
| if (mCurrentState.requestedCrop == crop) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.requestedCrop = crop; |
| if (immediate && !mFreezeGeometryUpdates) { |
| mCurrentState.crop = crop; |
| } |
| mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setFinalCrop(const Rect& crop, bool immediate) { |
| if (mCurrentState.requestedFinalCrop == crop) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.requestedFinalCrop = crop; |
| if (immediate && !mFreezeGeometryUpdates) { |
| mCurrentState.finalCrop = crop; |
| } |
| mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setOverrideScalingMode(int32_t scalingMode) { |
| if (scalingMode == mOverrideScalingMode) |
| return false; |
| mOverrideScalingMode = scalingMode; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| void Layer::setInfo(uint32_t type, uint32_t appId) { |
| mCurrentState.appId = appId; |
| mCurrentState.type = type; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| uint32_t Layer::getEffectiveScalingMode() const { |
| if (mOverrideScalingMode >= 0) { |
| return mOverrideScalingMode; |
| } |
| return mCurrentScalingMode; |
| } |
| |
| bool Layer::setLayerStack(uint32_t layerStack) { |
| if (mCurrentState.layerStack == layerStack) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.layerStack = layerStack; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setDataSpace(android_dataspace dataSpace) { |
| if (mCurrentState.dataSpace == dataSpace) |
| return false; |
| mCurrentState.sequence++; |
| mCurrentState.dataSpace = dataSpace; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| uint32_t Layer::getLayerStack() const { |
| auto p = mDrawingParent.promote(); |
| if (p == nullptr) { |
| return getDrawingState().layerStack; |
| } |
| return p->getLayerStack(); |
| } |
| |
| void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer, |
| uint64_t frameNumber) { |
| mCurrentState.barrierLayer = barrierLayer; |
| mCurrentState.frameNumber = frameNumber; |
| // We don't set eTransactionNeeded, because just receiving a deferral |
| // request without any other state updates shouldn't actually induce a delay |
| mCurrentState.modified = true; |
| pushPendingState(); |
| mCurrentState.barrierLayer = nullptr; |
| mCurrentState.frameNumber = 0; |
| mCurrentState.modified = false; |
| } |
| |
| void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle, |
| uint64_t frameNumber) { |
| sp<Handle> handle = static_cast<Handle*>(barrierHandle.get()); |
| deferTransactionUntil(handle->owner.promote(), frameNumber); |
| } |
| |
| void Layer::useSurfaceDamage() { |
| if (mFlinger->mForceFullDamage) { |
| surfaceDamageRegion = Region::INVALID_REGION; |
| } else { |
| surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage(); |
| } |
| } |
| |
| void Layer::useEmptyDamage() { |
| surfaceDamageRegion.clear(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // pageflip handling... |
| // ---------------------------------------------------------------------------- |
| |
| bool Layer::shouldPresentNow(const DispSync& dispSync) const { |
| if (mSidebandStreamChanged || mAutoRefresh) { |
| return true; |
| } |
| |
| Mutex::Autolock lock(mQueueItemLock); |
| if (mQueueItems.empty()) { |
| return false; |
| } |
| auto timestamp = mQueueItems[0].mTimestamp; |
| nsecs_t expectedPresent = |
| mSurfaceFlingerConsumer->computeExpectedPresent(dispSync); |
| |
| // Ignore timestamps more than a second in the future |
| bool isPlausible = timestamp < (expectedPresent + s2ns(1)); |
| ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible " |
| "relative to expectedPresent %" PRId64, mName.string(), timestamp, |
| expectedPresent); |
| |
| bool isDue = timestamp < expectedPresent; |
| return isDue || !isPlausible; |
| } |
| |
| bool Layer::onPreComposition(nsecs_t refreshStartTime) { |
| if (mBufferLatched) { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); |
| } |
| mRefreshPending = false; |
| return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh; |
| } |
| |
| bool Layer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence, |
| const std::shared_ptr<FenceTime>& presentFence, |
| const CompositorTiming& compositorTiming) { |
| mAcquireTimeline.updateSignalTimes(); |
| mReleaseTimeline.updateSignalTimes(); |
| |
| // mFrameLatencyNeeded is true when a new frame was latched for the |
| // composition. |
| if (!mFrameLatencyNeeded) |
| return false; |
| |
| // Update mFrameEventHistory. |
| { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addPostComposition(mCurrentFrameNumber, |
| glDoneFence, presentFence, compositorTiming); |
| } |
| |
| // Update mFrameTracker. |
| nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp(); |
| mFrameTracker.setDesiredPresentTime(desiredPresentTime); |
| |
| std::shared_ptr<FenceTime> frameReadyFence = |
| mSurfaceFlingerConsumer->getCurrentFenceTime(); |
| if (frameReadyFence->isValid()) { |
| mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); |
| } else { |
| // There was no fence for this frame, so assume that it was ready |
| // to be presented at the desired present time. |
| mFrameTracker.setFrameReadyTime(desiredPresentTime); |
| } |
| |
| if (presentFence->isValid()) { |
| mFrameTracker.setActualPresentFence( |
| std::shared_ptr<FenceTime>(presentFence)); |
| } else { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| mFrameTracker.setActualPresentTime( |
| mFlinger->getHwComposer().getRefreshTimestamp( |
| HWC_DISPLAY_PRIMARY)); |
| } |
| |
| mFrameTracker.advanceFrame(); |
| mFrameLatencyNeeded = false; |
| return true; |
| } |
| |
| #ifdef USE_HWC2 |
| void Layer::releasePendingBuffer(nsecs_t dequeueReadyTime) { |
| if (!mSurfaceFlingerConsumer->releasePendingBuffer()) { |
| return; |
| } |
| |
| auto releaseFenceTime = std::make_shared<FenceTime>( |
| mSurfaceFlingerConsumer->getPrevFinalReleaseFence()); |
| mReleaseTimeline.push(releaseFenceTime); |
| |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| if (mPreviousFrameNumber != 0) { |
| mFrameEventHistory.addRelease(mPreviousFrameNumber, |
| dequeueReadyTime, std::move(releaseFenceTime)); |
| } |
| } |
| #endif |
| |
| bool Layer::isHiddenByPolicy() const { |
| const Layer::State& s(mDrawingState); |
| const auto& parent = mDrawingParent.promote(); |
| if (parent != nullptr && parent->isHiddenByPolicy()) { |
| return true; |
| } |
| return s.flags & layer_state_t::eLayerHidden; |
| } |
| |
| bool Layer::isVisible() const { |
| #ifdef USE_HWC2 |
| return !(isHiddenByPolicy()) && getAlpha() > 0.0f |
| && (mActiveBuffer != NULL || mSidebandStream != NULL); |
| #else |
| return !(isHiddenByPolicy()) && getAlpha() |
| && (mActiveBuffer != NULL || mSidebandStream != NULL); |
| #endif |
| } |
| |
| bool Layer::allTransactionsSignaled() { |
| auto headFrameNumber = getHeadFrameNumber(); |
| bool matchingFramesFound = false; |
| bool allTransactionsApplied = true; |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| |
| for (auto& point : mLocalSyncPoints) { |
| if (point->getFrameNumber() > headFrameNumber) { |
| break; |
| } |
| matchingFramesFound = true; |
| |
| if (!point->frameIsAvailable()) { |
| // We haven't notified the remote layer that the frame for |
| // this point is available yet. Notify it now, and then |
| // abort this attempt to latch. |
| point->setFrameAvailable(); |
| allTransactionsApplied = false; |
| break; |
| } |
| |
| allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); |
| } |
| return !matchingFramesFound || allTransactionsApplied; |
| } |
| |
| Region Layer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) |
| { |
| ATRACE_CALL(); |
| |
| if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) { |
| // mSidebandStreamChanged was true |
| mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream(); |
| if (mSidebandStream != NULL) { |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| recomputeVisibleRegions = true; |
| |
| const State& s(getDrawingState()); |
| return getTransform().transform(Region(Rect(s.active.w, s.active.h))); |
| } |
| |
| Region outDirtyRegion; |
| if (mQueuedFrames <= 0 && !mAutoRefresh) { |
| return outDirtyRegion; |
| } |
| |
| // if we've already called updateTexImage() without going through |
| // a composition step, we have to skip this layer at this point |
| // because we cannot call updateTeximage() without a corresponding |
| // compositionComplete() call. |
| // we'll trigger an update in onPreComposition(). |
| if (mRefreshPending) { |
| return outDirtyRegion; |
| } |
| |
| // If the head buffer's acquire fence hasn't signaled yet, return and |
| // try again later |
| if (!headFenceHasSignaled()) { |
| mFlinger->signalLayerUpdate(); |
| return outDirtyRegion; |
| } |
| |
| // Capture the old state of the layer for comparisons later |
| const State& s(getDrawingState()); |
| const bool oldOpacity = isOpaque(s); |
| sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer; |
| |
| if (!allTransactionsSignaled()) { |
| mFlinger->signalLayerUpdate(); |
| return outDirtyRegion; |
| } |
| |
| // This boolean is used to make sure that SurfaceFlinger's shadow copy |
| // of the buffer queue isn't modified when the buffer queue is returning |
| // BufferItem's that weren't actually queued. This can happen in shared |
| // buffer mode. |
| bool queuedBuffer = false; |
| LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions, |
| getProducerStickyTransform() != 0, mName.string(), |
| mOverrideScalingMode, mFreezeGeometryUpdates); |
| status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r, |
| mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer, |
| mLastFrameNumberReceived); |
| if (updateResult == BufferQueue::PRESENT_LATER) { |
| // Producer doesn't want buffer to be displayed yet. Signal a |
| // layer update so we check again at the next opportunity. |
| mFlinger->signalLayerUpdate(); |
| return outDirtyRegion; |
| } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) { |
| // If the buffer has been rejected, remove it from the shadow queue |
| // and return early |
| if (queuedBuffer) { |
| Mutex::Autolock lock(mQueueItemLock); |
| mQueueItems.removeAt(0); |
| android_atomic_dec(&mQueuedFrames); |
| } |
| return outDirtyRegion; |
| } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) { |
| // This can occur if something goes wrong when trying to create the |
| // EGLImage for this buffer. If this happens, the buffer has already |
| // been released, so we need to clean up the queue and bug out |
| // early. |
| if (queuedBuffer) { |
| Mutex::Autolock lock(mQueueItemLock); |
| mQueueItems.clear(); |
| android_atomic_and(0, &mQueuedFrames); |
| } |
| |
| // Once we have hit this state, the shadow queue may no longer |
| // correctly reflect the incoming BufferQueue's contents, so even if |
| // updateTexImage starts working, the only safe course of action is |
| // to continue to ignore updates. |
| mUpdateTexImageFailed = true; |
| |
| return outDirtyRegion; |
| } |
| |
| if (queuedBuffer) { |
| // Autolock scope |
| auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); |
| |
| Mutex::Autolock lock(mQueueItemLock); |
| |
| // Remove any stale buffers that have been dropped during |
| // updateTexImage |
| while (mQueueItems[0].mFrameNumber != currentFrameNumber) { |
| mQueueItems.removeAt(0); |
| android_atomic_dec(&mQueuedFrames); |
| } |
| |
| mQueueItems.removeAt(0); |
| } |
| |
| |
| // Decrement the queued-frames count. Signal another event if we |
| // have more frames pending. |
| if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) |
| || mAutoRefresh) { |
| mFlinger->signalLayerUpdate(); |
| } |
| |
| // update the active buffer |
| mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer( |
| &mActiveBufferSlot); |
| if (mActiveBuffer == NULL) { |
| // this can only happen if the very first buffer was rejected. |
| return outDirtyRegion; |
| } |
| |
| mBufferLatched = true; |
| mPreviousFrameNumber = mCurrentFrameNumber; |
| mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); |
| |
| { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime); |
| #ifndef USE_HWC2 |
| auto releaseFenceTime = std::make_shared<FenceTime>( |
| mSurfaceFlingerConsumer->getPrevFinalReleaseFence()); |
| mReleaseTimeline.push(releaseFenceTime); |
| if (mPreviousFrameNumber != 0) { |
| mFrameEventHistory.addRelease(mPreviousFrameNumber, |
| latchTime, std::move(releaseFenceTime)); |
| } |
| #endif |
| } |
| |
| mRefreshPending = true; |
| mFrameLatencyNeeded = true; |
| if (oldActiveBuffer == NULL) { |
| // the first time we receive a buffer, we need to trigger a |
| // geometry invalidation. |
| recomputeVisibleRegions = true; |
| } |
| |
| setDataSpace(mSurfaceFlingerConsumer->getCurrentDataSpace()); |
| |
| Rect crop(mSurfaceFlingerConsumer->getCurrentCrop()); |
| const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform()); |
| const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode()); |
| if ((crop != mCurrentCrop) || |
| (transform != mCurrentTransform) || |
| (scalingMode != mCurrentScalingMode)) |
| { |
| mCurrentCrop = crop; |
| mCurrentTransform = transform; |
| mCurrentScalingMode = scalingMode; |
| recomputeVisibleRegions = true; |
| } |
| |
| if (oldActiveBuffer != NULL) { |
| uint32_t bufWidth = mActiveBuffer->getWidth(); |
| uint32_t bufHeight = mActiveBuffer->getHeight(); |
| if (bufWidth != uint32_t(oldActiveBuffer->width) || |
| bufHeight != uint32_t(oldActiveBuffer->height)) { |
| recomputeVisibleRegions = true; |
| } |
| } |
| |
| mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format); |
| if (oldOpacity != isOpaque(s)) { |
| recomputeVisibleRegions = true; |
| } |
| |
| // Remove any sync points corresponding to the buffer which was just |
| // latched |
| { |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| auto point = mLocalSyncPoints.begin(); |
| while (point != mLocalSyncPoints.end()) { |
| if (!(*point)->frameIsAvailable() || |
| !(*point)->transactionIsApplied()) { |
| // This sync point must have been added since we started |
| // latching. Don't drop it yet. |
| ++point; |
| continue; |
| } |
| |
| if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { |
| point = mLocalSyncPoints.erase(point); |
| } else { |
| ++point; |
| } |
| } |
| } |
| |
| // FIXME: postedRegion should be dirty & bounds |
| Region dirtyRegion(Rect(s.active.w, s.active.h)); |
| |
| // transform the dirty region to window-manager space |
| outDirtyRegion = (getTransform().transform(dirtyRegion)); |
| |
| return outDirtyRegion; |
| } |
| |
| uint32_t Layer::getEffectiveUsage(uint32_t usage) const |
| { |
| // TODO: should we do something special if mSecure is set? |
| if (mProtectedByApp) { |
| // need a hardware-protected path to external video sink |
| usage |= GraphicBuffer::USAGE_PROTECTED; |
| } |
| if (mPotentialCursor) { |
| usage |= GraphicBuffer::USAGE_CURSOR; |
| } |
| usage |= GraphicBuffer::USAGE_HW_COMPOSER; |
| return usage; |
| } |
| |
| void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const { |
| uint32_t orientation = 0; |
| if (!mFlinger->mDebugDisableTransformHint) { |
| // The transform hint is used to improve performance, but we can |
| // only have a single transform hint, it cannot |
| // apply to all displays. |
| const Transform& planeTransform(hw->getTransform()); |
| orientation = planeTransform.getOrientation(); |
| if (orientation & Transform::ROT_INVALID) { |
| orientation = 0; |
| } |
| } |
| mSurfaceFlingerConsumer->setTransformHint(orientation); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // debugging |
| // ---------------------------------------------------------------------------- |
| |
| void Layer::dump(String8& result, Colorizer& colorizer) const |
| { |
| const Layer::State& s(getDrawingState()); |
| |
| colorizer.colorize(result, Colorizer::GREEN); |
| result.appendFormat( |
| "+ %s %p (%s)\n", |
| getTypeId(), this, getName().string()); |
| colorizer.reset(result); |
| |
| s.activeTransparentRegion.dump(result, "transparentRegion"); |
| visibleRegion.dump(result, "visibleRegion"); |
| surfaceDamageRegion.dump(result, "surfaceDamageRegion"); |
| sp<Client> client(mClientRef.promote()); |
| |
| result.appendFormat( " " |
| "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), " |
| "crop=(%4d,%4d,%4d,%4d), finalCrop=(%4d,%4d,%4d,%4d), " |
| "isOpaque=%1d, invalidate=%1d, " |
| #ifdef USE_HWC2 |
| "alpha=%.3f, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" |
| #else |
| "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" |
| #endif |
| " client=%p\n", |
| getLayerStack(), s.z, |
| s.active.transform.tx(), s.active.transform.ty(), |
| s.active.w, s.active.h, |
| s.crop.left, s.crop.top, |
| s.crop.right, s.crop.bottom, |
| s.finalCrop.left, s.finalCrop.top, |
| s.finalCrop.right, s.finalCrop.bottom, |
| isOpaque(s), contentDirty, |
| s.alpha, s.flags, |
| s.active.transform[0][0], s.active.transform[0][1], |
| s.active.transform[1][0], s.active.transform[1][1], |
| client.get()); |
| |
| sp<const GraphicBuffer> buf0(mActiveBuffer); |
| uint32_t w0=0, h0=0, s0=0, f0=0; |
| if (buf0 != 0) { |
| w0 = buf0->getWidth(); |
| h0 = buf0->getHeight(); |
| s0 = buf0->getStride(); |
| f0 = buf0->format; |
| } |
| result.appendFormat( |
| " " |
| "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X]," |
| " queued-frames=%d, mRefreshPending=%d\n", |
| mFormat, w0, h0, s0,f0, |
| mQueuedFrames, mRefreshPending); |
| |
| if (mSurfaceFlingerConsumer != 0) { |
| mSurfaceFlingerConsumer->dumpState(result, " "); |
| } |
| } |
| |
| #ifdef USE_HWC2 |
| void Layer::miniDumpHeader(String8& result) { |
| result.append("----------------------------------------"); |
| result.append("---------------------------------------\n"); |
| result.append(" Layer name\n"); |
| result.append(" Z | "); |
| result.append(" Comp Type | "); |
| result.append(" Disp Frame (LTRB) | "); |
| result.append(" Source Crop (LTRB)\n"); |
| result.append("----------------------------------------"); |
| result.append("---------------------------------------\n"); |
| } |
| |
| void Layer::miniDump(String8& result, int32_t hwcId) const { |
| if (mHwcLayers.count(hwcId) == 0) { |
| return; |
| } |
| |
| String8 name; |
| if (mName.length() > 77) { |
| std::string shortened; |
| shortened.append(mName.string(), 36); |
| shortened.append("[...]"); |
| shortened.append(mName.string() + (mName.length() - 36), 36); |
| name = shortened.c_str(); |
| } else { |
| name = mName; |
| } |
| |
| result.appendFormat(" %s\n", name.string()); |
| |
| const Layer::State& layerState(getDrawingState()); |
| const HWCInfo& hwcInfo = mHwcLayers.at(hwcId); |
| result.appendFormat(" %10u | ", layerState.z); |
| result.appendFormat("%10s | ", |
| to_string(getCompositionType(hwcId)).c_str()); |
| const Rect& frame = hwcInfo.displayFrame; |
| result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top, |
| frame.right, frame.bottom); |
| const FloatRect& crop = hwcInfo.sourceCrop; |
| result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, |
| crop.right, crop.bottom); |
| |
| result.append("- - - - - - - - - - - - - - - - - - - - "); |
| result.append("- - - - - - - - - - - - - - - - - - - -\n"); |
| } |
| #endif |
| |
| void Layer::dumpFrameStats(String8& result) const { |
| mFrameTracker.dumpStats(result); |
| } |
| |
| void Layer::clearFrameStats() { |
| mFrameTracker.clearStats(); |
| } |
| |
| void Layer::logFrameStats() { |
| mFrameTracker.logAndResetStats(mName); |
| } |
| |
| void Layer::getFrameStats(FrameStats* outStats) const { |
| mFrameTracker.getStats(outStats); |
| } |
| |
| void Layer::dumpFrameEvents(String8& result) { |
| result.appendFormat("- Layer %s (%s, %p)\n", |
| getName().string(), getTypeId(), this); |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.checkFencesForCompletion(); |
| mFrameEventHistory.dump(result); |
| } |
| |
| void Layer::onDisconnect() { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.onDisconnect(); |
| } |
| |
| void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, |
| FrameEventHistoryDelta *outDelta) { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| if (newTimestamps) { |
| mAcquireTimeline.push(newTimestamps->acquireFence); |
| mFrameEventHistory.addQueue(*newTimestamps); |
| } |
| |
| if (outDelta) { |
| mFrameEventHistory.getAndResetDelta(outDelta); |
| } |
| } |
| |
| std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory( |
| bool forceFlush) { |
| std::vector<OccupancyTracker::Segment> history; |
| status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush, |
| &history); |
| if (result != NO_ERROR) { |
| ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), |
| result); |
| return {}; |
| } |
| return history; |
| } |
| |
| bool Layer::getTransformToDisplayInverse() const { |
| return mSurfaceFlingerConsumer->getTransformToDisplayInverse(); |
| } |
| |
| size_t Layer::getChildrenCount() const { |
| size_t count = 0; |
| for (const sp<Layer>& child : mCurrentChildren) { |
| count += 1 + child->getChildrenCount(); |
| } |
| return count; |
| } |
| |
| void Layer::addChild(const sp<Layer>& layer) { |
| mCurrentChildren.add(layer); |
| layer->setParent(this); |
| } |
| |
| ssize_t Layer::removeChild(const sp<Layer>& layer) { |
| layer->setParent(nullptr); |
| return mCurrentChildren.remove(layer); |
| } |
| |
| bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) { |
| sp<Handle> handle = nullptr; |
| sp<Layer> newParent = nullptr; |
| if (newParentHandle == nullptr) { |
| return false; |
| } |
| handle = static_cast<Handle*>(newParentHandle.get()); |
| newParent = handle->owner.promote(); |
| if (newParent == nullptr) { |
| ALOGE("Unable to promote Layer handle"); |
| return false; |
| } |
| |
| for (const sp<Layer>& child : mCurrentChildren) { |
| newParent->addChild(child); |
| |
| sp<Client> client(child->mClientRef.promote()); |
| if (client != nullptr) { |
| client->setParentLayer(newParent); |
| } |
| } |
| mCurrentChildren.clear(); |
| |
| return true; |
| } |
| |
| bool Layer::detachChildren() { |
| traverseInZOrder(LayerVector::StateSet::Drawing, [this](Layer* child) { |
| if (child == this) { |
| return; |
| } |
| |
| sp<Client> client(child->mClientRef.promote()); |
| if (client != nullptr) { |
| client->detachLayer(child); |
| } |
| }); |
| |
| return true; |
| } |
| |
| void Layer::setParent(const sp<Layer>& layer) { |
| mCurrentParent = layer; |
| } |
| |
| void Layer::clearSyncPoints() { |
| for (const auto& child : mCurrentChildren) { |
| child->clearSyncPoints(); |
| } |
| |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| for (auto& point : mLocalSyncPoints) { |
| point->setFrameAvailable(); |
| } |
| mLocalSyncPoints.clear(); |
| } |
| |
| int32_t Layer::getZ() const { |
| return mDrawingState.z; |
| } |
| |
| LayerVector Layer::makeTraversalList(LayerVector::StateSet stateSet) { |
| LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, |
| "makeTraversalList received invalid stateSet"); |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| if (state.zOrderRelatives.size() == 0) { |
| return children; |
| } |
| LayerVector traverse; |
| |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| if (strongRelative != nullptr) { |
| traverse.add(strongRelative); |
| } |
| } |
| |
| for (const sp<Layer>& child : children) { |
| traverse.add(child); |
| } |
| |
| return traverse; |
| } |
| |
| /** |
| * Negatively signed relatives are before 'this' in Z-order. |
| */ |
| void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { |
| LayerVector list = makeTraversalList(stateSet); |
| |
| size_t i = 0; |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| if (relative->getZ() >= 0) { |
| break; |
| } |
| relative->traverseInZOrder(stateSet, visitor); |
| } |
| visitor(this); |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| relative->traverseInZOrder(stateSet, visitor); |
| } |
| } |
| |
| /** |
| * Positively signed relatives are before 'this' in reverse Z-order. |
| */ |
| void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| LayerVector list = makeTraversalList(stateSet); |
| |
| int32_t i = 0; |
| for (i = list.size()-1; i>=0; i--) { |
| const auto& relative = list[i]; |
| if (relative->getZ() < 0) { |
| break; |
| } |
| relative->traverseInReverseZOrder(stateSet, visitor); |
| } |
| visitor(this); |
| for (; i>=0; i--) { |
| const auto& relative = list[i]; |
| relative->traverseInReverseZOrder(stateSet, visitor); |
| } |
| } |
| |
| Transform Layer::getTransform() const { |
| Transform t; |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| t = p->getTransform(); |
| |
| // If the parent is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g. |
| // it isFixedSize) then there may be additional scaling not accounted |
| // for in the transform. We need to mirror this scaling in child surfaces |
| // or we will break the contract where WM can treat child surfaces as |
| // pixels in the parent surface. |
| if (p->isFixedSize()) { |
| int bufferWidth; |
| int bufferHeight; |
| if ((p->mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) == 0) { |
| bufferWidth = p->mActiveBuffer->getWidth(); |
| bufferHeight = p->mActiveBuffer->getHeight(); |
| } else { |
| bufferHeight = p->mActiveBuffer->getWidth(); |
| bufferWidth = p->mActiveBuffer->getHeight(); |
| } |
| float sx = p->getDrawingState().active.w / |
| static_cast<float>(bufferWidth); |
| float sy = p->getDrawingState().active.h / |
| static_cast<float>(bufferHeight); |
| Transform extraParentScaling; |
| extraParentScaling.set(sx, 0, 0, sy); |
| t = t * extraParentScaling; |
| } |
| } |
| return t * getDrawingState().active.transform; |
| } |
| |
| #ifdef USE_HWC2 |
| float Layer::getAlpha() const { |
| const auto& p = mDrawingParent.promote(); |
| |
| float parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0; |
| return parentAlpha * getDrawingState().alpha; |
| } |
| #else |
| uint8_t Layer::getAlpha() const { |
| const auto& p = mDrawingParent.promote(); |
| |
| float parentAlpha = (p != nullptr) ? (p->getAlpha() / 255.0f) : 1.0; |
| float drawingAlpha = getDrawingState().alpha / 255.0f; |
| drawingAlpha = drawingAlpha * parentAlpha; |
| return static_cast<uint8_t>(std::round(drawingAlpha * 255)); |
| } |
| #endif |
| |
| void Layer::commitChildList() { |
| for (size_t i = 0; i < mCurrentChildren.size(); i++) { |
| const auto& child = mCurrentChildren[i]; |
| child->commitChildList(); |
| } |
| mDrawingChildren = mCurrentChildren; |
| mDrawingParent = mCurrentParent; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| }; // namespace android |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |