blob: fc39235a93772402d26cc96e6f0cb95d42615a79 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#undef LOG_TAG
#define LOG_TAG "LibSurfaceFlingerUnittests"
#define LOG_NDEBUG 0
#include "Scheduler/VSyncPredictor.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <chrono>
#include <utility>
using namespace testing;
using namespace std::literals;
namespace android::scheduler {
MATCHER_P2(IsCloseTo, value, tolerance, "is within tolerance") {
return arg <= value + tolerance && arg >= value - tolerance;
}
std::vector<nsecs_t> generateVsyncTimestamps(size_t count, nsecs_t period, nsecs_t bias) {
std::vector<nsecs_t> vsyncs(count);
std::generate(vsyncs.begin(), vsyncs.end(),
[&, n = 0]() mutable { return n++ * period + bias; });
return vsyncs;
}
struct VSyncPredictorTest : testing::Test {
nsecs_t mNow = 0;
nsecs_t mPeriod = 1000;
static constexpr size_t kHistorySize = 10;
static constexpr size_t kMinimumSamplesForPrediction = 6;
static constexpr size_t kOutlierTolerancePercent = 25;
static constexpr nsecs_t mMaxRoundingError = 100;
VSyncPredictor tracker{mPeriod, kHistorySize, kMinimumSamplesForPrediction,
kOutlierTolerancePercent};
};
TEST_F(VSyncPredictorTest, reportsAnticipatedPeriod) {
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, Eq(mPeriod));
EXPECT_THAT(intercept, Eq(0));
auto const changedPeriod = 2000;
tracker.setPeriod(changedPeriod);
std::tie(slope, intercept) = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, Eq(changedPeriod));
EXPECT_THAT(intercept, Eq(0));
}
TEST_F(VSyncPredictorTest, reportsSamplesNeededWhenHasNoDataPoints) {
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
EXPECT_TRUE(tracker.needsMoreSamples(mNow += mPeriod));
tracker.addVsyncTimestamp(mNow);
}
EXPECT_FALSE(tracker.needsMoreSamples(mNow));
}
TEST_F(VSyncPredictorTest, reportsSamplesNeededAfterExplicitRateChange) {
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
tracker.addVsyncTimestamp(mNow += mPeriod);
}
EXPECT_FALSE(tracker.needsMoreSamples(mNow));
auto const changedPeriod = mPeriod * 2;
tracker.setPeriod(changedPeriod);
EXPECT_TRUE(tracker.needsMoreSamples(mNow));
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
EXPECT_TRUE(tracker.needsMoreSamples(mNow += changedPeriod));
tracker.addVsyncTimestamp(mNow);
}
EXPECT_FALSE(tracker.needsMoreSamples(mNow));
}
TEST_F(VSyncPredictorTest, transitionsToModelledPointsAfterSynthetic) {
auto last = mNow;
auto const bias = 10;
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(last + mPeriod));
mNow += mPeriod - bias;
last = mNow;
tracker.addVsyncTimestamp(mNow);
mNow += bias;
}
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + mPeriod - bias));
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow + 100), Eq(mNow + mPeriod - bias));
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow + 990), Eq(mNow + 2 * mPeriod - bias));
}
TEST_F(VSyncPredictorTest, uponNotifiedOfInaccuracyUsesSynthetic) {
auto const slightlyLessPeriod = mPeriod - 10;
auto const changedPeriod = mPeriod - 1;
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
tracker.addVsyncTimestamp(mNow += slightlyLessPeriod);
}
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + slightlyLessPeriod));
tracker.setPeriod(changedPeriod);
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + changedPeriod));
}
// b/159882858
TEST_F(VSyncPredictorTest, updatesTimebaseForSyntheticAfterIdleTime) {
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
EXPECT_TRUE(tracker.addVsyncTimestamp(mNow += mPeriod));
}
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + mPeriod));
auto const halfPeriod = mPeriod >> 2;
nsecs_t relativelyLongGapWithDrift = mPeriod * 100 + halfPeriod;
EXPECT_FALSE(tracker.addVsyncTimestamp(mNow += relativelyLongGapWithDrift));
tracker.resetModel();
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + mPeriod));
}
TEST_F(VSyncPredictorTest, uponBadVsyncWillSwitchToSyntheticWhileRecalibrating) {
auto const slightlyMorePeriod = mPeriod + 10;
for (auto i = 0u; i < kMinimumSamplesForPrediction; i++) {
EXPECT_TRUE(tracker.addVsyncTimestamp(mNow += slightlyMorePeriod));
}
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + slightlyMorePeriod));
auto const halfPeriod = mPeriod >> 2;
EXPECT_FALSE(tracker.addVsyncTimestamp(mNow += halfPeriod));
tracker.resetModel();
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mNow + mPeriod));
}
TEST_F(VSyncPredictorTest, adaptsToFenceTimelines_60hzHighVariance) {
// these are precomputed simulated 16.6s vsyncs with uniform distribution +/- 1.6ms error
std::vector<nsecs_t> const simulatedVsyncs{
15492949, 32325658, 49534984, 67496129, 84652891,
100332564, 117737004, 132125931, 149291099, 165199602,
};
auto constexpr idealPeriod = 16600000;
auto constexpr expectedPeriod = 16639242;
auto constexpr expectedIntercept = 1049341;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(expectedPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(expectedIntercept, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, adaptsToFenceTimelines_90hzLowVariance) {
// these are precomputed simulated 11.1 vsyncs with uniform distribution +/- 1ms error
std::vector<nsecs_t> const simulatedVsyncs{
11167047, 22603464, 32538479, 44938134, 56321268,
66730346, 78062637, 88171429, 99707843, 111397621,
};
auto idealPeriod = 11110000;
auto expectedPeriod = 11089413;
auto expectedIntercept = 94421;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(expectedPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(expectedIntercept, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, adaptsToFenceTimelinesDiscontinuous_22hzLowVariance) {
// these are 11.1s vsyncs with low variance, randomly computed, between -1 and 1ms
std::vector<nsecs_t> const simulatedVsyncs{
45259463, // 0
91511026, // 1
136307650, // 2
1864501714, // 40
1908641034, // 41
1955278544, // 42
4590180096, // 100
4681594994, // 102
5499224734, // 120
5591378272, // 122
};
auto idealPeriod = 45454545;
auto expectedPeriod = 45450152;
auto expectedIntercept = 469647;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(expectedPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(expectedIntercept, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, againstOutliersDiscontinuous_500hzLowVariance) {
std::vector<nsecs_t> const simulatedVsyncs{
1992548, // 0
4078038, // 1
6165794, // 2
7958171, // 3
10193537, // 4
2401840200, // 1200
2403000000, // an outlier that should be excluded (1201 and a half)
2405803629, // 1202
2408028599, // 1203
2410121051, // 1204
};
auto idealPeriod = 2000000;
auto expectedPeriod = 1999892;
auto expectedIntercept = 86342;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(expectedPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(expectedIntercept, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, handlesVsyncChange) {
auto const fastPeriod = 100;
auto const fastTimeBase = 100;
auto const slowPeriod = 400;
auto const slowTimeBase = 800;
auto const simulatedVsyncsFast =
generateVsyncTimestamps(kMinimumSamplesForPrediction, fastPeriod, fastTimeBase);
auto const simulatedVsyncsSlow =
generateVsyncTimestamps(kMinimumSamplesForPrediction, slowPeriod, slowTimeBase);
tracker.setPeriod(fastPeriod);
for (auto const& timestamp : simulatedVsyncsFast) {
tracker.addVsyncTimestamp(timestamp);
}
auto const mMaxRoundingError = 100;
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(fastPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(0, mMaxRoundingError));
tracker.setPeriod(slowPeriod);
for (auto const& timestamp : simulatedVsyncsSlow) {
tracker.addVsyncTimestamp(timestamp);
}
std::tie(slope, intercept) = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(slowPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(0, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, willBeAccurateUsingPriorResultsForRate) {
auto const fastPeriod = 101000;
auto const fastTimeBase = fastPeriod - 500;
auto const fastPeriod2 = 99000;
auto const slowPeriod = 400000;
auto const slowTimeBase = 800000 - 201;
auto const simulatedVsyncsFast =
generateVsyncTimestamps(kMinimumSamplesForPrediction, fastPeriod, fastTimeBase);
auto const simulatedVsyncsSlow =
generateVsyncTimestamps(kMinimumSamplesForPrediction, slowPeriod, slowTimeBase);
auto const simulatedVsyncsFast2 =
generateVsyncTimestamps(kMinimumSamplesForPrediction, fastPeriod2, fastTimeBase);
auto idealPeriod = 100000;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncsFast) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, Eq(fastPeriod));
EXPECT_THAT(intercept, Eq(0));
tracker.setPeriod(slowPeriod);
for (auto const& timestamp : simulatedVsyncsSlow) {
tracker.addVsyncTimestamp(timestamp);
}
// we had a model for 100ns mPeriod before, use that until the new samples are
// sufficiently built up
tracker.setPeriod(idealPeriod);
std::tie(slope, intercept) = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, Eq(fastPeriod));
EXPECT_THAT(intercept, Eq(0));
for (auto const& timestamp : simulatedVsyncsFast2) {
tracker.addVsyncTimestamp(timestamp);
}
std::tie(slope, intercept) = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, Eq(fastPeriod2));
EXPECT_THAT(intercept, Eq(0));
}
TEST_F(VSyncPredictorTest, willBecomeInaccurateAfterA_longTimeWithNoSamples) {
auto const simulatedVsyncs = generateVsyncTimestamps(kMinimumSamplesForPrediction, mPeriod, 0);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto const mNow = *simulatedVsyncs.rbegin();
EXPECT_FALSE(tracker.needsMoreSamples(mNow));
// TODO: would be better to decay this as a result of the variance of the samples
static auto constexpr aLongTimeOut = 1000000000;
EXPECT_TRUE(tracker.needsMoreSamples(mNow + aLongTimeOut));
}
TEST_F(VSyncPredictorTest, idealModelPredictionsBeforeRegressionModelIsBuilt) {
auto const simulatedVsyncs =
generateVsyncTimestamps(kMinimumSamplesForPrediction + 1, mPeriod, 0);
nsecs_t const mNow = 0;
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(mNow), Eq(mPeriod));
nsecs_t const aBitOfTime = 422;
for (auto i = 0; i < kMinimumSamplesForPrediction; i++) {
tracker.addVsyncTimestamp(simulatedVsyncs[i]);
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(simulatedVsyncs[i] + aBitOfTime),
Eq(mPeriod + simulatedVsyncs[i]));
}
for (auto i = kMinimumSamplesForPrediction; i < simulatedVsyncs.size(); i++) {
tracker.addVsyncTimestamp(simulatedVsyncs[i]);
EXPECT_THAT(tracker.nextAnticipatedVSyncTimeFrom(simulatedVsyncs[i] + aBitOfTime),
Eq(mPeriod + simulatedVsyncs[i]));
}
}
// See b/145667109, and comment in prod code under test.
TEST_F(VSyncPredictorTest, doesNotPredictBeforeTimePointWithHigherIntercept) {
std::vector<nsecs_t> const simulatedVsyncs{
158929578733000,
158929306806205, // oldest TS in ringbuffer
158929650879052,
158929661969209,
158929684198847,
158929695268171,
158929706370359,
};
auto const idealPeriod = 11111111;
auto const expectedPeriod = 11113919;
auto const expectedIntercept = -1195945;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(expectedPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(expectedIntercept, mMaxRoundingError));
// (timePoint - oldestTS) % expectedPeriod works out to be: 395334
// (timePoint - oldestTS) / expectedPeriod works out to be: 38.96
// so failure to account for the offset will floor the ordinal to 38, which was in the past.
auto const timePoint = 158929728723871;
auto const prediction = tracker.nextAnticipatedVSyncTimeFrom(timePoint);
EXPECT_THAT(prediction, Ge(timePoint));
}
// See b/151146131
TEST_F(VSyncPredictorTest, hasEnoughPrecision) {
VSyncPredictor tracker{mPeriod, 20, kMinimumSamplesForPrediction, kOutlierTolerancePercent};
std::vector<nsecs_t> const simulatedVsyncs{840873348817, 840890049444, 840906762675,
840923581635, 840940161584, 840956868096,
840973702473, 840990256277, 841007116851,
841023722530, 841040452167, 841057073002,
841073800920, 841090474360, 841107278632,
841123898634, 841140750875, 841157287127,
841591357014, 840856664232
};
auto const idealPeriod = 16666666;
auto const expectedPeriod = 16698426;
auto const expectedIntercept = 58055;
tracker.setPeriod(idealPeriod);
for (auto const& timestamp : simulatedVsyncs) {
tracker.addVsyncTimestamp(timestamp);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(expectedPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, IsCloseTo(expectedIntercept, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, resetsWhenInstructed) {
auto const idealPeriod = 10000;
auto const realPeriod = 10500;
tracker.setPeriod(idealPeriod);
for (auto i = 0; i < kMinimumSamplesForPrediction; i++) {
tracker.addVsyncTimestamp(i * realPeriod);
}
EXPECT_THAT(std::get<0>(tracker.getVSyncPredictionModel()),
IsCloseTo(realPeriod, mMaxRoundingError));
tracker.resetModel();
EXPECT_THAT(std::get<0>(tracker.getVSyncPredictionModel()),
IsCloseTo(idealPeriod, mMaxRoundingError));
}
TEST_F(VSyncPredictorTest, slopeAlwaysValid) {
constexpr auto kNumVsyncs = 100;
auto invalidPeriod = mPeriod;
auto now = 0;
for (int i = 0; i < kNumVsyncs; i++) {
tracker.addVsyncTimestamp(now);
now += invalidPeriod;
invalidPeriod *= 0.9f;
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(mPeriod, mPeriod * kOutlierTolerancePercent / 100.f));
// When VsyncPredictor returns the period it means that it doesn't know how to predict and
// it needs to get more samples
if (slope == mPeriod && intercept == 0) {
EXPECT_TRUE(tracker.needsMoreSamples(now));
}
}
}
constexpr nsecs_t operator""_years(unsigned long long years) noexcept {
using namespace std::chrono_literals;
return years * 365 * 24 * 3600 *
std::chrono::duration_cast<std::chrono::nanoseconds>(1s).count();
}
TEST_F(VSyncPredictorTest, aPhoneThatHasBeenAroundAWhileCanStillComputePeriod) {
constexpr nsecs_t timeBase = 100_years;
for (auto i = 0; i < kHistorySize; i++) {
tracker.addVsyncTimestamp(timeBase + i * mPeriod);
}
auto [slope, intercept] = tracker.getVSyncPredictionModel();
EXPECT_THAT(slope, IsCloseTo(mPeriod, mMaxRoundingError));
EXPECT_THAT(intercept, Eq(0));
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"