blob: 8a80e15f2920621ebdf12f4370e2d9198d7cd66b [file] [log] [blame]
* Copyright (C) 2007 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include <sys/types.h>
#include <compositionengine/LayerFE.h>
#include <gui/BufferQueue.h>
#include <gui/ISurfaceComposerClient.h>
#include <gui/LayerState.h>
#include <input/InputWindow.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/vec4.h>
#include <renderengine/Mesh.h>
#include <renderengine/Texture.h>
#include <ui/FloatRect.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>
#include <ui/Transform.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <cstdint>
#include <list>
#include <optional>
#include <vector>
#include "Client.h"
#include "FrameTracker.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "TransactionCompletedThread.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/HWComposer.h"
#include "RenderArea.h"
using namespace android::surfaceflinger;
namespace android {
// ---------------------------------------------------------------------------
class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;
class LayerDebugInfo;
namespace compositionengine {
class Layer;
class OutputLayer;
struct LayerFECompositionState;
namespace impl {
class SurfaceInterceptor;
// ---------------------------------------------------------------------------
struct LayerCreationArgs {
LayerCreationArgs(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name,
uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata)
: flinger(flinger), client(client), name(name), w(w), h(h), flags(flags),
metadata(std::move(metadata)) {}
SurfaceFlinger* flinger;
const sp<Client>& client;
const String8& name;
uint32_t w;
uint32_t h;
uint32_t flags;
LayerMetadata metadata;
class Layer : public virtual compositionengine::LayerFE {
static std::atomic<int32_t> sSequence;
mutable bool contentDirty{false};
// regions below are in window-manager space
Region visibleRegion;
Region coveredRegion;
Region visibleNonTransparentRegion;
Region surfaceDamageRegion;
// Layer serial number. This gives layers an explicit ordering, so we
// have a stable sort order when their layer stack and Z-order are
// the same.
int32_t sequence{sSequence++};
enum { // flags for doTransaction()
eDontUpdateGeometryState = 0x00000001,
eVisibleRegion = 0x00000002,
eInputInfoChanged = 0x00000004
struct Geometry {
uint32_t w;
uint32_t h;
ui::Transform transform;
inline bool operator==(const Geometry& rhs) const {
return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
(transform.ty() == rhs.transform.ty());
inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
struct RoundedCornerState {
RoundedCornerState() = default;
RoundedCornerState(FloatRect cropRect, float radius)
: cropRect(cropRect), radius(radius) {}
// Rounded rectangle in local layer coordinate space.
FloatRect cropRect = FloatRect();
// Radius of the rounded rectangle.
float radius = 0.0f;
struct State {
Geometry active_legacy;
Geometry requested_legacy;
int32_t z;
// The identifier of the layer stack this layer belongs to. A layer can
// only be associated to a single layer stack. A layer stack is a
// z-ordered group of layers which can be associated to one or more
// displays. Using the same layer stack on different displays is a way
// to achieve mirroring.
uint32_t layerStack;
uint8_t flags;
uint8_t reserved[2];
int32_t sequence; // changes when visible regions can change
bool modified;
// Crop is expressed in layer space coordinate.
Rect crop_legacy;
Rect requestedCrop_legacy;
// If set, defers this state update until the identified Layer
// receives a frame with the given frameNumber
wp<Layer> barrierLayer_legacy;
uint64_t frameNumber_legacy;
// the transparentRegion hint is a bit special, it's latched only
// when we receive a buffer -- this is because it's "content"
// dependent.
Region activeTransparentRegion_legacy;
Region requestedTransparentRegion_legacy;
LayerMetadata metadata;
// If non-null, a Surface this Surface's Z-order is interpreted relative to.
wp<Layer> zOrderRelativeOf;
// A list of surfaces whose Z-order is interpreted relative to ours.
SortedVector<wp<Layer>> zOrderRelatives;
half4 color;
float cornerRadius;
bool inputInfoChanged;
InputWindowInfo inputInfo;
wp<Layer> touchableRegionCrop;
// dataspace is only used by BufferStateLayer and ColorLayer
ui::Dataspace dataspace;
// The fields below this point are only used by BufferStateLayer
Geometry active;
uint32_t transform;
bool transformToDisplayInverse;
Rect crop;
Region transparentRegionHint;
sp<GraphicBuffer> buffer;
client_cache_t clientCacheId;
sp<Fence> acquireFence;
HdrMetadata hdrMetadata;
Region surfaceDamageRegion;
int32_t api;
sp<NativeHandle> sidebandStream;
mat4 colorTransform;
bool hasColorTransform;
// pointer to background color layer that, if set, appears below the buffer state layer
// and the buffer state layer's children. Z order will be set to
sp<Layer> bgColorLayer;
// The deque of callback handles for this frame. The back of the deque contains the most
// recent callback handle.
std::deque<sp<CallbackHandle>> callbackHandles;
bool colorSpaceAgnostic;
explicit Layer(const LayerCreationArgs& args);
virtual ~Layer();
void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; }
// ------------------------------------------------------------------------
// Geometry setting functions.
// The following group of functions are used to specify the layers
// bounds, and the mapping of the texture on to those bounds. According
// to various settings changes to them may apply immediately, or be delayed until
// a pending resize is completed by the producer submitting a buffer. For example
// if we were to change the buffer size, and update the matrix ahead of the
// new buffer arriving, then we would be stretching the buffer to a different
// aspect before and after the buffer arriving, which probably isn't what we wanted.
// The first set of geometry functions are controlled by the scaling mode, described
// in window.h. The scaling mode may be set by the client, as it submits buffers.
// This value may be overriden through SurfaceControl, with setOverrideScalingMode.
// Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
// matrix updates will not be applied while a resize is pending
// and the size and transform will remain in their previous state
// until a new buffer is submitted. If the scaling mode is another value
// then the old-buffer will immediately be scaled to the pending size
// and the new matrix will be immediately applied following this scaling
// transformation.
// Set the default buffer size for the assosciated Producer, in pixels. This is
// also the rendered size of the layer prior to any transformations. Parent
// or local matrix transformations will not affect the size of the buffer,
// but may affect it's on-screen size or clipping.
virtual bool setSize(uint32_t w, uint32_t h);
// Set a 2x2 transformation matrix on the layer. This transform
// will be applied after parent transforms, but before any final
// producer specified transform.
virtual bool setMatrix(const layer_state_t::matrix22_t& matrix,
bool allowNonRectPreservingTransforms);
// This second set of geometry attributes are controlled by
// setGeometryAppliesWithResize, and their default mode is to be
// immediate. If setGeometryAppliesWithResize is specified
// while a resize is pending, then update of these attributes will
// be delayed until the resize completes.
// setPosition operates in parent buffer space (pre parent-transform) or display
// space for top-level layers.
virtual bool setPosition(float x, float y, bool immediate);
// Buffer space
virtual bool setCrop_legacy(const Rect& crop, bool immediate);
// TODO(b/38182121): Could we eliminate the various latching modes by
// using the layer hierarchy?
// -----------------------------------------------------------------------
virtual bool setLayer(int32_t z);
virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
virtual bool setAlpha(float alpha);
virtual bool setColor(const half3& /*color*/) { return false; };
// Set rounded corner radius for this layer and its children.
// We only support 1 radius per layer in the hierarchy, where parent layers have precedence.
// The shape of the rounded corner rectangle is specified by the crop rectangle of the layer
// from which we inferred the rounded corner radius.
virtual bool setCornerRadius(float cornerRadius);
virtual bool setTransparentRegionHint(const Region& transparent);
virtual bool setFlags(uint8_t flags, uint8_t mask);
virtual bool setLayerStack(uint32_t layerStack);
virtual uint32_t getLayerStack() const;
virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle,
uint64_t frameNumber);
virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber);
virtual bool setOverrideScalingMode(int32_t overrideScalingMode);
virtual bool setMetadata(const LayerMetadata& data);
virtual bool reparentChildren(const sp<IBinder>& layer);
virtual void setChildrenDrawingParent(const sp<Layer>& layer);
virtual bool reparent(const sp<IBinder>& newParentHandle);
virtual bool detachChildren();
bool attachChildren();
bool isLayerDetached() const { return mLayerDetached; }
virtual bool setColorTransform(const mat4& matrix);
virtual mat4 getColorTransform() const;
virtual bool hasColorTransform() const;
virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; }
// Used only to set BufferStateLayer state
virtual bool setTransform(uint32_t /*transform*/) { return false; };
virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; };
virtual bool setCrop(const Rect& /*crop*/) { return false; };
virtual bool setFrame(const Rect& /*frame*/) { return false; };
virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, nsecs_t /*postTime*/,
nsecs_t /*desiredPresentTime*/,
const client_cache_t& /*clientCacheId*/) {
return false;
virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; };
virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; };
virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; };
virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; };
virtual bool setApi(int32_t /*api*/) { return false; };
virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; };
virtual bool setTransactionCompletedListeners(
const std::vector<sp<CallbackHandle>>& /*handles*/) {
return false;
virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace);
virtual bool setColorSpaceAgnostic(const bool agnostic);
ui::Dataspace getDataSpace() const { return mCurrentDataSpace; }
// Before color management is introduced, contents on Android have to be
// desaturated in order to match what they appears like visually.
// With color management, these contents will appear desaturated, thus
// needed to be saturated so that they match what they are designed for
// visually.
bool isLegacyDataSpace() const;
virtual std::shared_ptr<compositionengine::Layer> getCompositionLayer() const;
// If we have received a new buffer this frame, we will pass its surface
// damage down to hardware composer. Otherwise, we must send a region with
// one empty rect.
virtual void useSurfaceDamage() {}
virtual void useEmptyDamage() {}
uint32_t getTransactionFlags() const { return mTransactionFlags; }
uint32_t getTransactionFlags(uint32_t flags);
uint32_t setTransactionFlags(uint32_t flags);
// Deprecated, please use compositionengine::Output::belongsInOutput()
// instead.
// TODO(lpique): Move the remaining callers (screencap) to the new function.
bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
void computeGeometry(const RenderArea& renderArea, renderengine::Mesh& mesh,
bool useIdentityTransform) const;
FloatRect getBounds(const Region& activeTransparentRegion) const;
FloatRect getBounds() const;
// Compute bounds for the layer and cache the results.
void computeBounds(FloatRect parentBounds, ui::Transform parentTransform);
// Returns the buffer scale transform if a scaling mode is set.
ui::Transform getBufferScaleTransform() const;
// Get effective layer transform, taking into account all its parent transform with any
// scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE.
ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const;
// Returns the bounds of the layer without any buffer scaling.
FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const;
int32_t getSequence() const { return sequence; }
// -----------------------------------------------------------------------
// Virtuals
virtual const char* getTypeId() const = 0;
* isOpaque - true if this surface is opaque
* This takes into account the buffer format (i.e. whether or not the
* pixel format includes an alpha channel) and the "opaque" flag set
* on the layer. It does not examine the current plane alpha value.
virtual bool isOpaque(const Layer::State&) const { return false; }
* isSecure - true if this surface is secure, that is if it prevents
* screenshots or VNC servers.
bool isSecure() const;
* isVisible - true if this layer is visible, false otherwise
virtual bool isVisible() const = 0;
* isHiddenByPolicy - true if this layer has been forced invisible.
* just because this is false, doesn't mean isVisible() is true.
* For example if this layer has no active buffer, it may not be hidden by
* policy, but it still can not be visible.
bool isHiddenByPolicy() const;
* Returns whether this layer can receive input.
virtual bool canReceiveInput() const;
* isProtected - true if the layer may contain protected content in the
virtual bool isProtected() const { return false; }
* isFixedSize - true if content has a fixed size
virtual bool isFixedSize() const { return true; }
* usesSourceCrop - true if content should use a source crop
virtual bool usesSourceCrop() const { return false; }
// Most layers aren't created from the main thread, and therefore need to
// grab the SF state lock to access HWC, but ContainerLayer does, so we need
// to avoid grabbing the lock again to avoid deadlock
virtual bool isCreatedFromMainThread() const { return false; }
bool isRemovedFromCurrentState() const;
void writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet,
uint32_t traceFlags = SurfaceTracing::TRACE_ALL);
void writeToProto(LayerProto* layerInfo, const sp<DisplayDevice>& displayDevice,
uint32_t traceFlags = SurfaceTracing::TRACE_ALL);
virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; }
virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; }
virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; }
virtual ui::Transform getActiveTransform(const Layer::State& s) const {
return s.active_legacy.transform;
virtual Region getActiveTransparentRegion(const Layer::State& s) const {
return s.activeTransparentRegion_legacy;
virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; }
virtual bool prepareClientLayer(const RenderArea& renderArea, const Region& clip,
bool useIdentityTransform, Region& clearRegion,
const bool supportProtectedContent,
renderengine::LayerSettings& layer);
* compositionengine::LayerFE overrides
void latchCompositionState(compositionengine::LayerFECompositionState&,
bool includeGeometry) const override;
void onLayerDisplayed(const sp<Fence>& releaseFence) override;
const char* getDebugName() const override;
void latchGeometry(compositionengine::LayerFECompositionState& outState) const;
virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
virtual bool isHdrY410() const { return false; }
void forceClientComposition(const sp<DisplayDevice>& display);
bool getForceClientComposition(const sp<DisplayDevice>& display);
virtual void setPerFrameData(const sp<const DisplayDevice>& display,
const ui::Transform& transform, const Rect& viewport,
int32_t supportedPerFrameMetadata,
const ui::Dataspace targetDataspace) = 0;
// callIntoHwc exists so we can update our local state and call
// acceptDisplayChanges without unnecessarily updating the device's state
void setCompositionType(const sp<const DisplayDevice>& display,
Hwc2::IComposerClient::Composition type);
Hwc2::IComposerClient::Composition getCompositionType(
const sp<const DisplayDevice>& display) const;
bool getClearClientTarget(const sp<const DisplayDevice>& display) const;
void updateCursorPosition(const sp<const DisplayDevice>& display);
virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; }
virtual void setTransformHint(uint32_t /*orientation*/) const { }
* called before composition.
* returns true if the layer has pending updates.
virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
* called after composition.
* returns true if the layer latched a new buffer this frame.
virtual bool onPostComposition(const std::optional<DisplayId>& /*displayId*/,
const std::shared_ptr<FenceTime>& /*glDoneFence*/,
const std::shared_ptr<FenceTime>& /*presentFence*/,
const CompositorTiming& /*compositorTiming*/) {
return false;
// If a buffer was replaced this frame, release the former buffer
virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
* prepareClientLayer - populates a renderengine::LayerSettings to passed to
* RenderEngine::drawLayers. Returns true if the layer can be used, and
* false otherwise.
bool prepareClientLayer(const RenderArea& renderArea, const Region& clip, Region& clearRegion,
const bool supportProtectedContent, renderengine::LayerSettings& layer);
bool prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform,
Region& clearRegion, const bool supportProtectedContent,
renderengine::LayerSettings& layer);
* doTransaction - process the transaction. This is a good place to figure
* out which attributes of the surface have changed.
uint32_t doTransaction(uint32_t transactionFlags);
* setVisibleRegion - called to set the new visible region. This gives
* a chance to update the new visible region or record the fact it changed.
void setVisibleRegion(const Region& visibleRegion);
* setCoveredRegion - called when the covered region changes. The covered
* region corresponds to any area of the surface that is covered
* (transparently or not) by another surface.
void setCoveredRegion(const Region& coveredRegion);
* setVisibleNonTransparentRegion - called when the visible and
* non-transparent region changes.
void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
* Clear the visible, covered, and non-transparent regions.
void clearVisibilityRegions();
* latchBuffer - called each time the screen is redrawn and returns whether
* the visible regions need to be recomputed (this is a fairly heavy
* operation, so this should be set only if needed). Typically this is used
* to figure out if the content or size of a surface has changed.
virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) {
return {};
virtual bool isBufferLatched() const { return false; }
* Remove relative z for the layer if its relative parent is not part of the
* provided layer tree.
void removeRelativeZ(const std::vector<Layer*>& layersInTree);
* Remove from current state and mark for removal.
void removeFromCurrentState();
* called with the state lock from a binder thread when the layer is
* removed from the current list to the pending removal list
void onRemovedFromCurrentState();
* Called when the layer is added back to the current state list.
void addToCurrentState();
// Updates the transform hint in our SurfaceFlingerConsumer to match
// the current orientation of the display device.
void updateTransformHint(const sp<const DisplayDevice>& display) const;
* returns the rectangle that crops the content of the layer and scales it
* to the layer's size.
Rect getContentCrop() const;
* Returns if a frame is ready
virtual bool hasReadyFrame() const { return false; }
virtual int32_t getQueuedFrameCount() const { return 0; }
// -----------------------------------------------------------------------
bool hasHwcLayer(const sp<const DisplayDevice>& displayDevice);
HWC2::Layer* getHwcLayer(const sp<const DisplayDevice>& displayDevice);
inline const State& getDrawingState() const { return mDrawingState; }
inline const State& getCurrentState() const { return mCurrentState; }
inline State& getCurrentState() { return mCurrentState; }
LayerDebugInfo getLayerDebugInfo() const;
/* always call base class first */
static void miniDumpHeader(std::string& result);
void miniDump(std::string& result, const sp<DisplayDevice>& display) const;
void dumpFrameStats(std::string& result) const;
void dumpFrameEvents(std::string& result);
void clearFrameStats();
void logFrameStats();
void getFrameStats(FrameStats* outStats) const;
virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
return {};
void onDisconnect();
void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
FrameEventHistoryDelta* outDelta);
virtual bool getTransformToDisplayInverse() const { return false; }
ui::Transform getTransform() const;
// Returns the Alpha of the Surface, accounting for the Alpha
// of parent Surfaces in the hierarchy (alpha's will be multiplied
// down the hierarchy).
half getAlpha() const;
half4 getColor() const;
// Returns how rounded corners should be drawn for this layer.
// This will traverse the hierarchy until it reaches its root, finding topmost rounded
// corner definition and converting it into current layer's coordinates.
// As of now, only 1 corner radius per display list is supported. Subsequent ones will be
// ignored.
RoundedCornerState getRoundedCornerState() const;
void traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor);
void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
* Traverse only children in z order, ignoring relative layers that are not children of the
* parent.
void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor);
size_t getChildrenCount() const;
void addChild(const sp<Layer>& layer);
// Returns index if removed, or negative value otherwise
// for symmetry with Vector::remove
ssize_t removeChild(const sp<Layer>& layer);
sp<Layer> getParent() const { return mCurrentParent.promote(); }
bool hasParent() const { return getParent() != nullptr; }
Rect getScreenBounds(bool reduceTransparentRegion = true) const;
bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
bool setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ);
// Copy the current list of children to the drawing state. Called by
// SurfaceFlinger to complete a transaction.
void commitChildList();
int32_t getZ() const;
virtual void pushPendingState();
* Returns active buffer size in the correct orientation. Buffer size is determined by undoing
* any buffer transformations. If the layer has no buffer then return INVALID_RECT.
virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; }
* Returns the source bounds. If the bounds are not defined, it is inferred from the
* buffer size. Failing that, the bounds are determined from the passed in parent bounds.
* For the root layer, this is the display viewport size.
virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const {
return parentBounds;
compositionengine::OutputLayer* findOutputLayerForDisplay(
const sp<const DisplayDevice>& display) const;
// constant
sp<SurfaceFlinger> mFlinger;
* Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
* is called.
class LayerCleaner {
sp<SurfaceFlinger> mFlinger;
sp<Layer> mLayer;
~LayerCleaner() {
// destroy client resources
LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
: mFlinger(flinger), mLayer(layer) {}
friend class impl::SurfaceInterceptor;
// For unit tests
friend class TestableSurfaceFlinger;
virtual void commitTransaction(const State& stateToCommit);
uint32_t getEffectiveUsage(uint32_t usage) const;
* Setup rounded corners coordinates of this layer, taking into account the layer bounds and
* crop coordinates, transforming them into layer space.
void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const;
void setParent(const sp<Layer>& layer);
LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
void addZOrderRelative(const wp<Layer>& relative);
void removeZOrderRelative(const wp<Layer>& relative);
class SyncPoint {
explicit SyncPoint(uint64_t frameNumber, wp<Layer> requestedSyncLayer)
: mFrameNumber(frameNumber),
mRequestedSyncLayer(requestedSyncLayer) {}
uint64_t getFrameNumber() const { return mFrameNumber; }
bool frameIsAvailable() const { return mFrameIsAvailable; }
void setFrameAvailable() { mFrameIsAvailable = true; }
bool transactionIsApplied() const { return mTransactionIsApplied; }
void setTransactionApplied() { mTransactionIsApplied = true; }
sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); }
const uint64_t mFrameNumber;
std::atomic<bool> mFrameIsAvailable;
std::atomic<bool> mTransactionIsApplied;
wp<Layer> mRequestedSyncLayer;
// SyncPoints which will be signaled when the correct frame is at the head
// of the queue and dropped after the frame has been latched. Protected by
// mLocalSyncPointMutex.
Mutex mLocalSyncPointMutex;
std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
// SyncPoints which will be signaled and then dropped when the transaction
// is applied
std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
// Returns false if the relevant frame has already been latched
bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
void popPendingState(State* stateToCommit);
virtual bool applyPendingStates(State* stateToCommit);
virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit);
// Returns mCurrentScaling mode (originating from the
// Client) or mOverrideScalingMode mode (originating from
// the Surface Controller) if set.
virtual uint32_t getEffectiveScalingMode() const { return 0; }
* The layer handle is just a BBinder object passed to the client
* (remote process) -- we don't keep any reference on our side such that
* the dtor is called when the remote side let go of its reference.
* LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
* this layer when the handle is destroyed.
class Handle : public BBinder, public LayerCleaner {
Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
: LayerCleaner(flinger, layer), owner(layer) {}
wp<Layer> owner;
// Creates a new handle each time, so we only expect
// this to be called once.
sp<IBinder> getHandle();
const String8& getName() const;
virtual void notifyAvailableFrames() {}
virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
bool getPremultipledAlpha() const;
bool mPendingHWCDestroy{false};
void setInputInfo(const InputWindowInfo& info);
InputWindowInfo fillInputInfo();
bool hasInput() const;
// -----------------------------------------------------------------------
bool usingRelativeZ(LayerVector::StateSet stateSet) const;
bool mPremultipliedAlpha{true};
String8 mName;
String8 mTransactionName; // A cached version of "TX - " + mName for systraces
bool mPrimaryDisplayOnly = false;
// these are protected by an external lock
State mCurrentState;
State mDrawingState;
std::atomic<uint32_t> mTransactionFlags{0};
// Accessed from main thread and binder threads
Mutex mPendingStateMutex;
Vector<State> mPendingStates;
// Timestamp history for UIAutomation. Thread safe.
FrameTracker mFrameTracker;
// Timestamp history for the consumer to query.
// Accessed by both consumer and producer on main and binder threads.
Mutex mFrameEventHistoryMutex;
ConsumerFrameEventHistory mFrameEventHistory;
FenceTimeline mAcquireTimeline;
FenceTimeline mReleaseTimeline;
// main thread
sp<NativeHandle> mSidebandStream;
// Active buffer fields
sp<GraphicBuffer> mActiveBuffer;
sp<Fence> mActiveBufferFence;
// False if the buffer and its contents have been previously used for GPU
// composition, true otherwise.
bool mIsActiveBufferUpdatedForGpu = true;
ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN;
Rect mCurrentCrop;
uint32_t mCurrentTransform{0};
// We encode unset as -1.
int32_t mOverrideScalingMode{-1};
std::atomic<uint64_t> mCurrentFrameNumber{0};
bool mFrameLatencyNeeded{false};
// Whether filtering is needed b/c of the drawingstate
bool mNeedsFiltering{false};
std::atomic<bool> mRemovedFromCurrentState{false};
// page-flip thread (currently main thread)
bool mProtectedByApp{false}; // application requires protected path to external sink
// protected by mLock
mutable Mutex mLock;
const wp<Client> mClientRef;
// This layer can be a cursor on some displays.
bool mPotentialCursor{false};
bool mFreezeGeometryUpdates{false};
// Child list about to be committed/used for editing.
LayerVector mCurrentChildren{LayerVector::StateSet::Current};
// Child list used for rendering.
LayerVector mDrawingChildren{LayerVector::StateSet::Drawing};
wp<Layer> mCurrentParent;
wp<Layer> mDrawingParent;
// Can only be accessed with the SF state lock held.
bool mLayerDetached{false};
// Can only be accessed with the SF state lock held.
bool mChildrenChanged{false};
// Window types from WindowManager.LayoutParams
const int mWindowType;
// This is populated if the layer is registered with Scheduler for tracking purposes.
std::unique_ptr<scheduler::LayerHistory::LayerHandle> mSchedulerLayerHandle;
* Returns an unsorted vector of all layers that are part of this tree.
* That includes the current layer and all its descendants.
std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet);
* Traverses layers that are part of this tree in the correct z order.
* layersInTree must be sorted before calling this method.
void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor);
LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet,
const std::vector<Layer*>& layersInTree);
* Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
* INVALID_RECT if the layer has no buffer and no crop.
* A layer with an invalid buffer size and no crop is considered to be boundless. The layer
* bounds are constrained by its parent bounds.
Rect getCroppedBufferSize(const Layer::State& s) const;
// Cached properties computed from drawing state
// Effective transform taking into account parent transforms and any parent scaling.
ui::Transform mEffectiveTransform;
// Bounds of the layer before any transformation is applied and before it has been cropped
// by its parents.
FloatRect mSourceBounds;
// Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and
// its parent bounds.
FloatRect mBounds;
// Layer bounds in screen space.
FloatRect mScreenBounds;
void setZOrderRelativeOf(const wp<Layer>& relativeOf);
bool mGetHandleCalled = false;
void removeRemoteSyncPoints();
} // namespace android
#define RETURN_IF_NO_HWC_LAYER(displayDevice, ...) \
do { \
if (!hasHwcLayer(displayDevice)) { \
ALOGE("[%s] %s failed: no HWC layer found for display %s", mName.string(), \
__FUNCTION__, displayDevice->getDebugName().c_str()); \
return __VA_ARGS__; \
} \
} while (false)