blob: ba7184f8e7f53edfa70eb07090ff0885107f256b [file] [log] [blame]
* Copyright (C) 2007 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include <stdint.h>
#include <sys/types.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>
#include <gui/ISurfaceComposerClient.h>
#include <private/gui/LayerState.h>
#include <list>
#include "FrameTracker.h"
#include "Client.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "SurfaceFlingerConsumer.h"
#include "Transform.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/FloatRect.h"
#include "RenderEngine/Mesh.h"
#include "RenderEngine/Texture.h"
namespace android {
// ---------------------------------------------------------------------------
class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;
// ---------------------------------------------------------------------------
* A new BufferQueue and a new SurfaceFlingerConsumer are created when the
* Layer is first referenced.
* This also implements onFrameAvailable(), which notifies SurfaceFlinger
* that new data has arrived.
class Layer : public SurfaceFlingerConsumer::ContentsChangedListener {
static int32_t sSequence;
mutable bool contentDirty;
// regions below are in window-manager space
Region visibleRegion;
Region coveredRegion;
Region visibleNonTransparentRegion;
Region surfaceDamageRegion;
// Layer serial number. This gives layers an explicit ordering, so we
// have a stable sort order when their layer stack and Z-order are
// the same.
int32_t sequence;
enum { // flags for doTransaction()
eDontUpdateGeometryState = 0x00000001,
eVisibleRegion = 0x00000002,
struct Geometry {
uint32_t w;
uint32_t h;
Transform transform;
inline bool operator ==(const Geometry& rhs) const {
return (w == rhs.w && h == rhs.h);
inline bool operator !=(const Geometry& rhs) const {
return !operator ==(rhs);
struct State {
Geometry active;
Geometry requested;
uint32_t z;
uint32_t layerStack;
#ifdef USE_HWC2
float alpha;
uint8_t alpha;
uint8_t flags;
uint8_t mask;
uint8_t reserved[2];
int32_t sequence; // changes when visible regions can change
bool modified;
Rect crop;
Rect finalCrop;
// If set, defers this state update until the Layer identified by handle
// receives a frame with the given frameNumber
sp<IBinder> handle;
uint64_t frameNumber;
// the transparentRegion hint is a bit special, it's latched only
// when we receive a buffer -- this is because it's "content"
// dependent.
Region activeTransparentRegion;
Region requestedTransparentRegion;
// -----------------------------------------------------------------------
Layer(SurfaceFlinger* flinger, const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags);
virtual ~Layer();
// the this layer's size and format
status_t setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags);
// modify current state
bool setPosition(float x, float y, bool immediate);
bool setLayer(uint32_t z);
bool setSize(uint32_t w, uint32_t h);
#ifdef USE_HWC2
bool setAlpha(float alpha);
bool setAlpha(uint8_t alpha);
bool setMatrix(const layer_state_t::matrix22_t& matrix);
bool setTransparentRegionHint(const Region& transparent);
bool setFlags(uint8_t flags, uint8_t mask);
bool setCrop(const Rect& crop);
bool setFinalCrop(const Rect& crop);
bool setLayerStack(uint32_t layerStack);
void deferTransactionUntil(const sp<IBinder>& handle, uint64_t frameNumber);
bool setOverrideScalingMode(int32_t overrideScalingMode);
// If we have received a new buffer this frame, we will pass its surface
// damage down to hardware composer. Otherwise, we must send a region with
// one empty rect.
void useSurfaceDamage();
void useEmptyDamage();
uint32_t getTransactionFlags(uint32_t flags);
uint32_t setTransactionFlags(uint32_t flags);
void computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
bool useIdentityTransform) const;
Rect computeBounds(const Region& activeTransparentRegion) const;
Rect computeBounds() const;
class Handle;
sp<IBinder> getHandle();
sp<IGraphicBufferProducer> getProducer() const;
const String8& getName() const;
int32_t getSequence() const { return sequence; }
// -----------------------------------------------------------------------
// Virtuals
virtual const char* getTypeId() const { return "Layer"; }
* isOpaque - true if this surface is opaque
* This takes into account the buffer format (i.e. whether or not the
* pixel format includes an alpha channel) and the "opaque" flag set
* on the layer. It does not examine the current plane alpha value.
virtual bool isOpaque(const Layer::State& s) const;
* isSecure - true if this surface is secure, that is if it prevents
* screenshots or VNC servers.
virtual bool isSecure() const;
* isProtected - true if the layer may contain protected content in the
virtual bool isProtected() const;
* isVisible - true if this layer is visible, false otherwise
virtual bool isVisible() const;
* isFixedSize - true if content has a fixed size
virtual bool isFixedSize() const;
* onDraw - draws the surface.
virtual void onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
bool useIdentityTransform) const;
// -----------------------------------------------------------------------
#ifdef USE_HWC2
void setGeometry(const sp<const DisplayDevice>& displayDevice);
void forceClientComposition(int32_t hwcId);
void setPerFrameData(const sp<const DisplayDevice>& displayDevice);
// callIntoHwc exists so we can update our local state and call
// acceptDisplayChanges without unnecessarily updating the device's state
void setCompositionType(int32_t hwcId, HWC2::Composition type,
bool callIntoHwc = true);
HWC2::Composition getCompositionType(int32_t hwcId) const;
void setClearClientTarget(int32_t hwcId, bool clear);
bool getClearClientTarget(int32_t hwcId) const;
void updateCursorPosition(const sp<const DisplayDevice>& hw);
void setGeometry(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer);
void setPerFrameData(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer);
void setAcquireFence(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer);
Rect getPosition(const sp<const DisplayDevice>& hw);
* called after page-flip
#ifdef USE_HWC2
void onLayerDisplayed(const sp<Fence>& releaseFence);
void onLayerDisplayed(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface* layer);
bool shouldPresentNow(const DispSync& dispSync) const;
* called before composition.
* returns true if the layer has pending updates.
bool onPreComposition();
* called after composition.
void onPostComposition();
#ifdef USE_HWC2
// If a buffer was replaced this frame, release the former buffer
void releasePendingBuffer();
* draw - performs some global clipping optimizations
* and calls onDraw().
void draw(const sp<const DisplayDevice>& hw, const Region& clip) const;
void draw(const sp<const DisplayDevice>& hw, bool useIdentityTransform) const;
void draw(const sp<const DisplayDevice>& hw) const;
* doTransaction - process the transaction. This is a good place to figure
* out which attributes of the surface have changed.
uint32_t doTransaction(uint32_t transactionFlags);
* setVisibleRegion - called to set the new visible region. This gives
* a chance to update the new visible region or record the fact it changed.
void setVisibleRegion(const Region& visibleRegion);
* setCoveredRegion - called when the covered region changes. The covered
* region corresponds to any area of the surface that is covered
* (transparently or not) by another surface.
void setCoveredRegion(const Region& coveredRegion);
* setVisibleNonTransparentRegion - called when the visible and
* non-transparent region changes.
void setVisibleNonTransparentRegion(const Region&
* latchBuffer - called each time the screen is redrawn and returns whether
* the visible regions need to be recomputed (this is a fairly heavy
* operation, so this should be set only if needed). Typically this is used
* to figure out if the content or size of a surface has changed.
Region latchBuffer(bool& recomputeVisibleRegions);
bool isPotentialCursor() const { return mPotentialCursor;}
* called with the state lock when the surface is removed from the
* current list
void onRemoved();
// Updates the transform hint in our SurfaceFlingerConsumer to match
// the current orientation of the display device.
void updateTransformHint(const sp<const DisplayDevice>& hw) const;
* returns the rectangle that crops the content of the layer and scales it
* to the layer's size.
Rect getContentCrop() const;
* Returns if a frame is queued.
bool hasQueuedFrame() const { return mQueuedFrames > 0 ||
mSidebandStreamChanged || mAutoRefresh; }
#ifdef USE_HWC2
// -----------------------------------------------------------------------
bool hasHwcLayer(int32_t hwcId) {
if (mHwcLayers.count(hwcId) == 0) {
return false;
if (mHwcLayers[hwcId].layer->isAbandoned()) {
ALOGI("Erasing abandoned layer %s on %d", mName.string(), hwcId);
return false;
return true;
std::shared_ptr<HWC2::Layer> getHwcLayer(int32_t hwcId) {
if (mHwcLayers.count(hwcId) == 0) {
return nullptr;
return mHwcLayers[hwcId].layer;
void setHwcLayer(int32_t hwcId, std::shared_ptr<HWC2::Layer>&& layer) {
if (layer) {
mHwcLayers[hwcId].layer = layer;
} else {
// -----------------------------------------------------------------------
void clearWithOpenGL(const sp<const DisplayDevice>& hw, const Region& clip) const;
void setFiltering(bool filtering);
bool getFiltering() const;
// only for debugging
inline const sp<GraphicBuffer>& getActiveBuffer() const { return mActiveBuffer; }
inline const State& getDrawingState() const { return mDrawingState; }
inline const State& getCurrentState() const { return mCurrentState; }
inline State& getCurrentState() { return mCurrentState; }
/* always call base class first */
void dump(String8& result, Colorizer& colorizer) const;
void dumpFrameStats(String8& result) const;
void clearFrameStats();
void logFrameStats();
void getFrameStats(FrameStats* outStats) const;
void getFenceData(String8* outName, uint64_t* outFrameNumber,
bool* outIsGlesComposition, nsecs_t* outPostedTime,
sp<Fence>* outAcquireFence, sp<Fence>* outPrevReleaseFence) const;
// constant
sp<SurfaceFlinger> mFlinger;
virtual void onFirstRef();
* Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
* is called.
class LayerCleaner {
sp<SurfaceFlinger> mFlinger;
wp<Layer> mLayer;
LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer);
// Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
virtual void onFrameAvailable(const BufferItem& item) override;
virtual void onFrameReplaced(const BufferItem& item) override;
virtual void onSidebandStreamChanged() override;
void commitTransaction(const State& stateToCommit);
// needsLinearFiltering - true if this surface's state requires filtering
bool needsFiltering(const sp<const DisplayDevice>& hw) const;
uint32_t getEffectiveUsage(uint32_t usage) const;
FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
bool isCropped() const;
static bool getOpacityForFormat(uint32_t format);
// drawing
void clearWithOpenGL(const sp<const DisplayDevice>& hw, const Region& clip,
float r, float g, float b, float alpha) const;
void drawWithOpenGL(const sp<const DisplayDevice>& hw, const Region& clip,
bool useIdentityTransform) const;
// Temporary - Used only for LEGACY camera mode.
uint32_t getProducerStickyTransform() const;
// -----------------------------------------------------------------------
class SyncPoint
SyncPoint(uint64_t frameNumber) : mFrameNumber(frameNumber),
mFrameIsAvailable(false), mTransactionIsApplied(false) {}
uint64_t getFrameNumber() const {
return mFrameNumber;
bool frameIsAvailable() const {
return mFrameIsAvailable;
void setFrameAvailable() {
mFrameIsAvailable = true;
bool transactionIsApplied() const {
return mTransactionIsApplied;
void setTransactionApplied() {
mTransactionIsApplied = true;
const uint64_t mFrameNumber;
std::atomic<bool> mFrameIsAvailable;
std::atomic<bool> mTransactionIsApplied;
// SyncPoints which will be signaled when the correct frame is at the head
// of the queue and dropped after the frame has been latched. Protected by
// mLocalSyncPointMutex.
Mutex mLocalSyncPointMutex;
std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
// SyncPoints which will be signaled and then dropped when the transaction
// is applied
std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
uint64_t getHeadFrameNumber() const;
// Returns false if the relevant frame has already been latched
bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
void pushPendingState();
void popPendingState(State* stateToCommit);
bool applyPendingStates(State* stateToCommit);
// Returns mCurrentScaling mode (originating from the
// Client) or mOverrideScalingMode mode (originating from
// the Surface Controller) if set.
uint32_t getEffectiveScalingMode() const;
void notifyAvailableFrames();
// -----------------------------------------------------------------------
// constants
sp<SurfaceFlingerConsumer> mSurfaceFlingerConsumer;
sp<IGraphicBufferProducer> mProducer;
uint32_t mTextureName; // from GLES
bool mPremultipliedAlpha;
String8 mName;
PixelFormat mFormat;
// these are protected by an external lock
State mCurrentState;
State mDrawingState;
volatile int32_t mTransactionFlags;
// Accessed from main thread and binder threads
Mutex mPendingStateMutex;
Vector<State> mPendingStates;
// thread-safe
volatile int32_t mQueuedFrames;
volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
FrameTracker mFrameTracker;
// main thread
sp<GraphicBuffer> mActiveBuffer;
sp<NativeHandle> mSidebandStream;
Rect mCurrentCrop;
uint32_t mCurrentTransform;
uint32_t mCurrentScalingMode;
// We encode unset as -1.
int32_t mOverrideScalingMode;
bool mCurrentOpacity;
std::atomic<uint64_t> mCurrentFrameNumber;
bool mRefreshPending;
bool mFrameLatencyNeeded;
// Whether filtering is forced on or not
bool mFiltering;
// Whether filtering is needed b/c of the drawingstate
bool mNeedsFiltering;
// The mesh used to draw the layer in GLES composition mode
mutable Mesh mMesh;
// The texture used to draw the layer in GLES composition mode
mutable Texture mTexture;
#ifdef USE_HWC2
// HWC items, accessed from the main thread
struct HWCInfo {
: layer(),
clearClientTarget(false) {}
std::shared_ptr<HWC2::Layer> layer;
bool forceClientComposition;
HWC2::Composition compositionType;
bool clearClientTarget;
std::unordered_map<int32_t, HWCInfo> mHwcLayers;
bool mIsGlesComposition;
// page-flip thread (currently main thread)
bool mProtectedByApp; // application requires protected path to external sink
// protected by mLock
mutable Mutex mLock;
// Set to true once we've returned this surface's handle
mutable bool mHasSurface;
const wp<Client> mClientRef;
// This layer can be a cursor on some displays.
bool mPotentialCursor;
// Local copy of the queued contents of the incoming BufferQueue
mutable Mutex mQueueItemLock;
Condition mQueueItemCondition;
Vector<BufferItem> mQueueItems;
std::atomic<uint64_t> mLastFrameNumberReceived;
bool mUpdateTexImageFailed; // This is only modified from the main thread
bool mAutoRefresh;
bool mFreezePositionUpdates;
// ---------------------------------------------------------------------------
}; // namespace android