blob: 7b1dfd3a8aff77809ae38c4e5e4c2ca3aaadc37a [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Play silence and recover from dead servers or disconnected devices.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <aaudio/AAudio.h>
#include <aaudio/AAudioTesting.h>
#include "AAudioExampleUtils.h"
// Arbitrary period for glitches, once per second at 48000 Hz.
#define FORCED_UNDERRUN_PERIOD_FRAMES 48000
// How long to sleep in a callback to cause an intentional glitch. For testing.
#define FORCED_UNDERRUN_SLEEP_MICROS (10 * 1000)
#define MAX_TIMESTAMPS 1000
#define DEFAULT_TIMEOUT_NANOS ((int64_t)1000000000)
#define NUM_SECONDS 1
#define NUM_LOOPS 4
#define MAX_TESTS 20
typedef struct TimestampInfo {
int64_t framesTotal;
int64_t appPosition; // frames
int64_t appNanoseconds;
int64_t timestampPosition; // frames
int64_t timestampNanos;
aaudio_result_t result;
} TimestampInfo;
typedef struct TimestampCallbackData_s {
TimestampInfo timestamps[MAX_TIMESTAMPS];
int64_t framesTotal = 0;
int64_t nextFrameToGlitch = FORCED_UNDERRUN_PERIOD_FRAMES;
int32_t timestampCount = 0; // in timestamps
bool forceUnderruns = false;
} TimestampCallbackData_t;
struct TimeStampTestLog {
aaudio_policy_t isMmap;
aaudio_sharing_mode_t sharingMode;
aaudio_performance_mode_t performanceMode;
aaudio_direction_t direction;
aaudio_result_t result;
};
static int s_numTests = 0;
// Use a plain old array because we reference this from the callback and do not want any
// automatic memory allocation.
static TimeStampTestLog s_testLogs[MAX_TESTS]{};
static void logTestResult(bool isMmap,
aaudio_sharing_mode_t sharingMode,
aaudio_performance_mode_t performanceMode,
aaudio_direction_t direction,
aaudio_result_t result) {
if(s_numTests >= MAX_TESTS) {
printf("ERROR - MAX_TESTS too small = %d\n", MAX_TESTS);
return;
}
s_testLogs[s_numTests].isMmap = isMmap;
s_testLogs[s_numTests].sharingMode = sharingMode;
s_testLogs[s_numTests].performanceMode = performanceMode;
s_testLogs[s_numTests].direction = direction;
s_testLogs[s_numTests].result = result;
s_numTests++;
}
static void printTestResults() {
for (int i = 0; i < s_numTests; i++) {
TimeStampTestLog *log = &s_testLogs[i];
printf("%2d: mmap = %3s, sharing = %9s, perf = %11s, dir = %6s ---- %4s\n",
i,
log->isMmap ? "yes" : "no",
getSharingModeText(log->sharingMode),
getPerformanceModeText(log->performanceMode),
getDirectionText(log->direction),
log->result ? "FAIL" : "pass");
}
}
// Callback function that fills the audio output buffer.
aaudio_data_callback_result_t timestampDataCallbackProc(
AAudioStream *stream,
void *userData,
void *audioData __unused,
int32_t numFrames
) {
// should not happen but just in case...
if (userData == nullptr) {
printf("ERROR - SimplePlayerDataCallbackProc needs userData\n");
return AAUDIO_CALLBACK_RESULT_STOP;
}
TimestampCallbackData_t *timestampData = (TimestampCallbackData_t *) userData;
aaudio_direction_t direction = AAudioStream_getDirection(stream);
if (direction == AAUDIO_DIRECTION_INPUT) {
timestampData->framesTotal += numFrames;
}
if (timestampData->forceUnderruns) {
if (timestampData->framesTotal > timestampData->nextFrameToGlitch) {
usleep(FORCED_UNDERRUN_SLEEP_MICROS);
printf("Simulate glitch at %lld\n", (long long) timestampData->framesTotal);
timestampData->nextFrameToGlitch += FORCED_UNDERRUN_PERIOD_FRAMES;
}
}
if (timestampData->timestampCount < MAX_TIMESTAMPS) {
TimestampInfo *timestamp = &timestampData->timestamps[timestampData->timestampCount];
timestamp->result = AAudioStream_getTimestamp(stream,
CLOCK_MONOTONIC,
&timestamp->timestampPosition,
&timestamp->timestampNanos);
timestamp->framesTotal = timestampData->framesTotal;
timestamp->appPosition = (direction == AAUDIO_DIRECTION_OUTPUT)
? AAudioStream_getFramesWritten(stream)
: AAudioStream_getFramesRead(stream);
timestamp->appNanoseconds = getNanoseconds();
timestampData->timestampCount++;
}
if (direction == AAUDIO_DIRECTION_OUTPUT) {
timestampData->framesTotal += numFrames;
}
return AAUDIO_CALLBACK_RESULT_CONTINUE;
}
static TimestampCallbackData_t sTimestampData;
static aaudio_result_t testTimeStamps(aaudio_policy_t mmapPolicy,
aaudio_sharing_mode_t sharingMode,
aaudio_performance_mode_t performanceMode,
aaudio_direction_t direction) {
aaudio_result_t result = AAUDIO_OK;
int32_t framesPerBurst = 0;
int32_t actualChannelCount = 0;
int32_t actualSampleRate = 0;
int32_t originalBufferSize = 0;
int32_t requestedBufferSize = 0;
int32_t finalBufferSize = 0;
bool isMmap = false;
aaudio_format_t actualDataFormat = AAUDIO_FORMAT_PCM_FLOAT;
aaudio_sharing_mode_t actualSharingMode = AAUDIO_SHARING_MODE_SHARED;
aaudio_sharing_mode_t actualPerformanceMode = AAUDIO_PERFORMANCE_MODE_NONE;
AAudioStreamBuilder *aaudioBuilder = nullptr;
AAudioStream *aaudioStream = nullptr;
memset(&sTimestampData, 0, sizeof(sTimestampData));
printf("\n=================================================================================\n");
printf("--------- testTimeStamps(policy = %d, sharing = %s, perf = %s, dir = %s) --------\n",
mmapPolicy,
getSharingModeText(sharingMode),
getPerformanceModeText(performanceMode),
getDirectionText(direction));
AAudio_setMMapPolicy(mmapPolicy);
// Use an AAudioStreamBuilder to contain requested parameters.
result = AAudio_createStreamBuilder(&aaudioBuilder);
if (result != AAUDIO_OK) {
printf("AAudio_createStreamBuilder returned %s",
AAudio_convertResultToText(result));
goto finish;
}
// Request stream properties.
AAudioStreamBuilder_setFormat(aaudioBuilder, AAUDIO_FORMAT_PCM_I16);
AAudioStreamBuilder_setSharingMode(aaudioBuilder, sharingMode);
AAudioStreamBuilder_setPerformanceMode(aaudioBuilder, performanceMode);
AAudioStreamBuilder_setDirection(aaudioBuilder, direction);
AAudioStreamBuilder_setDataCallback(aaudioBuilder, timestampDataCallbackProc, &sTimestampData);
// Create an AAudioStream using the Builder.
result = AAudioStreamBuilder_openStream(aaudioBuilder, &aaudioStream);
if (result != AAUDIO_OK) {
printf("AAudioStreamBuilder_openStream returned %s",
AAudio_convertResultToText(result));
goto finish;
}
// Check to see what kind of stream we actually got.
actualSampleRate = AAudioStream_getSampleRate(aaudioStream);
actualChannelCount = AAudioStream_getChannelCount(aaudioStream);
actualDataFormat = AAudioStream_getFormat(aaudioStream);
actualSharingMode = AAudioStream_getSharingMode(aaudioStream);
if (actualSharingMode != sharingMode) {
printf("did not get expected sharingMode, got %3d, skipping test\n",
actualSharingMode);
result = AAUDIO_OK;
goto finish;
}
actualPerformanceMode = AAudioStream_getPerformanceMode(aaudioStream);
if (actualPerformanceMode != performanceMode) {
printf("did not get expected performanceMode, got %3d, skipping test\n",
actualPerformanceMode);
result = AAUDIO_OK;
goto finish;
}
printf(" chans = %3d, rate = %6d format = %d\n",
actualChannelCount, actualSampleRate, actualDataFormat);
isMmap = AAudioStream_isMMapUsed(aaudioStream);
printf(" Is MMAP used? %s\n", isMmap ? "yes" : "no");
// This is the number of frames that are read in one chunk by a DMA controller
// or a DSP or a mixer.
framesPerBurst = AAudioStream_getFramesPerBurst(aaudioStream);
printf(" framesPerBurst = %3d\n", framesPerBurst);
originalBufferSize = AAudioStream_getBufferSizeInFrames(aaudioStream);
requestedBufferSize = 4 * framesPerBurst;
finalBufferSize = AAudioStream_setBufferSizeInFrames(aaudioStream, requestedBufferSize);
printf(" BufferSize: original = %4d, requested = %4d, final = %4d\n",
originalBufferSize, requestedBufferSize, finalBufferSize);
{
int64_t position;
int64_t nanoseconds;
result = AAudioStream_getTimestamp(aaudioStream, CLOCK_MONOTONIC, &position, &nanoseconds);
printf("before start, AAudioStream_getTimestamp() returns %s\n",
AAudio_convertResultToText(result));
}
for (int runs = 0; runs < NUM_LOOPS; runs++) {
printf("------------------ loop #%d\n", runs);
int64_t temp = sTimestampData.framesTotal;
memset(&sTimestampData, 0, sizeof(sTimestampData));
sTimestampData.framesTotal = temp;
sTimestampData.forceUnderruns = false;
result = AAudioStream_requestStart(aaudioStream);
if (result != AAUDIO_OK) {
printf("AAudioStream_requestStart returned %s",
AAudio_convertResultToText(result));
goto finish;
}
for (int second = 0; second < NUM_SECONDS; second++) {
// Give AAudio callback time to run in the background.
usleep(200 * 1000);
// Periodically print the progress so we know it hasn't died.
printf("framesWritten = %d, XRuns = %d\n",
(int) AAudioStream_getFramesWritten(aaudioStream),
(int) AAudioStream_getXRunCount(aaudioStream)
);
}
result = AAudioStream_requestStop(aaudioStream);
if (result != AAUDIO_OK) {
printf("AAudioStream_requestStop returned %s\n",
AAudio_convertResultToText(result));
}
printf("timestampCount = %d\n", sTimestampData.timestampCount);
int printedGood = 0;
int printedBad = 0;
for (int i = 1; i < sTimestampData.timestampCount; i++) {
TimestampInfo *timestamp = &sTimestampData.timestamps[i];
if (timestamp->result != AAUDIO_OK) {
if (printedBad < 5) {
printf(" %3d : frames %8lld, xferd %8lld, result = %s\n",
i,
(long long) timestamp->framesTotal,
(long long) timestamp->appPosition,
AAudio_convertResultToText(timestamp->result));
printedBad++;
}
} else {
const bool posChanged = (timestamp->timestampPosition !=
(timestamp - 1)->timestampPosition);
const bool timeChanged = (timestamp->timestampNanos
!= (timestamp - 1)->timestampNanos);
if ((printedGood < 20) && (posChanged || timeChanged)) {
bool negative = timestamp->timestampPosition < 0;
bool retro = (i > 0 && (timestamp->timestampPosition <
(timestamp - 1)->timestampPosition));
const char *message = negative ? " <=NEGATIVE!"
: (retro ? " <= RETROGRADE!" : "");
double latency = calculateLatencyMillis(timestamp->timestampPosition,
timestamp->timestampNanos,
timestamp->appPosition,
timestamp->appNanoseconds,
actualSampleRate);
printf(" %3d : frames %8lld, xferd %8lld",
i,
(long long) timestamp->framesTotal,
(long long) timestamp->appPosition);
printf(" STAMP: pos = %8lld, nanos = %8lld, lat = %7.1f msec %s\n",
(long long) timestamp->timestampPosition,
(long long) timestamp->timestampNanos,
latency,
message);
printedGood++;
}
}
}
if (printedGood == 0) {
printf("ERROR - AAudioStream_getTimestamp() never gave us a valid timestamp\n");
result = AAUDIO_ERROR_INTERNAL;
} else {
// Make sure we do not get timestamps when stopped.
int64_t position;
int64_t time;
aaudio_result_t tempResult = AAudioStream_getTimestamp(aaudioStream,
CLOCK_MONOTONIC,
&position, &time);
if (tempResult != AAUDIO_ERROR_INVALID_STATE) {
printf("ERROR - AAudioStream_getTimestamp() should return"
" INVALID_STATE when stopped! %s\n",
AAudio_convertResultToText(tempResult));
result = AAUDIO_ERROR_INTERNAL;
}
}
// Avoid race conditions in AudioFlinger.
// There is normally a delay between a real user stopping and restarting a stream.
sleep(1);
}
finish:
logTestResult(isMmap, sharingMode, performanceMode, direction, result);
if (aaudioStream != nullptr) {
AAudioStream_close(aaudioStream);
}
AAudioStreamBuilder_delete(aaudioBuilder);
printf("result = %d = %s\n", result, AAudio_convertResultToText(result));
return result;
}
int main(int argc, char **argv) {
(void) argc;
(void) argv;
aaudio_result_t result = AAUDIO_OK;
// Make printf print immediately so that debug info is not stuck
// in a buffer if we hang or crash.
setvbuf(stdout, nullptr, _IONBF, (size_t) 0);
printf("Test Timestamps V0.1.4\n");
// Legacy
aaudio_policy_t policy = AAUDIO_POLICY_NEVER;
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_SHARED,
AAUDIO_PERFORMANCE_MODE_NONE,
AAUDIO_DIRECTION_INPUT);
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_SHARED,
AAUDIO_PERFORMANCE_MODE_LOW_LATENCY,
AAUDIO_DIRECTION_INPUT);
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_SHARED,
AAUDIO_PERFORMANCE_MODE_NONE,
AAUDIO_DIRECTION_OUTPUT);
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_SHARED,
AAUDIO_PERFORMANCE_MODE_LOW_LATENCY,
AAUDIO_DIRECTION_OUTPUT);
// MMAP
policy = AAUDIO_POLICY_ALWAYS;
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_EXCLUSIVE,
AAUDIO_PERFORMANCE_MODE_LOW_LATENCY,
AAUDIO_DIRECTION_INPUT);
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_EXCLUSIVE,
AAUDIO_PERFORMANCE_MODE_LOW_LATENCY,
AAUDIO_DIRECTION_OUTPUT);
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_SHARED,
AAUDIO_PERFORMANCE_MODE_LOW_LATENCY,
AAUDIO_DIRECTION_INPUT);
result = testTimeStamps(policy,
AAUDIO_SHARING_MODE_SHARED,
AAUDIO_PERFORMANCE_MODE_LOW_LATENCY,
AAUDIO_DIRECTION_OUTPUT);
printTestResults();
return (result == AAUDIO_OK) ? EXIT_SUCCESS : EXIT_FAILURE;
}