| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <binder/AppOpsManager.h> |
| #include <binder/BinderService.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/PermissionCache.h> |
| #include <cutils/ashmem.h> |
| #include <cutils/properties.h> |
| #include <hardware/sensors.h> |
| #include <hardware_legacy/power.h> |
| #include <openssl/digest.h> |
| #include <openssl/hmac.h> |
| #include <openssl/rand.h> |
| #include <sensor/SensorEventQueue.h> |
| #include <utils/SystemClock.h> |
| |
| #include "BatteryService.h" |
| #include "CorrectedGyroSensor.h" |
| #include "GravitySensor.h" |
| #include "LinearAccelerationSensor.h" |
| #include "OrientationSensor.h" |
| #include "RotationVectorSensor.h" |
| #include "SensorFusion.h" |
| #include "SensorInterface.h" |
| |
| #include "SensorService.h" |
| #include "SensorDirectConnection.h" |
| #include "SensorEventAckReceiver.h" |
| #include "SensorEventConnection.h" |
| #include "SensorRecord.h" |
| #include "SensorRegistrationInfo.h" |
| |
| #include <inttypes.h> |
| #include <math.h> |
| #include <sched.h> |
| #include <stdint.h> |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| namespace android { |
| // --------------------------------------------------------------------------- |
| |
| /* |
| * Notes: |
| * |
| * - what about a gyro-corrected magnetic-field sensor? |
| * - run mag sensor from time to time to force calibration |
| * - gravity sensor length is wrong (=> drift in linear-acc sensor) |
| * |
| */ |
| |
| const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock"; |
| uint8_t SensorService::sHmacGlobalKey[128] = {}; |
| bool SensorService::sHmacGlobalKeyIsValid = false; |
| |
| #define SENSOR_SERVICE_DIR "/data/system/sensor_service" |
| #define SENSOR_SERVICE_HMAC_KEY_FILE SENSOR_SERVICE_DIR "/hmac_key" |
| #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10 |
| |
| // Permissions. |
| static const String16 sDumpPermission("android.permission.DUMP"); |
| static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE"); |
| |
| SensorService::SensorService() |
| : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED), |
| mWakeLockAcquired(false) { |
| } |
| |
| bool SensorService::initializeHmacKey() { |
| int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC); |
| if (fd != -1) { |
| int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey)); |
| close(fd); |
| if (result == sizeof(sHmacGlobalKey)) { |
| return true; |
| } |
| ALOGW("Unable to read HMAC key; generating new one."); |
| } |
| |
| if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) { |
| ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong."); |
| return false; |
| } |
| |
| // We need to make sure this is only readable to us. |
| bool wroteKey = false; |
| mkdir(SENSOR_SERVICE_DIR, S_IRWXU); |
| fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC, |
| S_IRUSR|S_IWUSR); |
| if (fd != -1) { |
| int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey)); |
| close(fd); |
| wroteKey = (result == sizeof(sHmacGlobalKey)); |
| } |
| if (wroteKey) { |
| ALOGI("Generated new HMAC key."); |
| } else { |
| ALOGW("Unable to write HMAC key; dynamic sensor getId() will change " |
| "after reboot."); |
| } |
| // Even if we failed to write the key we return true, because we did |
| // initialize the HMAC key. |
| return true; |
| } |
| |
| // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load |
| void SensorService::enableSchedFifoMode() { |
| struct sched_param param = {0}; |
| param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY; |
| if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m) != 0) { |
| ALOGE("Couldn't set SCHED_FIFO for SensorService thread"); |
| } |
| } |
| |
| void SensorService::onFirstRef() { |
| ALOGD("nuSensorService starting..."); |
| SensorDevice& dev(SensorDevice::getInstance()); |
| |
| sHmacGlobalKeyIsValid = initializeHmacKey(); |
| |
| if (dev.initCheck() == NO_ERROR) { |
| sensor_t const* list; |
| ssize_t count = dev.getSensorList(&list); |
| if (count > 0) { |
| ssize_t orientationIndex = -1; |
| bool hasGyro = false, hasAccel = false, hasMag = false; |
| uint32_t virtualSensorsNeeds = |
| (1<<SENSOR_TYPE_GRAVITY) | |
| (1<<SENSOR_TYPE_LINEAR_ACCELERATION) | |
| (1<<SENSOR_TYPE_ROTATION_VECTOR) | |
| (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) | |
| (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR); |
| |
| for (ssize_t i=0 ; i<count ; i++) { |
| bool useThisSensor=true; |
| |
| switch (list[i].type) { |
| case SENSOR_TYPE_ACCELEROMETER: |
| hasAccel = true; |
| break; |
| case SENSOR_TYPE_MAGNETIC_FIELD: |
| hasMag = true; |
| break; |
| case SENSOR_TYPE_ORIENTATION: |
| orientationIndex = i; |
| break; |
| case SENSOR_TYPE_GYROSCOPE: |
| case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: |
| hasGyro = true; |
| break; |
| case SENSOR_TYPE_GRAVITY: |
| case SENSOR_TYPE_LINEAR_ACCELERATION: |
| case SENSOR_TYPE_ROTATION_VECTOR: |
| case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR: |
| case SENSOR_TYPE_GAME_ROTATION_VECTOR: |
| if (IGNORE_HARDWARE_FUSION) { |
| useThisSensor = false; |
| } else { |
| virtualSensorsNeeds &= ~(1<<list[i].type); |
| } |
| break; |
| } |
| if (useThisSensor) { |
| registerSensor( new HardwareSensor(list[i]) ); |
| } |
| } |
| |
| // it's safe to instantiate the SensorFusion object here |
| // (it wants to be instantiated after h/w sensors have been |
| // registered) |
| SensorFusion::getInstance(); |
| |
| if (hasGyro && hasAccel && hasMag) { |
| // Add Android virtual sensors if they're not already |
| // available in the HAL |
| bool needRotationVector = |
| (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0; |
| |
| registerSensor(new RotationVectorSensor(), !needRotationVector, true); |
| registerSensor(new OrientationSensor(), !needRotationVector, true); |
| |
| bool needLinearAcceleration = |
| (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0; |
| |
| registerSensor(new LinearAccelerationSensor(list, count), |
| !needLinearAcceleration, true); |
| |
| // virtual debugging sensors are not for user |
| registerSensor( new CorrectedGyroSensor(list, count), true, true); |
| registerSensor( new GyroDriftSensor(), true, true); |
| } |
| |
| if (hasAccel && hasGyro) { |
| bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0; |
| registerSensor(new GravitySensor(list, count), !needGravitySensor, true); |
| |
| bool needGameRotationVector = |
| (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0; |
| registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true); |
| } |
| |
| if (hasAccel && hasMag) { |
| bool needGeoMagRotationVector = |
| (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0; |
| registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true); |
| } |
| |
| // Check if the device really supports batching by looking at the FIFO event |
| // counts for each sensor. |
| bool batchingSupported = false; |
| mSensors.forEachSensor( |
| [&batchingSupported] (const Sensor& s) -> bool { |
| if (s.getFifoMaxEventCount() > 0) { |
| batchingSupported = true; |
| } |
| return !batchingSupported; |
| }); |
| |
| if (batchingSupported) { |
| // Increase socket buffer size to a max of 100 KB for batching capabilities. |
| mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED; |
| } else { |
| mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED; |
| } |
| |
| // Compare the socketBufferSize value against the system limits and limit |
| // it to maxSystemSocketBufferSize if necessary. |
| FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r"); |
| char line[128]; |
| if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) { |
| line[sizeof(line) - 1] = '\0'; |
| size_t maxSystemSocketBufferSize; |
| sscanf(line, "%zu", &maxSystemSocketBufferSize); |
| if (mSocketBufferSize > maxSystemSocketBufferSize) { |
| mSocketBufferSize = maxSystemSocketBufferSize; |
| } |
| } |
| if (fp) { |
| fclose(fp); |
| } |
| |
| mWakeLockAcquired = false; |
| mLooper = new Looper(false); |
| const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; |
| mSensorEventBuffer = new sensors_event_t[minBufferSize]; |
| mSensorEventScratch = new sensors_event_t[minBufferSize]; |
| mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize]; |
| mCurrentOperatingMode = NORMAL; |
| |
| mNextSensorRegIndex = 0; |
| for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) { |
| mLastNSensorRegistrations.push(); |
| } |
| |
| mInitCheck = NO_ERROR; |
| mAckReceiver = new SensorEventAckReceiver(this); |
| mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY); |
| run("SensorService", PRIORITY_URGENT_DISPLAY); |
| |
| // priority can only be changed after run |
| enableSchedFifoMode(); |
| } |
| } |
| } |
| |
| const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) { |
| int handle = s->getSensor().getHandle(); |
| int type = s->getSensor().getType(); |
| if (mSensors.add(handle, s, isDebug, isVirtual)){ |
| mRecentEvent.emplace(handle, new RecentEventLogger(type)); |
| return s->getSensor(); |
| } else { |
| return mSensors.getNonSensor(); |
| } |
| } |
| |
| const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) { |
| return registerSensor(s, isDebug); |
| } |
| |
| bool SensorService::unregisterDynamicSensorLocked(int handle) { |
| bool ret = mSensors.remove(handle); |
| |
| const auto i = mRecentEvent.find(handle); |
| if (i != mRecentEvent.end()) { |
| delete i->second; |
| mRecentEvent.erase(i); |
| } |
| return ret; |
| } |
| |
| const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) { |
| return registerSensor(s, isDebug, true); |
| } |
| |
| SensorService::~SensorService() { |
| for (auto && entry : mRecentEvent) { |
| delete entry.second; |
| } |
| } |
| |
| status_t SensorService::dump(int fd, const Vector<String16>& args) { |
| String8 result; |
| if (!PermissionCache::checkCallingPermission(sDumpPermission)) { |
| result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n", |
| IPCThreadState::self()->getCallingPid(), |
| IPCThreadState::self()->getCallingUid()); |
| } else { |
| bool privileged = IPCThreadState::self()->getCallingUid() == 0; |
| if (args.size() > 2) { |
| return INVALID_OPERATION; |
| } |
| Mutex::Autolock _l(mLock); |
| SensorDevice& dev(SensorDevice::getInstance()); |
| if (args.size() == 2 && args[0] == String16("restrict")) { |
| // If already in restricted mode. Ignore. |
| if (mCurrentOperatingMode == RESTRICTED) { |
| return status_t(NO_ERROR); |
| } |
| // If in any mode other than normal, ignore. |
| if (mCurrentOperatingMode != NORMAL) { |
| return INVALID_OPERATION; |
| } |
| |
| mCurrentOperatingMode = RESTRICTED; |
| // temporarily stop all sensor direct report |
| for (auto &i : mDirectConnections) { |
| sp<SensorDirectConnection> connection(i.promote()); |
| if (connection != nullptr) { |
| connection->stopAll(true /* backupRecord */); |
| } |
| } |
| |
| dev.disableAllSensors(); |
| // Clear all pending flush connections for all active sensors. If one of the active |
| // connections has called flush() and the underlying sensor has been disabled before a |
| // flush complete event is returned, we need to remove the connection from this queue. |
| for (size_t i=0 ; i< mActiveSensors.size(); ++i) { |
| mActiveSensors.valueAt(i)->clearAllPendingFlushConnections(); |
| } |
| mWhiteListedPackage.setTo(String8(args[1])); |
| return status_t(NO_ERROR); |
| } else if (args.size() == 1 && args[0] == String16("enable")) { |
| // If currently in restricted mode, reset back to NORMAL mode else ignore. |
| if (mCurrentOperatingMode == RESTRICTED) { |
| mCurrentOperatingMode = NORMAL; |
| dev.enableAllSensors(); |
| // recover all sensor direct report |
| for (auto &i : mDirectConnections) { |
| sp<SensorDirectConnection> connection(i.promote()); |
| if (connection != nullptr) { |
| connection->recoverAll(); |
| } |
| } |
| } |
| if (mCurrentOperatingMode == DATA_INJECTION) { |
| resetToNormalModeLocked(); |
| } |
| mWhiteListedPackage.clear(); |
| return status_t(NO_ERROR); |
| } else if (args.size() == 2 && args[0] == String16("data_injection")) { |
| if (mCurrentOperatingMode == NORMAL) { |
| dev.disableAllSensors(); |
| status_t err = dev.setMode(DATA_INJECTION); |
| if (err == NO_ERROR) { |
| mCurrentOperatingMode = DATA_INJECTION; |
| } else { |
| // Re-enable sensors. |
| dev.enableAllSensors(); |
| } |
| mWhiteListedPackage.setTo(String8(args[1])); |
| return NO_ERROR; |
| } else if (mCurrentOperatingMode == DATA_INJECTION) { |
| // Already in DATA_INJECTION mode. Treat this as a no_op. |
| return NO_ERROR; |
| } else { |
| // Transition to data injection mode supported only from NORMAL mode. |
| return INVALID_OPERATION; |
| } |
| } else if (!mSensors.hasAnySensor()) { |
| result.append("No Sensors on the device\n"); |
| } else { |
| // Default dump the sensor list and debugging information. |
| // |
| result.append("Sensor Device:\n"); |
| result.append(SensorDevice::getInstance().dump().c_str()); |
| |
| result.append("Sensor List:\n"); |
| result.append(mSensors.dump().c_str()); |
| |
| result.append("Fusion States:\n"); |
| SensorFusion::getInstance().dump(result); |
| |
| result.append("Recent Sensor events:\n"); |
| for (auto&& i : mRecentEvent) { |
| sp<SensorInterface> s = mSensors.getInterface(i.first); |
| if (!i.second->isEmpty()) { |
| if (privileged || s->getSensor().getRequiredPermission().isEmpty()) { |
| i.second->setFormat("normal"); |
| } else { |
| i.second->setFormat("mask_data"); |
| } |
| // if there is events and sensor does not need special permission. |
| result.appendFormat("%s: ", s->getSensor().getName().string()); |
| result.append(i.second->dump().c_str()); |
| } |
| } |
| |
| result.append("Active sensors:\n"); |
| for (size_t i=0 ; i<mActiveSensors.size() ; i++) { |
| int handle = mActiveSensors.keyAt(i); |
| result.appendFormat("%s (handle=0x%08x, connections=%zu)\n", |
| getSensorName(handle).string(), |
| handle, |
| mActiveSensors.valueAt(i)->getNumConnections()); |
| } |
| |
| result.appendFormat("Socket Buffer size = %zd events\n", |
| mSocketBufferSize/sizeof(sensors_event_t)); |
| result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" : |
| "not held"); |
| result.appendFormat("Mode :"); |
| switch(mCurrentOperatingMode) { |
| case NORMAL: |
| result.appendFormat(" NORMAL\n"); |
| break; |
| case RESTRICTED: |
| result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string()); |
| break; |
| case DATA_INJECTION: |
| result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string()); |
| } |
| |
| result.appendFormat("%zd active connections\n", mActiveConnections.size()); |
| for (size_t i=0 ; i < mActiveConnections.size() ; i++) { |
| sp<SensorEventConnection> connection(mActiveConnections[i].promote()); |
| if (connection != 0) { |
| result.appendFormat("Connection Number: %zu \n", i); |
| connection->dump(result); |
| } |
| } |
| |
| result.appendFormat("%zd direct connections\n", mDirectConnections.size()); |
| for (size_t i = 0 ; i < mDirectConnections.size() ; i++) { |
| sp<SensorDirectConnection> connection(mDirectConnections[i].promote()); |
| if (connection != nullptr) { |
| result.appendFormat("Direct connection %zu:\n", i); |
| connection->dump(result); |
| } |
| } |
| |
| result.appendFormat("Previous Registrations:\n"); |
| // Log in the reverse chronological order. |
| int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % |
| SENSOR_REGISTRATIONS_BUF_SIZE; |
| const int startIndex = currentIndex; |
| do { |
| const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex]; |
| if (SensorRegistrationInfo::isSentinel(reg_info)) { |
| // Ignore sentinel, proceed to next item. |
| currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % |
| SENSOR_REGISTRATIONS_BUF_SIZE; |
| continue; |
| } |
| result.appendFormat("%s\n", reg_info.dump().c_str()); |
| currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % |
| SENSOR_REGISTRATIONS_BUF_SIZE; |
| } while(startIndex != currentIndex); |
| } |
| } |
| write(fd, result.string(), result.size()); |
| return NO_ERROR; |
| } |
| |
| //TODO: move to SensorEventConnection later |
| void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection, |
| sensors_event_t const* buffer, const int count) { |
| for (int i=0 ; i<count ; i++) { |
| int handle = buffer[i].sensor; |
| if (buffer[i].type == SENSOR_TYPE_META_DATA) { |
| handle = buffer[i].meta_data.sensor; |
| } |
| if (connection->hasSensor(handle)) { |
| sp<SensorInterface> si = getSensorInterfaceFromHandle(handle); |
| // If this buffer has an event from a one_shot sensor and this connection is registered |
| // for this particular one_shot sensor, try cleaning up the connection. |
| if (si != nullptr && |
| si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { |
| si->autoDisable(connection.get(), handle); |
| cleanupWithoutDisableLocked(connection, handle); |
| } |
| |
| } |
| } |
| } |
| |
| bool SensorService::threadLoop() { |
| ALOGD("nuSensorService thread starting..."); |
| |
| // each virtual sensor could generate an event per "real" event, that's why we need to size |
| // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. in practice, this is too |
| // aggressive, but guaranteed to be enough. |
| const size_t vcount = mSensors.getVirtualSensors().size(); |
| const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; |
| const size_t numEventMax = minBufferSize / (1 + vcount); |
| |
| SensorDevice& device(SensorDevice::getInstance()); |
| |
| const int halVersion = device.getHalDeviceVersion(); |
| do { |
| ssize_t count = device.poll(mSensorEventBuffer, numEventMax); |
| if (count < 0) { |
| ALOGE("sensor poll failed (%s)", strerror(-count)); |
| break; |
| } |
| |
| // Reset sensors_event_t.flags to zero for all events in the buffer. |
| for (int i = 0; i < count; i++) { |
| mSensorEventBuffer[i].flags = 0; |
| } |
| |
| // Make a copy of the connection vector as some connections may be removed during the course |
| // of this loop (especially when one-shot sensor events are present in the sensor_event |
| // buffer). Promote all connections to StrongPointers before the lock is acquired. If the |
| // destructor of the sp gets called when the lock is acquired, it may result in a deadlock |
| // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the |
| // strongPointers to a vector before the lock is acquired. |
| SortedVector< sp<SensorEventConnection> > activeConnections; |
| populateActiveConnections(&activeConnections); |
| |
| Mutex::Autolock _l(mLock); |
| // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The |
| // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock, |
| // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should |
| // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and |
| // releasing the wakelock. |
| bool bufferHasWakeUpEvent = false; |
| for (int i = 0; i < count; i++) { |
| if (isWakeUpSensorEvent(mSensorEventBuffer[i])) { |
| bufferHasWakeUpEvent = true; |
| break; |
| } |
| } |
| |
| if (bufferHasWakeUpEvent && !mWakeLockAcquired) { |
| setWakeLockAcquiredLocked(true); |
| } |
| recordLastValueLocked(mSensorEventBuffer, count); |
| |
| // handle virtual sensors |
| if (count && vcount) { |
| sensors_event_t const * const event = mSensorEventBuffer; |
| if (!mActiveVirtualSensors.empty()) { |
| size_t k = 0; |
| SensorFusion& fusion(SensorFusion::getInstance()); |
| if (fusion.isEnabled()) { |
| for (size_t i=0 ; i<size_t(count) ; i++) { |
| fusion.process(event[i]); |
| } |
| } |
| for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) { |
| for (int handle : mActiveVirtualSensors) { |
| if (count + k >= minBufferSize) { |
| ALOGE("buffer too small to hold all events: " |
| "count=%zd, k=%zu, size=%zu", |
| count, k, minBufferSize); |
| break; |
| } |
| sensors_event_t out; |
| sp<SensorInterface> si = mSensors.getInterface(handle); |
| if (si == nullptr) { |
| ALOGE("handle %d is not an valid virtual sensor", handle); |
| continue; |
| } |
| |
| if (si->process(&out, event[i])) { |
| mSensorEventBuffer[count + k] = out; |
| k++; |
| } |
| } |
| } |
| if (k) { |
| // record the last synthesized values |
| recordLastValueLocked(&mSensorEventBuffer[count], k); |
| count += k; |
| // sort the buffer by time-stamps |
| sortEventBuffer(mSensorEventBuffer, count); |
| } |
| } |
| } |
| |
| // handle backward compatibility for RotationVector sensor |
| if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) { |
| for (int i = 0; i < count; i++) { |
| if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) { |
| // All the 4 components of the quaternion should be available |
| // No heading accuracy. Set it to -1 |
| mSensorEventBuffer[i].data[4] = -1; |
| } |
| } |
| } |
| |
| for (int i = 0; i < count; ++i) { |
| // Map flush_complete_events in the buffer to SensorEventConnections which called flush |
| // on the hardware sensor. mapFlushEventsToConnections[i] will be the |
| // SensorEventConnection mapped to the corresponding flush_complete_event in |
| // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise). |
| mMapFlushEventsToConnections[i] = NULL; |
| if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) { |
| const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor; |
| SensorRecord* rec = mActiveSensors.valueFor(sensor_handle); |
| if (rec != NULL) { |
| mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection(); |
| rec->removeFirstPendingFlushConnection(); |
| } |
| } |
| |
| // handle dynamic sensor meta events, process registration and unregistration of dynamic |
| // sensor based on content of event. |
| if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) { |
| if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) { |
| int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle; |
| const sensor_t& dynamicSensor = |
| *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor); |
| ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s", |
| handle, dynamicSensor.type, dynamicSensor.name); |
| |
| if (mSensors.isNewHandle(handle)) { |
| const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid; |
| sensor_t s = dynamicSensor; |
| // make sure the dynamic sensor flag is set |
| s.flags |= DYNAMIC_SENSOR_MASK; |
| // force the handle to be consistent |
| s.handle = handle; |
| |
| SensorInterface *si = new HardwareSensor(s, uuid); |
| |
| // This will release hold on dynamic sensor meta, so it should be called |
| // after Sensor object is created. |
| device.handleDynamicSensorConnection(handle, true /*connected*/); |
| registerDynamicSensorLocked(si); |
| } else { |
| ALOGE("Handle %d has been used, cannot use again before reboot.", handle); |
| } |
| } else { |
| int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle; |
| ALOGI("Dynamic sensor handle 0x%x disconnected", handle); |
| |
| device.handleDynamicSensorConnection(handle, false /*connected*/); |
| if (!unregisterDynamicSensorLocked(handle)) { |
| ALOGE("Dynamic sensor release error."); |
| } |
| |
| size_t numConnections = activeConnections.size(); |
| for (size_t i=0 ; i < numConnections; ++i) { |
| if (activeConnections[i] != NULL) { |
| activeConnections[i]->removeSensor(handle); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Send our events to clients. Check the state of wake lock for each client and release the |
| // lock if none of the clients need it. |
| bool needsWakeLock = false; |
| size_t numConnections = activeConnections.size(); |
| for (size_t i=0 ; i < numConnections; ++i) { |
| if (activeConnections[i] != 0) { |
| activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch, |
| mMapFlushEventsToConnections); |
| needsWakeLock |= activeConnections[i]->needsWakeLock(); |
| // If the connection has one-shot sensors, it may be cleaned up after first trigger. |
| // Early check for one-shot sensors. |
| if (activeConnections[i]->hasOneShotSensors()) { |
| cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer, |
| count); |
| } |
| } |
| } |
| |
| if (mWakeLockAcquired && !needsWakeLock) { |
| setWakeLockAcquiredLocked(false); |
| } |
| } while (!Thread::exitPending()); |
| |
| ALOGW("Exiting SensorService::threadLoop => aborting..."); |
| abort(); |
| return false; |
| } |
| |
| sp<Looper> SensorService::getLooper() const { |
| return mLooper; |
| } |
| |
| void SensorService::resetAllWakeLockRefCounts() { |
| SortedVector< sp<SensorEventConnection> > activeConnections; |
| populateActiveConnections(&activeConnections); |
| { |
| Mutex::Autolock _l(mLock); |
| for (size_t i=0 ; i < activeConnections.size(); ++i) { |
| if (activeConnections[i] != 0) { |
| activeConnections[i]->resetWakeLockRefCount(); |
| } |
| } |
| setWakeLockAcquiredLocked(false); |
| } |
| } |
| |
| void SensorService::setWakeLockAcquiredLocked(bool acquire) { |
| if (acquire) { |
| if (!mWakeLockAcquired) { |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME); |
| mWakeLockAcquired = true; |
| } |
| mLooper->wake(); |
| } else { |
| if (mWakeLockAcquired) { |
| release_wake_lock(WAKE_LOCK_NAME); |
| mWakeLockAcquired = false; |
| } |
| } |
| } |
| |
| bool SensorService::isWakeLockAcquired() { |
| Mutex::Autolock _l(mLock); |
| return mWakeLockAcquired; |
| } |
| |
| bool SensorService::SensorEventAckReceiver::threadLoop() { |
| ALOGD("new thread SensorEventAckReceiver"); |
| sp<Looper> looper = mService->getLooper(); |
| do { |
| bool wakeLockAcquired = mService->isWakeLockAcquired(); |
| int timeout = -1; |
| if (wakeLockAcquired) timeout = 5000; |
| int ret = looper->pollOnce(timeout); |
| if (ret == ALOOPER_POLL_TIMEOUT) { |
| mService->resetAllWakeLockRefCounts(); |
| } |
| } while(!Thread::exitPending()); |
| return false; |
| } |
| |
| void SensorService::recordLastValueLocked( |
| const sensors_event_t* buffer, size_t count) { |
| for (size_t i = 0; i < count; i++) { |
| if (buffer[i].type == SENSOR_TYPE_META_DATA || |
| buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META || |
| buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) { |
| continue; |
| } |
| |
| auto logger = mRecentEvent.find(buffer[i].sensor); |
| if (logger != mRecentEvent.end()) { |
| logger->second->addEvent(buffer[i]); |
| } |
| } |
| } |
| |
| void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) { |
| struct compar { |
| static int cmp(void const* lhs, void const* rhs) { |
| sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs); |
| sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs); |
| return l->timestamp - r->timestamp; |
| } |
| }; |
| qsort(buffer, count, sizeof(sensors_event_t), compar::cmp); |
| } |
| |
| String8 SensorService::getSensorName(int handle) const { |
| return mSensors.getName(handle); |
| } |
| |
| bool SensorService::isVirtualSensor(int handle) const { |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| return sensor != nullptr && sensor->isVirtual(); |
| } |
| |
| bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const { |
| int handle = event.sensor; |
| if (event.type == SENSOR_TYPE_META_DATA) { |
| handle = event.meta_data.sensor; |
| } |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| return sensor != nullptr && sensor->getSensor().isWakeUpSensor(); |
| } |
| |
| int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const { |
| if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) { |
| // UUID is not supported for this device. |
| return 0; |
| } |
| if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) { |
| // This sensor can be uniquely identified in the system by |
| // the combination of its type and name. |
| return -1; |
| } |
| |
| // We have a dynamic sensor. |
| |
| if (!sHmacGlobalKeyIsValid) { |
| // Rather than risk exposing UUIDs, we cripple dynamic sensors. |
| ALOGW("HMAC key failure; dynamic sensor getId() will be wrong."); |
| return 0; |
| } |
| |
| // We want each app author/publisher to get a different ID, so that the |
| // same dynamic sensor cannot be tracked across apps by multiple |
| // authors/publishers. So we use both our UUID and our User ID. |
| // Note potential confusion: |
| // UUID => Universally Unique Identifier. |
| // UID => User Identifier. |
| // We refrain from using "uid" except as needed by API to try to |
| // keep this distinction clear. |
| |
| auto appUserId = IPCThreadState::self()->getCallingUid(); |
| uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)]; |
| memcpy(uuidAndApp, &uuid, sizeof(uuid)); |
| memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId)); |
| |
| // Now we use our key on our UUID/app combo to get the hash. |
| uint8_t hash[EVP_MAX_MD_SIZE]; |
| unsigned int hashLen; |
| if (HMAC(EVP_sha256(), |
| sHmacGlobalKey, sizeof(sHmacGlobalKey), |
| uuidAndApp, sizeof(uuidAndApp), |
| hash, &hashLen) == nullptr) { |
| // Rather than risk exposing UUIDs, we cripple dynamic sensors. |
| ALOGW("HMAC failure; dynamic sensor getId() will be wrong."); |
| return 0; |
| } |
| |
| int32_t id = 0; |
| if (hashLen < sizeof(id)) { |
| // We never expect this case, but out of paranoia, we handle it. |
| // Our 'id' length is already quite small, we don't want the |
| // effective length of it to be even smaller. |
| // Rather than risk exposing UUIDs, we cripple dynamic sensors. |
| ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong."); |
| return 0; |
| } |
| |
| // This is almost certainly less than all of 'hash', but it's as secure |
| // as we can be with our current 'id' length. |
| memcpy(&id, hash, sizeof(id)); |
| |
| // Note at the beginning of the function that we return the values of |
| // 0 and -1 to represent special cases. As a result, we can't return |
| // those as dynamic sensor IDs. If we happened to hash to one of those |
| // values, we change 'id' so we report as a dynamic sensor, and not as |
| // one of those special cases. |
| if (id == -1) { |
| id = -2; |
| } else if (id == 0) { |
| id = 1; |
| } |
| return id; |
| } |
| |
| void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const { |
| for (auto &sensor : sensorList) { |
| int32_t id = getIdFromUuid(sensor.getUuid()); |
| sensor.setId(id); |
| } |
| } |
| |
| Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) { |
| char value[PROPERTY_VALUE_MAX]; |
| property_get("debug.sensors", value, "0"); |
| const Vector<Sensor>& initialSensorList = (atoi(value)) ? |
| mSensors.getUserDebugSensors() : mSensors.getUserSensors(); |
| Vector<Sensor> accessibleSensorList; |
| for (size_t i = 0; i < initialSensorList.size(); i++) { |
| Sensor sensor = initialSensorList[i]; |
| accessibleSensorList.add(sensor); |
| } |
| makeUuidsIntoIdsForSensorList(accessibleSensorList); |
| return accessibleSensorList; |
| } |
| |
| Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) { |
| Vector<Sensor> accessibleSensorList; |
| mSensors.forEachSensor( |
| [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool { |
| if (sensor.isDynamicSensor()) { |
| if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) { |
| accessibleSensorList.add(sensor); |
| } else { |
| ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32, |
| sensor.getName().string(), |
| sensor.getRequiredPermission().string(), |
| sensor.getRequiredAppOp()); |
| } |
| } |
| return true; |
| }); |
| makeUuidsIntoIdsForSensorList(accessibleSensorList); |
| return accessibleSensorList; |
| } |
| |
| sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName, |
| int requestedMode, const String16& opPackageName) { |
| // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION. |
| if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) { |
| return NULL; |
| } |
| |
| Mutex::Autolock _l(mLock); |
| // To create a client in DATA_INJECTION mode to inject data, SensorService should already be |
| // operating in DI mode. |
| if (requestedMode == DATA_INJECTION) { |
| if (mCurrentOperatingMode != DATA_INJECTION) return NULL; |
| if (!isWhiteListedPackage(packageName)) return NULL; |
| } |
| |
| uid_t uid = IPCThreadState::self()->getCallingUid(); |
| sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName, |
| requestedMode == DATA_INJECTION, opPackageName)); |
| if (requestedMode == DATA_INJECTION) { |
| if (mActiveConnections.indexOf(result) < 0) { |
| mActiveConnections.add(result); |
| } |
| // Add the associated file descriptor to the Looper for polling whenever there is data to |
| // be injected. |
| result->updateLooperRegistration(mLooper); |
| } |
| return result; |
| } |
| |
| int SensorService::isDataInjectionEnabled() { |
| Mutex::Autolock _l(mLock); |
| return (mCurrentOperatingMode == DATA_INJECTION); |
| } |
| |
| sp<ISensorEventConnection> SensorService::createSensorDirectConnection( |
| const String16& opPackageName, uint32_t size, int32_t type, int32_t format, |
| const native_handle *resource) { |
| Mutex::Autolock _l(mLock); |
| |
| struct sensors_direct_mem_t mem = { |
| .type = type, |
| .format = format, |
| .size = size, |
| .handle = resource, |
| }; |
| uid_t uid = IPCThreadState::self()->getCallingUid(); |
| |
| if (mem.handle == nullptr) { |
| ALOGE("Failed to clone resource handle"); |
| return nullptr; |
| } |
| |
| // check format |
| if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) { |
| ALOGE("Direct channel format %d is unsupported!", format); |
| return nullptr; |
| } |
| |
| // check for duplication |
| for (auto &i : mDirectConnections) { |
| sp<SensorDirectConnection> connection(i.promote()); |
| if (connection != nullptr && connection->isEquivalent(&mem)) { |
| ALOGE("Duplicate create channel request for the same share memory"); |
| return nullptr; |
| } |
| } |
| |
| // check specific to memory type |
| switch(type) { |
| case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem |
| int fd = resource->data[0]; |
| int size2 = ashmem_get_size_region(fd); |
| // check size consistency |
| if (size2 < static_cast<int>(size)) { |
| ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d", |
| size, size2); |
| return nullptr; |
| } |
| break; |
| } |
| case SENSOR_DIRECT_MEM_TYPE_GRALLOC: |
| // no specific checks for gralloc |
| break; |
| default: |
| ALOGE("Unknown direct connection memory type %d", type); |
| return nullptr; |
| } |
| |
| native_handle_t *clone = native_handle_clone(resource); |
| if (!clone) { |
| return nullptr; |
| } |
| |
| SensorDirectConnection* conn = nullptr; |
| SensorDevice& dev(SensorDevice::getInstance()); |
| int channelHandle = dev.registerDirectChannel(&mem); |
| |
| if (channelHandle <= 0) { |
| ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle); |
| } else { |
| mem.handle = clone; |
| conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName); |
| } |
| |
| if (conn == nullptr) { |
| native_handle_close(clone); |
| native_handle_delete(clone); |
| } else { |
| // add to list of direct connections |
| // sensor service should never hold pointer or sp of SensorDirectConnection object. |
| mDirectConnections.add(wp<SensorDirectConnection>(conn)); |
| } |
| return conn; |
| } |
| |
| int SensorService::setOperationParameter( |
| int32_t type, const Vector<float> &floats, const Vector<int32_t> &ints) { |
| Mutex::Autolock _l(mLock); |
| |
| // check permission |
| int32_t uid; |
| bool hasPermission = checkCallingPermission(sLocationHardwarePermission, nullptr, &uid); |
| if (!hasPermission || (uid != 1000 && uid != 0)) { |
| return PERMISSION_DENIED; |
| } |
| |
| bool isFloat = true; |
| size_t expectSize = INT32_MAX; |
| switch (type) { |
| case AINFO_LOCAL_GEOMAGNETIC_FIELD: |
| isFloat = true; |
| expectSize = 3; |
| break; |
| case AINFO_LOCAL_GRAVITY: |
| isFloat = true; |
| expectSize = 1; |
| break; |
| case AINFO_DOCK_STATE: |
| case AINFO_HIGH_PERFORMANCE_MODE: |
| case AINFO_MAGNETIC_FIELD_CALIBRATION: |
| isFloat = false; |
| expectSize = 1; |
| break; |
| default: |
| return BAD_VALUE; |
| } |
| |
| // three events: first one is begin tag, last one is end tag, the one in the middle |
| // is the payload. |
| sensors_event_t event[3]; |
| int64_t timestamp = elapsedRealtimeNano(); |
| for (sensors_event_t* i = event; i < event + 3; i++) { |
| *i = (sensors_event_t) { |
| .version = sizeof(sensors_event_t), |
| .sensor = SENSORS_HANDLE_BASE - 1, // sensor that never exists |
| .type = SENSOR_TYPE_ADDITIONAL_INFO, |
| .timestamp = timestamp++, |
| .additional_info = (additional_info_event_t) { |
| .serial = 0 |
| } |
| }; |
| } |
| |
| event[0].additional_info.type = AINFO_BEGIN; |
| event[1].additional_info.type = type; |
| event[2].additional_info.type = AINFO_END; |
| |
| if (isFloat) { |
| if (floats.size() != expectSize) { |
| return BAD_VALUE; |
| } |
| for (size_t i = 0; i < expectSize; ++i) { |
| event[1].additional_info.data_float[i] = floats[i]; |
| } |
| } else { |
| if (ints.size() != expectSize) { |
| return BAD_VALUE; |
| } |
| for (size_t i = 0; i < expectSize; ++i) { |
| event[1].additional_info.data_int32[i] = ints[i]; |
| } |
| } |
| |
| SensorDevice& dev(SensorDevice::getInstance()); |
| for (sensors_event_t* i = event; i < event + 3; i++) { |
| int ret = dev.injectSensorData(i); |
| if (ret != NO_ERROR) { |
| return ret; |
| } |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SensorService::resetToNormalMode() { |
| Mutex::Autolock _l(mLock); |
| return resetToNormalModeLocked(); |
| } |
| |
| status_t SensorService::resetToNormalModeLocked() { |
| SensorDevice& dev(SensorDevice::getInstance()); |
| status_t err = dev.setMode(NORMAL); |
| if (err == NO_ERROR) { |
| mCurrentOperatingMode = NORMAL; |
| dev.enableAllSensors(); |
| } |
| return err; |
| } |
| |
| void SensorService::cleanupConnection(SensorEventConnection* c) { |
| Mutex::Autolock _l(mLock); |
| const wp<SensorEventConnection> connection(c); |
| size_t size = mActiveSensors.size(); |
| ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size); |
| for (size_t i=0 ; i<size ; ) { |
| int handle = mActiveSensors.keyAt(i); |
| if (c->hasSensor(handle)) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle); |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| if (sensor != nullptr) { |
| sensor->activate(c, false); |
| } else { |
| ALOGE("sensor interface of handle=0x%08x is null!", handle); |
| } |
| c->removeSensor(handle); |
| } |
| SensorRecord* rec = mActiveSensors.valueAt(i); |
| ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle); |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "removing connection %p for sensor[%zu].handle=0x%08x", |
| c, i, handle); |
| |
| if (rec && rec->removeConnection(connection)) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection"); |
| mActiveSensors.removeItemsAt(i, 1); |
| mActiveVirtualSensors.erase(handle); |
| delete rec; |
| size--; |
| } else { |
| i++; |
| } |
| } |
| c->updateLooperRegistration(mLooper); |
| mActiveConnections.remove(connection); |
| BatteryService::cleanup(c->getUid()); |
| if (c->needsWakeLock()) { |
| checkWakeLockStateLocked(); |
| } |
| |
| SensorDevice& dev(SensorDevice::getInstance()); |
| dev.notifyConnectionDestroyed(c); |
| } |
| |
| void SensorService::cleanupConnection(SensorDirectConnection* c) { |
| Mutex::Autolock _l(mLock); |
| |
| SensorDevice& dev(SensorDevice::getInstance()); |
| dev.unregisterDirectChannel(c->getHalChannelHandle()); |
| mDirectConnections.remove(c); |
| } |
| |
| sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const { |
| return mSensors.getInterface(handle); |
| } |
| |
| status_t SensorService::enable(const sp<SensorEventConnection>& connection, |
| int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags, |
| const String16& opPackageName) { |
| if (mInitCheck != NO_ERROR) |
| return mInitCheck; |
| |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| if (sensor == nullptr || |
| !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) { |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock _l(mLock); |
| if (mCurrentOperatingMode != NORMAL |
| && !isWhiteListedPackage(connection->getPackageName())) { |
| return INVALID_OPERATION; |
| } |
| |
| SensorRecord* rec = mActiveSensors.valueFor(handle); |
| if (rec == 0) { |
| rec = new SensorRecord(connection); |
| mActiveSensors.add(handle, rec); |
| if (sensor->isVirtual()) { |
| mActiveVirtualSensors.emplace(handle); |
| } |
| } else { |
| if (rec->addConnection(connection)) { |
| // this sensor is already activated, but we are adding a connection that uses it. |
| // Immediately send down the last known value of the requested sensor if it's not a |
| // "continuous" sensor. |
| if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) { |
| // NOTE: The wake_up flag of this event may get set to |
| // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event. |
| |
| auto logger = mRecentEvent.find(handle); |
| if (logger != mRecentEvent.end()) { |
| sensors_event_t event; |
| // It is unlikely that this buffer is empty as the sensor is already active. |
| // One possible corner case may be two applications activating an on-change |
| // sensor at the same time. |
| if(logger->second->populateLastEvent(&event)) { |
| event.sensor = handle; |
| if (event.version == sizeof(sensors_event_t)) { |
| if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) { |
| setWakeLockAcquiredLocked(true); |
| } |
| connection->sendEvents(&event, 1, NULL); |
| if (!connection->needsWakeLock() && mWakeLockAcquired) { |
| checkWakeLockStateLocked(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (connection->addSensor(handle)) { |
| BatteryService::enableSensor(connection->getUid(), handle); |
| // the sensor was added (which means it wasn't already there) |
| // so, see if this connection becomes active |
| if (mActiveConnections.indexOf(connection) < 0) { |
| mActiveConnections.add(connection); |
| } |
| } else { |
| ALOGW("sensor %08x already enabled in connection %p (ignoring)", |
| handle, connection.get()); |
| } |
| |
| // Check maximum delay for the sensor. |
| nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL; |
| if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) { |
| samplingPeriodNs = maxDelayNs; |
| } |
| |
| nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); |
| if (samplingPeriodNs < minDelayNs) { |
| samplingPeriodNs = minDelayNs; |
| } |
| |
| ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d" |
| "rate=%" PRId64 " timeout== %" PRId64"", |
| handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); |
| |
| status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs, |
| maxBatchReportLatencyNs); |
| |
| // Call flush() before calling activate() on the sensor. Wait for a first |
| // flush complete event before sending events on this connection. Ignore |
| // one-shot sensors which don't support flush(). Ignore on-change sensors |
| // to maintain the on-change logic (any on-change events except the initial |
| // one should be trigger by a change in value). Also if this sensor isn't |
| // already active, don't call flush(). |
| if (err == NO_ERROR && |
| sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS && |
| rec->getNumConnections() > 1) { |
| connection->setFirstFlushPending(handle, true); |
| status_t err_flush = sensor->flush(connection.get(), handle); |
| // Flush may return error if the underlying h/w sensor uses an older HAL. |
| if (err_flush == NO_ERROR) { |
| rec->addPendingFlushConnection(connection.get()); |
| } else { |
| connection->setFirstFlushPending(handle, false); |
| } |
| } |
| |
| if (err == NO_ERROR) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle); |
| err = sensor->activate(connection.get(), true); |
| } |
| |
| if (err == NO_ERROR) { |
| connection->updateLooperRegistration(mLooper); |
| |
| mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) = |
| SensorRegistrationInfo(handle, connection->getPackageName(), |
| samplingPeriodNs, maxBatchReportLatencyNs, true); |
| mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE; |
| } |
| |
| if (err != NO_ERROR) { |
| // batch/activate has failed, reset our state. |
| cleanupWithoutDisableLocked(connection, handle); |
| } |
| return err; |
| } |
| |
| status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) { |
| if (mInitCheck != NO_ERROR) |
| return mInitCheck; |
| |
| Mutex::Autolock _l(mLock); |
| status_t err = cleanupWithoutDisableLocked(connection, handle); |
| if (err == NO_ERROR) { |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE); |
| |
| } |
| if (err == NO_ERROR) { |
| mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) = |
| SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false); |
| mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE; |
| } |
| return err; |
| } |
| |
| status_t SensorService::cleanupWithoutDisable( |
| const sp<SensorEventConnection>& connection, int handle) { |
| Mutex::Autolock _l(mLock); |
| return cleanupWithoutDisableLocked(connection, handle); |
| } |
| |
| status_t SensorService::cleanupWithoutDisableLocked( |
| const sp<SensorEventConnection>& connection, int handle) { |
| SensorRecord* rec = mActiveSensors.valueFor(handle); |
| if (rec) { |
| // see if this connection becomes inactive |
| if (connection->removeSensor(handle)) { |
| BatteryService::disableSensor(connection->getUid(), handle); |
| } |
| if (connection->hasAnySensor() == false) { |
| connection->updateLooperRegistration(mLooper); |
| mActiveConnections.remove(connection); |
| } |
| // see if this sensor becomes inactive |
| if (rec->removeConnection(connection)) { |
| mActiveSensors.removeItem(handle); |
| mActiveVirtualSensors.erase(handle); |
| delete rec; |
| } |
| return NO_ERROR; |
| } |
| return BAD_VALUE; |
| } |
| |
| status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection, |
| int handle, nsecs_t ns, const String16& opPackageName) { |
| if (mInitCheck != NO_ERROR) |
| return mInitCheck; |
| |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| if (sensor == nullptr || |
| !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) { |
| return BAD_VALUE; |
| } |
| |
| if (ns < 0) |
| return BAD_VALUE; |
| |
| nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); |
| if (ns < minDelayNs) { |
| ns = minDelayNs; |
| } |
| |
| return sensor->setDelay(connection.get(), handle, ns); |
| } |
| |
| status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection, |
| const String16& opPackageName) { |
| if (mInitCheck != NO_ERROR) return mInitCheck; |
| SensorDevice& dev(SensorDevice::getInstance()); |
| const int halVersion = dev.getHalDeviceVersion(); |
| status_t err(NO_ERROR); |
| Mutex::Autolock _l(mLock); |
| // Loop through all sensors for this connection and call flush on each of them. |
| for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) { |
| const int handle = connection->mSensorInfo.keyAt(i); |
| sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle); |
| if (sensor == nullptr) { |
| continue; |
| } |
| if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { |
| ALOGE("flush called on a one-shot sensor"); |
| err = INVALID_OPERATION; |
| continue; |
| } |
| if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) { |
| // For older devices just increment pending flush count which will send a trivial |
| // flush complete event. |
| connection->incrementPendingFlushCount(handle); |
| } else { |
| if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) { |
| err = INVALID_OPERATION; |
| continue; |
| } |
| status_t err_flush = sensor->flush(connection.get(), handle); |
| if (err_flush == NO_ERROR) { |
| SensorRecord* rec = mActiveSensors.valueFor(handle); |
| if (rec != NULL) rec->addPendingFlushConnection(connection); |
| } |
| err = (err_flush != NO_ERROR) ? err_flush : err; |
| } |
| } |
| return err; |
| } |
| |
| bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation, |
| const String16& opPackageName) { |
| const String8& requiredPermission = sensor.getRequiredPermission(); |
| |
| if (requiredPermission.length() <= 0) { |
| return true; |
| } |
| |
| bool hasPermission = false; |
| |
| // Runtime permissions can't use the cache as they may change. |
| if (sensor.isRequiredPermissionRuntime()) { |
| hasPermission = checkPermission(String16(requiredPermission), |
| IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); |
| } else { |
| hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission)); |
| } |
| |
| if (!hasPermission) { |
| ALOGE("%s a sensor (%s) without holding its required permission: %s", |
| operation, sensor.getName().string(), sensor.getRequiredPermission().string()); |
| return false; |
| } |
| |
| const int32_t opCode = sensor.getRequiredAppOp(); |
| if (opCode >= 0) { |
| AppOpsManager appOps; |
| if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName) |
| != AppOpsManager::MODE_ALLOWED) { |
| ALOGE("%s a sensor (%s) without enabled required app op: %d", |
| operation, sensor.getName().string(), opCode); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void SensorService::checkWakeLockState() { |
| Mutex::Autolock _l(mLock); |
| checkWakeLockStateLocked(); |
| } |
| |
| void SensorService::checkWakeLockStateLocked() { |
| if (!mWakeLockAcquired) { |
| return; |
| } |
| bool releaseLock = true; |
| for (size_t i=0 ; i<mActiveConnections.size() ; i++) { |
| sp<SensorEventConnection> connection(mActiveConnections[i].promote()); |
| if (connection != 0) { |
| if (connection->needsWakeLock()) { |
| releaseLock = false; |
| break; |
| } |
| } |
| } |
| if (releaseLock) { |
| setWakeLockAcquiredLocked(false); |
| } |
| } |
| |
| void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) { |
| Mutex::Autolock _l(mLock); |
| connection->writeToSocketFromCache(); |
| if (connection->needsWakeLock()) { |
| setWakeLockAcquiredLocked(true); |
| } |
| } |
| |
| void SensorService::populateActiveConnections( |
| SortedVector< sp<SensorEventConnection> >* activeConnections) { |
| Mutex::Autolock _l(mLock); |
| for (size_t i=0 ; i < mActiveConnections.size(); ++i) { |
| sp<SensorEventConnection> connection(mActiveConnections[i].promote()); |
| if (connection != 0) { |
| activeConnections->add(connection); |
| } |
| } |
| } |
| |
| bool SensorService::isWhiteListedPackage(const String8& packageName) { |
| return (packageName.contains(mWhiteListedPackage.string())); |
| } |
| |
| bool SensorService::isOperationRestricted(const String16& opPackageName) { |
| Mutex::Autolock _l(mLock); |
| if (mCurrentOperatingMode != RESTRICTED) { |
| String8 package(opPackageName); |
| return !isWhiteListedPackage(package); |
| } |
| return false; |
| } |
| |
| }; // namespace android |