blob: be49ef33f2edaa7a2a17afa2924e4472a506a7d9 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Scheduler/TimeKeeper.h"
#include "Scheduler/Timer.h"
#include "Scheduler/VSyncDispatchTimerQueue.h"
#include "Scheduler/VSyncTracker.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <thread>
using namespace testing;
using namespace std::literals;
namespace android::scheduler {
template <typename Rep, typename Per>
constexpr nsecs_t toNs(std::chrono::duration<Rep, Per> const& tp) {
return std::chrono::duration_cast<std::chrono::nanoseconds>(tp).count();
}
class FixedRateIdealStubTracker : public VSyncTracker {
public:
FixedRateIdealStubTracker() : mPeriod{toNs(3ms)} {}
bool addVsyncTimestamp(nsecs_t) final { return true; }
nsecs_t nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const final {
auto const floor = timePoint % mPeriod;
if (floor == 0) {
return timePoint;
}
return timePoint - floor + mPeriod;
}
nsecs_t currentPeriod() const final { return mPeriod; }
void setPeriod(nsecs_t) final {}
void resetModel() final {}
void dump(std::string&) const final {}
private:
nsecs_t const mPeriod;
};
class VRRStubTracker : public VSyncTracker {
public:
VRRStubTracker(nsecs_t period) : mPeriod{period} {}
bool addVsyncTimestamp(nsecs_t) final { return true; }
nsecs_t nextAnticipatedVSyncTimeFrom(nsecs_t time_point) const final {
std::lock_guard<decltype(mMutex)> lk(mMutex);
auto const normalized_to_base = time_point - mBase;
auto const floor = (normalized_to_base) % mPeriod;
if (floor == 0) {
return time_point;
}
return normalized_to_base - floor + mPeriod + mBase;
}
void set_interval(nsecs_t interval, nsecs_t last_known) {
std::lock_guard<decltype(mMutex)> lk(mMutex);
mPeriod = interval;
mBase = last_known;
}
nsecs_t currentPeriod() const final {
std::lock_guard<decltype(mMutex)> lk(mMutex);
return mPeriod;
}
void setPeriod(nsecs_t) final {}
void resetModel() final {}
void dump(std::string&) const final {}
private:
std::mutex mutable mMutex;
nsecs_t mPeriod;
nsecs_t mBase = 0;
};
struct VSyncDispatchRealtimeTest : testing::Test {
static nsecs_t constexpr mDispatchGroupThreshold = toNs(100us);
static nsecs_t constexpr mVsyncMoveThreshold = toNs(500us);
static size_t constexpr mIterations = 20;
};
class RepeatingCallbackReceiver {
public:
RepeatingCallbackReceiver(VSyncDispatch& dispatch, nsecs_t wl)
: mWorkload(wl),
mCallback(
dispatch, [&](auto time, auto) { callback_called(time); }, "repeat0") {}
void repeatedly_schedule(size_t iterations, std::function<void(nsecs_t)> const& onEachFrame) {
mCallbackTimes.reserve(iterations);
mCallback.schedule(mWorkload, systemTime(SYSTEM_TIME_MONOTONIC) + mWorkload);
for (auto i = 0u; i < iterations - 1; i++) {
std::unique_lock<decltype(mMutex)> lk(mMutex);
mCv.wait(lk, [&] { return mCalled; });
mCalled = false;
auto last = mLastTarget;
lk.unlock();
onEachFrame(last);
mCallback.schedule(mWorkload, last + mWorkload);
}
// wait for the last callback.
std::unique_lock<decltype(mMutex)> lk(mMutex);
mCv.wait(lk, [&] { return mCalled; });
}
void with_callback_times(std::function<void(std::vector<nsecs_t> const&)> const& fn) const {
fn(mCallbackTimes);
}
private:
void callback_called(nsecs_t time) {
std::lock_guard<decltype(mMutex)> lk(mMutex);
mCallbackTimes.push_back(time);
mCalled = true;
mLastTarget = time;
mCv.notify_all();
}
nsecs_t const mWorkload;
VSyncCallbackRegistration mCallback;
std::mutex mMutex;
std::condition_variable mCv;
bool mCalled = false;
nsecs_t mLastTarget = 0;
std::vector<nsecs_t> mCallbackTimes;
};
TEST_F(VSyncDispatchRealtimeTest, triple_alarm) {
FixedRateIdealStubTracker tracker;
VSyncDispatchTimerQueue dispatch(std::make_unique<Timer>(), tracker, mDispatchGroupThreshold,
mVsyncMoveThreshold);
static size_t constexpr num_clients = 3;
std::array<RepeatingCallbackReceiver, num_clients>
cb_receiver{RepeatingCallbackReceiver(dispatch, toNs(1500us)),
RepeatingCallbackReceiver(dispatch, toNs(0h)),
RepeatingCallbackReceiver(dispatch, toNs(1ms))};
auto const on_each_frame = [](nsecs_t) {};
std::array<std::thread, num_clients> threads{
std::thread([&] { cb_receiver[0].repeatedly_schedule(mIterations, on_each_frame); }),
std::thread([&] { cb_receiver[1].repeatedly_schedule(mIterations, on_each_frame); }),
std::thread([&] { cb_receiver[2].repeatedly_schedule(mIterations, on_each_frame); }),
};
for (auto it = threads.rbegin(); it != threads.rend(); it++) {
it->join();
}
for (auto const& cbs : cb_receiver) {
cbs.with_callback_times([](auto times) { EXPECT_THAT(times.size(), Eq(mIterations)); });
}
}
// starts at 333hz, slides down to 43hz
TEST_F(VSyncDispatchRealtimeTest, vascillating_vrr) {
auto next_vsync_interval = toNs(3ms);
VRRStubTracker tracker(next_vsync_interval);
VSyncDispatchTimerQueue dispatch(std::make_unique<Timer>(), tracker, mDispatchGroupThreshold,
mVsyncMoveThreshold);
RepeatingCallbackReceiver cb_receiver(dispatch, toNs(1ms));
auto const on_each_frame = [&](nsecs_t last_known) {
tracker.set_interval(next_vsync_interval += toNs(1ms), last_known);
};
std::thread eventThread([&] { cb_receiver.repeatedly_schedule(mIterations, on_each_frame); });
eventThread.join();
cb_receiver.with_callback_times([](auto times) { EXPECT_THAT(times.size(), Eq(mIterations)); });
}
// starts at 333hz, jumps to 200hz at frame 10
TEST_F(VSyncDispatchRealtimeTest, fixed_jump) {
VRRStubTracker tracker(toNs(3ms));
VSyncDispatchTimerQueue dispatch(std::make_unique<Timer>(), tracker, mDispatchGroupThreshold,
mVsyncMoveThreshold);
RepeatingCallbackReceiver cb_receiver(dispatch, toNs(1ms));
auto jump_frame_counter = 0u;
auto constexpr jump_frame_at = 10u;
auto const on_each_frame = [&](nsecs_t last_known) {
if (jump_frame_counter++ == jump_frame_at) {
tracker.set_interval(toNs(5ms), last_known);
}
};
std::thread eventThread([&] { cb_receiver.repeatedly_schedule(mIterations, on_each_frame); });
eventThread.join();
cb_receiver.with_callback_times([](auto times) { EXPECT_THAT(times.size(), Eq(mIterations)); });
}
} // namespace android::scheduler