blob: 299192ff74d3d1c93a0ed4a6257eb954e2817e2d [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "media/HeadTrackingProcessor.h"
#include <gtest/gtest.h>
#include "QuaternionUtil.h"
#include "TestUtil.h"
namespace android {
namespace media {
namespace {
using Eigen::Quaternionf;
using Eigen::Vector3f;
using Options = HeadTrackingProcessor::Options;
TEST(HeadTrackingProcessor, Initial) {
for (auto mode : {HeadTrackingMode::STATIC, HeadTrackingMode::WORLD_RELATIVE,
HeadTrackingMode::SCREEN_RELATIVE}) {
std::unique_ptr<HeadTrackingProcessor> processor =
createHeadTrackingProcessor(Options{}, mode);
processor->calculate(0);
EXPECT_EQ(processor->getActualMode(), HeadTrackingMode::STATIC);
EXPECT_EQ(processor->getHeadToStagePose(), Pose3f());
}
}
TEST(HeadTrackingProcessor, BasicComposition) {
const Pose3f worldToHead{{1, 2, 3}, Quaternionf::UnitRandom()};
const Pose3f worldToScreen{{4, 5, 6}, Quaternionf::UnitRandom()};
const Pose3f screenToStage{{7, 8, 9}, Quaternionf::UnitRandom()};
const float physicalToLogical = M_PI_2;
std::unique_ptr<HeadTrackingProcessor> processor =
createHeadTrackingProcessor(Options{}, HeadTrackingMode::SCREEN_RELATIVE);
// Establish a baseline for the drift compensators.
processor->setWorldToHeadPose(0, Pose3f(), Twist3f());
processor->setWorldToScreenPose(0, Pose3f());
processor->setDisplayOrientation(physicalToLogical);
processor->setWorldToHeadPose(0, worldToHead, Twist3f());
processor->setWorldToScreenPose(0, worldToScreen);
processor->setScreenToStagePose(screenToStage);
processor->calculate(0);
ASSERT_EQ(processor->getActualMode(), HeadTrackingMode::SCREEN_RELATIVE);
EXPECT_EQ(processor->getHeadToStagePose(), worldToHead.inverse() * worldToScreen *
Pose3f(rotateY(-physicalToLogical)) *
screenToStage);
processor->setDesiredMode(HeadTrackingMode::WORLD_RELATIVE);
processor->calculate(0);
ASSERT_EQ(processor->getActualMode(), HeadTrackingMode::WORLD_RELATIVE);
EXPECT_EQ(processor->getHeadToStagePose(), worldToHead.inverse() * screenToStage);
processor->setDesiredMode(HeadTrackingMode::STATIC);
processor->calculate(0);
ASSERT_EQ(processor->getActualMode(), HeadTrackingMode::STATIC);
EXPECT_EQ(processor->getHeadToStagePose(), screenToStage);
}
TEST(HeadTrackingProcessor, Prediction) {
const Pose3f worldToHead{{1, 2, 3}, Quaternionf::UnitRandom()};
const Twist3f headTwist{{4, 5, 6}, quaternionToRotationVector(Quaternionf::UnitRandom()) / 10};
const Pose3f worldToScreen{{4, 5, 6}, Quaternionf::UnitRandom()};
std::unique_ptr<HeadTrackingProcessor> processor = createHeadTrackingProcessor(
Options{.predictionDuration = 2.f}, HeadTrackingMode::WORLD_RELATIVE);
// Establish a baseline for the drift compensators.
processor->setWorldToHeadPose(0, Pose3f(), Twist3f());
processor->setWorldToScreenPose(0, Pose3f());
processor->setWorldToHeadPose(0, worldToHead, headTwist);
processor->setWorldToScreenPose(0, worldToScreen);
processor->calculate(0);
ASSERT_EQ(processor->getActualMode(), HeadTrackingMode::WORLD_RELATIVE);
EXPECT_EQ(processor->getHeadToStagePose(), (worldToHead * integrate(headTwist, 2.f)).inverse());
processor->setDesiredMode(HeadTrackingMode::SCREEN_RELATIVE);
processor->calculate(0);
ASSERT_EQ(processor->getActualMode(), HeadTrackingMode::SCREEN_RELATIVE);
EXPECT_EQ(processor->getHeadToStagePose(),
(worldToHead * integrate(headTwist, 2.f)).inverse() * worldToScreen);
processor->setDesiredMode(HeadTrackingMode::STATIC);
processor->calculate(0);
ASSERT_EQ(processor->getActualMode(), HeadTrackingMode::STATIC);
EXPECT_EQ(processor->getHeadToStagePose(), Pose3f());
}
TEST(HeadTrackingProcessor, SmoothModeSwitch) {
const Pose3f targetHeadToWorld = Pose3f({4, 0, 0}, rotateZ(M_PI / 2));
std::unique_ptr<HeadTrackingProcessor> processor = createHeadTrackingProcessor(
Options{.maxTranslationalVelocity = 1}, HeadTrackingMode::STATIC);
// Establish a baseline for the drift compensators.
processor->setWorldToHeadPose(0, Pose3f(), Twist3f());
processor->setWorldToScreenPose(0, Pose3f());
processor->calculate(0);
processor->setDesiredMode(HeadTrackingMode::WORLD_RELATIVE);
processor->setWorldToHeadPose(0, targetHeadToWorld.inverse(), Twist3f());
// We're expecting a gradual move to the target.
processor->calculate(0);
EXPECT_EQ(HeadTrackingMode::WORLD_RELATIVE, processor->getActualMode());
EXPECT_EQ(processor->getHeadToStagePose(), Pose3f());
processor->calculate(2);
EXPECT_EQ(HeadTrackingMode::WORLD_RELATIVE, processor->getActualMode());
EXPECT_EQ(processor->getHeadToStagePose(), Pose3f({2, 0, 0}, rotateZ(M_PI / 4)));
processor->calculate(4);
EXPECT_EQ(HeadTrackingMode::WORLD_RELATIVE, processor->getActualMode());
EXPECT_EQ(processor->getHeadToStagePose(), targetHeadToWorld);
// Now that we've reached the target, we should no longer be rate limiting.
processor->setWorldToHeadPose(4, Pose3f(), Twist3f());
processor->calculate(5);
EXPECT_EQ(HeadTrackingMode::WORLD_RELATIVE, processor->getActualMode());
EXPECT_EQ(processor->getHeadToStagePose(), Pose3f());
}
} // namespace
} // namespace media
} // namespace android