blob: 5e7d3da39853182d464265166e090b90d5089e0d [file] [log] [blame]
* Copyright (C) 2010 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include "SensorDeviceUtils.h"
#include "SensorService.h"
#include "SensorServiceUtils.h"
#include "ISensorsWrapper.h"
#include <fmq/MessageQueue.h>
#include <sensor/SensorEventQueue.h>
#include <sensor/Sensor.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/KeyedVector.h>
#include <utils/Singleton.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <string>
#include <unordered_map>
#include <algorithm> //std::max std::min
#include "RingBuffer.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
class SensorsHalDeathReceivier : public android::hardware::hidl_death_recipient {
virtual void serviceDied(uint64_t cookie,
const wp<::android::hidl::base::V1_0::IBase>& service) override;
class SensorDevice : public Singleton<SensorDevice>,
public SensorServiceUtil::Dumpable {
class HidlTransportErrorLog {
HidlTransportErrorLog() {
mTs = 0;
mCount = 0;
HidlTransportErrorLog(time_t ts, int count) {
mTs = ts;
mCount = count;
String8 toString() const {
String8 result;
struct tm *timeInfo = localtime(&mTs);
result.appendFormat("%02d:%02d:%02d :: %d", timeInfo->tm_hour, timeInfo->tm_min,
timeInfo->tm_sec, mCount);
return result;
time_t mTs; // timestamp of the error
int mCount; // number of transport errors observed
void prepareForReconnect();
void reconnect();
ssize_t getSensorList(sensor_t const** list);
void handleDynamicSensorConnection(int handle, bool connected);
status_t initCheck() const;
int getHalDeviceVersion() const;
ssize_t poll(sensors_event_t* buffer, size_t count);
void writeWakeLockHandled(uint32_t count);
status_t activate(void* ident, int handle, int enabled);
status_t batch(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs);
// Call batch with timeout zero instead of calling setDelay() for newer devices.
status_t setDelay(void* ident, int handle, int64_t ns);
status_t flush(void* ident, int handle);
status_t setMode(uint32_t mode);
bool isDirectReportSupported() const;
int32_t registerDirectChannel(const sensors_direct_mem_t *memory);
void unregisterDirectChannel(int32_t channelHandle);
int32_t configureDirectChannel(int32_t sensorHandle,
int32_t channelHandle, const struct sensors_direct_cfg_t *config);
void disableAllSensors();
void enableAllSensors();
void autoDisable(void *ident, int handle);
status_t injectSensorData(const sensors_event_t *event);
void notifyConnectionDestroyed(void *ident);
using Result = ::android::hardware::sensors::V1_0::Result;
hardware::Return<void> onDynamicSensorsConnected(
const hardware::hidl_vec<hardware::sensors::V2_1::SensorInfo> &dynamicSensorsAdded);
hardware::Return<void> onDynamicSensorsDisconnected(
const hardware::hidl_vec<int32_t> &dynamicSensorHandlesRemoved);
void setUidStateForConnection(void* ident, SensorService::UidState state);
bool isReconnecting() const {
return mReconnecting;
bool isSensorActive(int handle) const;
// Dumpable
virtual std::string dump() const override;
virtual void dump(util::ProtoOutputStream* proto) const override;
friend class Singleton<SensorDevice>;
sp<::android::hardware::sensors::V2_1::implementation::ISensorsWrapperBase> mSensors;
Vector<sensor_t> mSensorList;
std::unordered_map<int32_t, sensor_t*> mConnectedDynamicSensors;
static const nsecs_t MINIMUM_EVENTS_PERIOD = 1000000; // 1000 Hz
mutable Mutex mLock; // protect mActivationCount[].batchParams
// fixed-size array after construction
// Struct to store all the parameters(samplingPeriod, maxBatchReportLatency and flags) from
// batch call. For continous mode clients, maxBatchReportLatency is set to zero.
struct BatchParams {
nsecs_t mTSample, mTBatch;
BatchParams() : mTSample(INT64_MAX), mTBatch(INT64_MAX) {}
BatchParams(nsecs_t tSample, nsecs_t tBatch): mTSample(tSample), mTBatch(tBatch) {}
bool operator != (const BatchParams& other) {
return !(mTSample == other.mTSample && mTBatch == other.mTBatch);
// Merge another parameter with this one. The updated mTSample will be the min of the two.
// The update mTBatch will be the min of original mTBatch and the apparent batch period
// of the other. the apparent batch is the maximum of mTBatch and mTSample,
void merge(const BatchParams &other) {
mTSample = std::min(mTSample, other.mTSample);
mTBatch = std::min(mTBatch, std::max(other.mTBatch, other.mTSample));
// Store batch parameters in the KeyedVector and the optimal batch_rate and timeout in
// bestBatchParams. For every batch() call corresponding params are stored in batchParams
// vector. A continuous mode request is batch(... timeout=0 ..) followed by activate(). A batch
// mode request is batch(... timeout > 0 ...) followed by activate().
// Info is a per-sensor data structure which contains the batch parameters for each client that
// has registered for this sensor.
struct Info {
BatchParams bestBatchParams;
// Key is the unique identifier(ident) for each client, value is the batch parameters
// requested by the client.
KeyedVector<void*, BatchParams> batchParams;
// Flag to track if the sensor is active
bool isActive = false;
// Sets batch parameters for this ident. Returns error if this ident is not already present
// in the KeyedVector above.
status_t setBatchParamsForIdent(void* ident, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs);
// Finds the optimal parameters for batching and stores them in bestBatchParams variable.
void selectBatchParams();
// Removes batchParams for an ident and re-computes bestBatchParams. Returns the index of
// the removed ident. If index >=0, ident is present and successfully removed.
ssize_t removeBatchParamsForIdent(void* ident);
bool hasBatchParamsForIdent(void* ident) const {
return batchParams.indexOfKey(ident) >= 0;
* @return The number of active clients of this sensor.
int numActiveClients() const;
DefaultKeyedVector<int, Info> mActivationCount;
// Keep track of any hidl transport failures
SensorServiceUtil::RingBuffer<HidlTransportErrorLog> mHidlTransportErrors;
int mTotalHidlTransportErrors;
* Enums describing the reason why a client was disabled.
enum DisabledReason : uint8_t {
// UID becomes idle (e.g. app goes to background).
// Sensors are restricted for all clients.
static_assert(DisabledReason::DISABLED_REASON_MAX < sizeof(uint8_t) * CHAR_BIT);
// Use this map to determine which client is activated or deactivated.
std::unordered_map<void *, uint8_t> mDisabledClients;
void addDisabledReasonForIdentLocked(void* ident, DisabledReason reason);
void removeDisabledReasonForIdentLocked(void* ident, DisabledReason reason);
bool connectHidlService();
void initializeSensorList();
void reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations);
static bool sensorHandlesChanged(const Vector<sensor_t>& oldSensorList,
const Vector<sensor_t>& newSensorList);
static bool sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor);
enum HalConnectionStatus {
CONNECTED, // Successfully connected to the HAL
DOES_NOT_EXIST, // Could not find the HAL
FAILED_TO_CONNECT, // Found the HAL but failed to connect/initialize
HalConnectionStatus connectHidlServiceV1_0();
HalConnectionStatus connectHidlServiceV2_0();
HalConnectionStatus connectHidlServiceV2_1();
HalConnectionStatus initializeHidlServiceV2_X();
ssize_t pollHal(sensors_event_t* buffer, size_t count);
ssize_t pollFmq(sensors_event_t* buffer, size_t count);
status_t activateLocked(void* ident, int handle, int enabled);
status_t batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs);
status_t updateBatchParamsLocked(int handle, Info& info);
status_t doActivateHardwareLocked(int handle, bool enable);
void handleHidlDeath(const std::string &detail);
template<typename T>
void checkReturn(const Return<T>& ret) {
if (!ret.isOk()) {
status_t checkReturnAndGetStatus(const Return<Result>& ret);
//TODO(b/67425500): remove waiter after bug is resolved.
sp<SensorDeviceUtils::HidlServiceRegistrationWaiter> mRestartWaiter;
bool isClientDisabled(void* ident) const;
bool isClientDisabledLocked(void* ident) const;
std::vector<void *> getDisabledClientsLocked() const;
bool clientHasNoAccessLocked(void* ident) const;
using Event = hardware::sensors::V2_1::Event;
using SensorInfo = hardware::sensors::V2_1::SensorInfo;
void convertToSensorEvent(const Event &src, sensors_event_t *dst);
void convertToSensorEventsAndQuantize(
const hardware::hidl_vec<Event> &src,
const hardware::hidl_vec<SensorInfo> &dynamicSensorsAdded,
sensors_event_t *dst);
float getResolutionForSensor(int sensorHandle);
bool mIsDirectReportSupported;
typedef hardware::MessageQueue<uint32_t, hardware::kSynchronizedReadWrite> WakeLockQueue;
std::unique_ptr<WakeLockQueue> mWakeLockQueue;
hardware::EventFlag* mEventQueueFlag;
hardware::EventFlag* mWakeLockQueueFlag;
std::array<Event, SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT> mEventBuffer;
sp<SensorsHalDeathReceivier> mSensorsHalDeathReceiver;
std::atomic_bool mReconnecting;
// ---------------------------------------------------------------------------
}; // namespace android