blob: 9816fe1d8bfa0e14592fcf640263d032bb80f6df [file] [log] [blame]
/*
* Copyright 2016, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_MEDIA_OMX_V1_0__CONVERSION_H
#define ANDROID_HARDWARE_MEDIA_OMX_V1_0__CONVERSION_H
#include <vector>
#include <list>
#include <unistd.h>
#include <hidl/MQDescriptor.h>
#include <hidl/Status.h>
#include <hidlmemory/mapping.h>
#include <binder/Binder.h>
#include <binder/Status.h>
#include <ui/FenceTime.h>
#include <cutils/native_handle.h>
#include <ui/GraphicBuffer.h>
#include <media/OMXFenceParcelable.h>
#include <media/OMXBuffer.h>
#include <media/hardware/VideoAPI.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <android/hardware/media/omx/1.0/types.h>
#include <android/hardware/media/omx/1.0/IOmx.h>
#include <android/hardware/media/omx/1.0/IOmxNode.h>
#include <android/hardware/media/omx/1.0/IOmxBufferSource.h>
#include <android/hardware/media/omx/1.0/IOmxObserver.h>
#include <android/hardware/media/omx/1.0/IGraphicBufferSource.h>
#include <android/IGraphicBufferSource.h>
#include <android/IOMXBufferSource.h>
namespace android {
namespace hardware {
namespace media {
namespace omx {
namespace V1_0 {
namespace utils {
using ::android::hardware::hidl_array;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hardware::hidl_handle;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::sp;
using ::android::String8;
using ::android::OMXFenceParcelable;
using ::android::hardware::media::omx::V1_0::Message;
using ::android::omx_message;
using ::android::hardware::media::omx::V1_0::ColorAspects;
using ::android::hardware::media::V1_0::Rect;
using ::android::hardware::media::V1_0::Region;
using ::android::hardware::graphics::common::V1_0::Dataspace;
using ::android::hardware::graphics::common::V1_0::PixelFormat;
using ::android::OMXBuffer;
using ::android::hardware::media::V1_0::AnwBuffer;
using ::android::GraphicBuffer;
using ::android::hardware::media::omx::V1_0::IOmx;
using ::android::IOMX;
using ::android::hardware::media::omx::V1_0::IOmxNode;
using ::android::IOMXNode;
using ::android::hardware::media::omx::V1_0::IOmxObserver;
using ::android::IOMXObserver;
using ::android::hardware::media::omx::V1_0::IOmxBufferSource;
using ::android::IOMXBufferSource;
// native_handle_t helper functions.
/**
* \brief Take an fd and create a native handle containing only the given fd.
* The created handle will need to be deleted manually with
* `native_handle_delete()`.
*
* \param[in] fd The source file descriptor (of type `int`).
* \return The create `native_handle_t*` that contains the given \p fd. If the
* supplied \p fd is negative, the created native handle will contain no file
* descriptors.
*
* If the native handle cannot be created, the return value will be
* `nullptr`.
*
* This function does not duplicate the file descriptor.
*/
inline native_handle_t* native_handle_create_from_fd(int fd) {
if (fd < 0) {
return native_handle_create(0, 0);
}
native_handle_t* nh = native_handle_create(1, 0);
if (nh == nullptr) {
return nullptr;
}
nh->data[0] = fd;
return nh;
}
/**
* \brief Extract a file descriptor from a native handle.
*
* \param[in] nh The source `native_handle_t*`.
* \param[in] index The index of the file descriptor in \p nh to read from. This
* input has the default value of `0`.
* \return The `index`-th file descriptor in \p nh. If \p nh does not have
* enough file descriptors, the returned value will be `-1`.
*
* This function does not duplicate the file descriptor.
*/
inline int native_handle_read_fd(native_handle_t const* nh, int index = 0) {
return ((nh == nullptr) || (nh->numFds == 0) ||
(nh->numFds <= index) || (index < 0)) ?
-1 : nh->data[index];
}
/**
* Conversion functions
* ====================
*
* There are two main directions of conversion:
* - `inTargetType(...)`: Create a wrapper whose lifetime depends on the
* input. The wrapper has type `TargetType`.
* - `toTargetType(...)`: Create a standalone object of type `TargetType` that
* corresponds to the input. The lifetime of the output does not depend on the
* lifetime of the input.
* - `wrapIn(TargetType*, ...)`: Same as `inTargetType()`, but for `TargetType`
* that cannot be copied and/or moved efficiently, or when there are multiple
* output arguments.
* - `convertTo(TargetType*, ...)`: Same as `toTargetType()`, but for
* `TargetType` that cannot be copied and/or moved efficiently, or when there
* are multiple output arguments.
*
* `wrapIn()` and `convertTo()` functions will take output arguments before
* input arguments. Some of these functions might return a value to indicate
* success or error.
*
* In converting or wrapping something as a Treble type that contains a
* `hidl_handle`, `native_handle_t*` will need to be created and returned as
* an additional output argument, hence only `wrapIn()` or `convertTo()` would
* be available. The caller must call `native_handle_delete()` to deallocate the
* returned native handle when it is no longer needed.
*
* For types that contain file descriptors, `inTargetType()` and `wrapAs()` do
* not perform duplication of file descriptors, while `toTargetType()` and
* `convertTo()` do.
*/
/**
* \brief Convert `Return<void>` to `binder::Status`.
*
* \param[in] t The source `Return<void>`.
* \return The corresponding `binder::Status`.
*/
// convert: Return<void> -> ::android::binder::Status
inline ::android::binder::Status toBinderStatus(
Return<void> const& t) {
return ::android::binder::Status::fromExceptionCode(
t.isOk() ? OK : UNKNOWN_ERROR,
t.description().c_str());
}
/**
* \brief Convert `Return<Status>` to `binder::Status`.
*
* \param[in] t The source `Return<Status>`.
* \return The corresponding `binder::Status`.
*/
// convert: Return<Status> -> ::android::binder::Status
inline ::android::binder::Status toBinderStatus(
Return<Status> const& t) {
return ::android::binder::Status::fromStatusT(
t.isOk() ? static_cast<status_t>(static_cast<Status>(t)) : UNKNOWN_ERROR);
}
/**
* \brief Convert `Return<Status>` to `status_t`. This is for legacy binder
* calls.
*
* \param[in] t The source `Return<Status>`.
* \return The corresponding `status_t`.
*
* This function first check if \p t has a transport error. If it does, then the
* return value is the transport error code. Otherwise, the return value is
* converted from `Status` contained inside \p t.
*
* Note:
* - This `Status` is omx-specific. It is defined in `types.hal`.
* - The name of this function is not `convert`.
*/
// convert: Status -> status_t
inline status_t toStatusT(Return<Status> const& t) {
return t.isOk() ? static_cast<status_t>(static_cast<Status>(t)) : UNKNOWN_ERROR;
}
/**
* \brief Convert `Return<void>` to `status_t`. This is for legacy binder calls.
*
* \param[in] t The source `Return<void>`.
* \return The corresponding `status_t`.
*/
// convert: Return<void> -> status_t
inline status_t toStatusT(Return<void> const& t) {
return t.isOk() ? OK : UNKNOWN_ERROR;
}
/**
* \brief Convert `Status` to `status_t`. This is for legacy binder calls.
*
* \param[in] t The source `Status`.
* \return the corresponding `status_t`.
*/
// convert: Status -> status_t
inline status_t toStatusT(Status const& t) {
return static_cast<status_t>(t);
}
/**
* \brief Convert `status_t` to `Status`.
*
* \param[in] l The source `status_t`.
* \return The corresponding `Status`.
*/
// convert: status_t -> Status
inline Status toStatus(status_t l) {
return static_cast<Status>(l);
}
/**
* \brief Wrap `native_handle_t*` in `hidl_handle`.
*
* \param[in] nh The source `native_handle_t*`.
* \return The `hidl_handle` that points to \p nh.
*/
// wrap: native_handle_t* -> hidl_handle
inline hidl_handle inHidlHandle(native_handle_t const* nh) {
return hidl_handle(nh);
}
/**
* \brief Wrap an `omx_message` and construct the corresponding `Message`.
*
* \param[out] t The wrapper of type `Message`.
* \param[out] nh The native_handle_t referred to by `t->fence`.
* \param[in] l The source `omx_message`.
* \return `true` if the wrapping is successful; `false` otherwise.
*
* Upon success, \p nh will be created to hold the file descriptor stored in
* `l.fenceFd`, and `t->fence` will point to \p nh. \p nh will need to be
* destroyed manually by `native_handle_delete()` when \p t is no longer needed.
*
* Upon failure, \p nh will not be created and will not need to be deleted. \p t
* will be invalid.
*/
// wrap, omx_message -> Message, native_handle_t*
inline bool wrapAs(Message* t, native_handle_t** nh, omx_message const& l) {
*nh = native_handle_create_from_fd(l.fenceFd);
if (!*nh) {
return false;
}
t->fence = *nh;
switch (l.type) {
case omx_message::EVENT:
t->type = Message::Type::EVENT;
t->data.eventData.event = uint32_t(l.u.event_data.event);
t->data.eventData.data1 = l.u.event_data.data1;
t->data.eventData.data2 = l.u.event_data.data2;
t->data.eventData.data3 = l.u.event_data.data3;
t->data.eventData.data4 = l.u.event_data.data4;
break;
case omx_message::EMPTY_BUFFER_DONE:
t->type = Message::Type::EMPTY_BUFFER_DONE;
t->data.bufferData.buffer = l.u.buffer_data.buffer;
break;
case omx_message::FILL_BUFFER_DONE:
t->type = Message::Type::FILL_BUFFER_DONE;
t->data.extendedBufferData.buffer = l.u.extended_buffer_data.buffer;
t->data.extendedBufferData.rangeOffset =
l.u.extended_buffer_data.range_offset;
t->data.extendedBufferData.rangeLength =
l.u.extended_buffer_data.range_length;
t->data.extendedBufferData.flags = l.u.extended_buffer_data.flags;
t->data.extendedBufferData.timestampUs =
l.u.extended_buffer_data.timestamp;
break;
case omx_message::FRAME_RENDERED:
t->type = Message::Type::FRAME_RENDERED;
t->data.renderData.timestampUs = l.u.render_data.timestamp;
t->data.renderData.systemTimeNs = l.u.render_data.nanoTime;
break;
default:
native_handle_delete(*nh);
return false;
}
return true;
}
/**
* \brief Wrap a `Message` inside an `omx_message`.
*
* \param[out] l The wrapper of type `omx_message`.
* \param[in] t The source `Message`.
* \return `true` if the wrapping is successful; `false` otherwise.
*/
// wrap: Message -> omx_message
inline bool wrapAs(omx_message* l, Message const& t) {
l->fenceFd = native_handle_read_fd(t.fence);
switch (t.type) {
case Message::Type::EVENT:
l->type = omx_message::EVENT;
l->u.event_data.event = OMX_EVENTTYPE(t.data.eventData.event);
l->u.event_data.data1 = t.data.eventData.data1;
l->u.event_data.data2 = t.data.eventData.data2;
l->u.event_data.data3 = t.data.eventData.data3;
l->u.event_data.data4 = t.data.eventData.data4;
break;
case Message::Type::EMPTY_BUFFER_DONE:
l->type = omx_message::EMPTY_BUFFER_DONE;
l->u.buffer_data.buffer = t.data.bufferData.buffer;
break;
case Message::Type::FILL_BUFFER_DONE:
l->type = omx_message::FILL_BUFFER_DONE;
l->u.extended_buffer_data.buffer = t.data.extendedBufferData.buffer;
l->u.extended_buffer_data.range_offset =
t.data.extendedBufferData.rangeOffset;
l->u.extended_buffer_data.range_length =
t.data.extendedBufferData.rangeLength;
l->u.extended_buffer_data.flags = t.data.extendedBufferData.flags;
l->u.extended_buffer_data.timestamp =
t.data.extendedBufferData.timestampUs;
break;
case Message::Type::FRAME_RENDERED:
l->type = omx_message::FRAME_RENDERED;
l->u.render_data.timestamp = t.data.renderData.timestampUs;
l->u.render_data.nanoTime = t.data.renderData.systemTimeNs;
break;
default:
return false;
}
return true;
}
/**
* \brief Similar to `wrapTo(omx_message*, Message const&)`, but the output will
* have an extended lifetime.
*
* \param[out] l The output `omx_message`.
* \param[in] t The source `Message`.
* \return `true` if the conversion is successful; `false` otherwise.
*
* This function calls `wrapto()`, then attempts to duplicate the file
* descriptor for the fence if it is not `-1`. If duplication fails, `false`
* will be returned.
*/
// convert: Message -> omx_message
inline bool convertTo(omx_message* l, Message const& t) {
if (!wrapAs(l, t)) {
return false;
}
if (l->fenceFd == -1) {
return true;
}
l->fenceFd = dup(l->fenceFd);
return l->fenceFd != -1;
}
/**
* \brief Wrap an `OMXFenceParcelable` inside a `hidl_handle`.
*
* \param[out] t The wrapper of type `hidl_handle`.
* \param[out] nh The native handle created to hold the file descriptor inside
* \p l.
* \param[in] l The source `OMXFenceParcelable`, which essentially contains one
* file descriptor.
* \return `true` if \p t and \p nh are successfully created to wrap around \p
* l; `false` otherwise.
*
* On success, \p nh needs to be deleted by the caller with
* `native_handle_delete()` after \p t and \p nh are no longer needed.
*
* On failure, \p nh will not need to be deleted, and \p t will hold an invalid
* value.
*/
// wrap: OMXFenceParcelable -> hidl_handle, native_handle_t*
inline bool wrapAs(hidl_handle* t, native_handle_t** nh,
OMXFenceParcelable const& l) {
*nh = native_handle_create_from_fd(l.get());
if (!*nh) {
return false;
}
*t = *nh;
return true;
}
/**
* \brief Wrap a `hidl_handle` inside an `OMXFenceParcelable`.
*
* \param[out] l The wrapper of type `OMXFenceParcelable`.
* \param[in] t The source `hidl_handle`.
*/
// wrap: hidl_handle -> OMXFenceParcelable
inline void wrapAs(OMXFenceParcelable* l, hidl_handle const& t) {
l->mFenceFd = native_handle_read_fd(t);
}
/**
* \brief Convert a `hidl_handle` to `OMXFenceParcelable`. If `hidl_handle`
* contains file descriptors, the first file descriptor will be duplicated and
* stored in the output `OMXFenceParcelable`.
*
* \param[out] l The output `OMXFenceParcelable`.
* \param[in] t The input `hidl_handle`.
* \return `false` if \p t contains a valid file descriptor but duplication
* fails; `true` otherwise.
*/
// convert: hidl_handle -> OMXFenceParcelable
inline bool convertTo(OMXFenceParcelable* l, hidl_handle const& t) {
int fd = native_handle_read_fd(t);
if (fd != -1) {
fd = dup(fd);
if (fd == -1) {
return false;
}
}
l->mFenceFd = fd;
return true;
}
/**
* \brief Convert `::android::ColorAspects` to `ColorAspects`.
*
* \param[in] l The source `::android::ColorAspects`.
* \return The corresponding `ColorAspects`.
*/
// convert: ::android::ColorAspects -> ColorAspects
inline ColorAspects toHardwareColorAspects(::android::ColorAspects const& l) {
return ColorAspects{
static_cast<ColorAspects::Range>(l.mRange),
static_cast<ColorAspects::Primaries>(l.mPrimaries),
static_cast<ColorAspects::Transfer>(l.mTransfer),
static_cast<ColorAspects::MatrixCoeffs>(l.mMatrixCoeffs)};
}
/**
* \brief Convert `int32_t` to `ColorAspects`.
*
* \param[in] l The source `int32_t`.
* \return The corresponding `ColorAspects`.
*/
// convert: int32_t -> ColorAspects
inline ColorAspects toHardwareColorAspects(int32_t l) {
return ColorAspects{
static_cast<ColorAspects::Range>((l >> 24) & 0xFF),
static_cast<ColorAspects::Primaries>((l >> 16) & 0xFF),
static_cast<ColorAspects::Transfer>(l & 0xFF),
static_cast<ColorAspects::MatrixCoeffs>((l >> 8) & 0xFF)};
}
/**
* \brief Convert `ColorAspects` to `::android::ColorAspects`.
*
* \param[in] t The source `ColorAspects`.
* \return The corresponding `::android::ColorAspects`.
*/
// convert: ColorAspects -> ::android::ColorAspects
inline int32_t toCompactColorAspects(ColorAspects const& t) {
return static_cast<int32_t>(
(static_cast<uint32_t>(t.range) << 24) |
(static_cast<uint32_t>(t.primaries) << 16) |
(static_cast<uint32_t>(t.transfer)) |
(static_cast<uint32_t>(t.matrixCoeffs) << 8));
}
/**
* \brief Convert `int32_t` to `Dataspace`.
*
* \param[in] l The source `int32_t`.
* \result The corresponding `Dataspace`.
*/
// convert: int32_t -> Dataspace
inline Dataspace toHardwareDataspace(int32_t l) {
return static_cast<Dataspace>(l);
}
/**
* \brief Convert `Dataspace` to `int32_t`.
*
* \param[in] t The source `Dataspace`.
* \result The corresponding `int32_t`.
*/
// convert: Dataspace -> int32_t
inline int32_t toRawDataspace(Dataspace const& t) {
return static_cast<int32_t>(t);
}
/**
* \brief Wrap an opaque buffer inside a `hidl_vec<uint8_t>`.
*
* \param[in] l The pointer to the beginning of the opaque buffer.
* \param[in] size The size of the buffer.
* \return A `hidl_vec<uint8_t>` that points to the buffer.
*/
// wrap: void*, size_t -> hidl_vec<uint8_t>
inline hidl_vec<uint8_t> inHidlBytes(void const* l, size_t size) {
hidl_vec<uint8_t> t;
t.setToExternal(static_cast<uint8_t*>(const_cast<void*>(l)), size, false);
return t;
}
/**
* \brief Create a `hidl_vec<uint8_t>` that is a copy of an opaque buffer.
*
* \param[in] l The pointer to the beginning of the opaque buffer.
* \param[in] size The size of the buffer.
* \return A `hidl_vec<uint8_t>` that is a copy of the input buffer.
*/
// convert: void*, size_t -> hidl_vec<uint8_t>
inline hidl_vec<uint8_t> toHidlBytes(void const* l, size_t size) {
hidl_vec<uint8_t> t;
t.resize(size);
uint8_t const* src = static_cast<uint8_t const*>(l);
std::copy(src, src + size, t.data());
return t;
}
/**
* \brief Wrap `GraphicBuffer` in `AnwBuffer`.
*
* \param[out] t The wrapper of type `AnwBuffer`.
* \param[in] l The source `GraphicBuffer`.
*/
// wrap: GraphicBuffer -> AnwBuffer
inline void wrapAs(AnwBuffer* t, GraphicBuffer const& l) {
t->attr.width = l.getWidth();
t->attr.height = l.getHeight();
t->attr.stride = l.getStride();
t->attr.format = static_cast<PixelFormat>(l.getPixelFormat());
t->attr.layerCount = l.getLayerCount();
t->attr.usage = l.getUsage();
t->attr.id = l.getId();
t->attr.generationNumber = l.getGenerationNumber();
t->nativeHandle = hidl_handle(l.handle);
}
/**
* \brief Convert `AnwBuffer` to `GraphicBuffer`.
*
* \param[out] l The destination `GraphicBuffer`.
* \param[in] t The source `AnwBuffer`.
*
* This function will duplicate all file descriptors in \p t.
*/
// convert: AnwBuffer -> GraphicBuffer
// Ref: frameworks/native/libs/ui/GraphicBuffer.cpp: GraphicBuffer::flatten
inline bool convertTo(GraphicBuffer* l, AnwBuffer const& t) {
native_handle_t* handle = t.nativeHandle == nullptr ?
nullptr : native_handle_clone(t.nativeHandle);
size_t const numInts = 12 + (handle ? handle->numInts : 0);
int32_t* ints = new int32_t[numInts];
size_t numFds = static_cast<size_t>(handle ? handle->numFds : 0);
int* fds = new int[numFds];
ints[0] = 'GBFR';
ints[1] = static_cast<int32_t>(t.attr.width);
ints[2] = static_cast<int32_t>(t.attr.height);
ints[3] = static_cast<int32_t>(t.attr.stride);
ints[4] = static_cast<int32_t>(t.attr.format);
ints[5] = static_cast<int32_t>(t.attr.layerCount);
ints[6] = static_cast<int32_t>(t.attr.usage);
ints[7] = static_cast<int32_t>(t.attr.id >> 32);
ints[8] = static_cast<int32_t>(t.attr.id & 0xFFFFFFFF);
ints[9] = static_cast<int32_t>(t.attr.generationNumber);
ints[10] = 0;
ints[11] = 0;
if (handle) {
ints[10] = static_cast<int32_t>(handle->numFds);
ints[11] = static_cast<int32_t>(handle->numInts);
int* intsStart = handle->data + handle->numFds;
std::copy(handle->data, intsStart, fds);
std::copy(intsStart, intsStart + handle->numInts, &ints[12]);
}
void const* constBuffer = static_cast<void const*>(ints);
size_t size = numInts * sizeof(int32_t);
int const* constFds = static_cast<int const*>(fds);
status_t status = l->unflatten(constBuffer, size, constFds, numFds);
delete [] fds;
delete [] ints;
native_handle_delete(handle);
return status == NO_ERROR;
}
/**
* \brief Wrap `OMXBuffer` in `CodecBuffer`.
*
* \param[out] t The wrapper of type `CodecBuffer`.
* \param[in] l The source `OMXBuffer`.
* \return `true` if the wrapping is successful; `false` otherwise.
*/
// wrap: OMXBuffer -> CodecBuffer
inline bool wrapAs(CodecBuffer* t, OMXBuffer const& l) {
t->sharedMemory = hidl_memory();
t->nativeHandle = hidl_handle();
switch (l.mBufferType) {
case OMXBuffer::kBufferTypeInvalid: {
t->type = CodecBuffer::Type::INVALID;
return true;
}
case OMXBuffer::kBufferTypePreset: {
t->type = CodecBuffer::Type::PRESET;
t->attr.preset.rangeLength = static_cast<uint32_t>(l.mRangeLength);
t->attr.preset.rangeOffset = static_cast<uint32_t>(l.mRangeOffset);
return true;
}
case OMXBuffer::kBufferTypeHidlMemory: {
t->type = CodecBuffer::Type::SHARED_MEM;
t->sharedMemory = l.mHidlMemory;
return true;
}
case OMXBuffer::kBufferTypeSharedMem: {
// This is not supported.
return false;
}
case OMXBuffer::kBufferTypeANWBuffer: {
t->type = CodecBuffer::Type::ANW_BUFFER;
if (l.mGraphicBuffer == nullptr) {
t->attr.anwBuffer.width = 0;
t->attr.anwBuffer.height = 0;
t->attr.anwBuffer.stride = 0;
t->attr.anwBuffer.format = static_cast<PixelFormat>(1);
t->attr.anwBuffer.layerCount = 0;
t->attr.anwBuffer.usage = 0;
return true;
}
t->attr.anwBuffer.width = l.mGraphicBuffer->getWidth();
t->attr.anwBuffer.height = l.mGraphicBuffer->getHeight();
t->attr.anwBuffer.stride = l.mGraphicBuffer->getStride();
t->attr.anwBuffer.format = static_cast<PixelFormat>(
l.mGraphicBuffer->getPixelFormat());
t->attr.anwBuffer.layerCount = l.mGraphicBuffer->getLayerCount();
t->attr.anwBuffer.usage = l.mGraphicBuffer->getUsage();
t->nativeHandle = l.mGraphicBuffer->handle;
return true;
}
case OMXBuffer::kBufferTypeNativeHandle: {
t->type = CodecBuffer::Type::NATIVE_HANDLE;
t->nativeHandle = l.mNativeHandle->handle();
return true;
}
}
return false;
}
/**
* \brief Convert `CodecBuffer` to `OMXBuffer`.
*
* \param[out] l The destination `OMXBuffer`.
* \param[in] t The source `CodecBuffer`.
* \return `true` if successful; `false` otherwise.
*/
// convert: CodecBuffer -> OMXBuffer
inline bool convertTo(OMXBuffer* l, CodecBuffer const& t) {
switch (t.type) {
case CodecBuffer::Type::INVALID: {
*l = OMXBuffer();
return true;
}
case CodecBuffer::Type::PRESET: {
*l = OMXBuffer(
t.attr.preset.rangeOffset,
t.attr.preset.rangeLength);
return true;
}
case CodecBuffer::Type::SHARED_MEM: {
*l = OMXBuffer(t.sharedMemory);
return true;
}
case CodecBuffer::Type::ANW_BUFFER: {
if (t.nativeHandle.getNativeHandle() == nullptr) {
*l = OMXBuffer(sp<GraphicBuffer>(nullptr));
return true;
}
AnwBuffer anwBuffer;
anwBuffer.nativeHandle = t.nativeHandle;
anwBuffer.attr = t.attr.anwBuffer;
sp<GraphicBuffer> graphicBuffer = new GraphicBuffer();
if (!convertTo(graphicBuffer.get(), anwBuffer)) {
return false;
}
*l = OMXBuffer(graphicBuffer);
return true;
}
case CodecBuffer::Type::NATIVE_HANDLE: {
*l = OMXBuffer(NativeHandle::create(
native_handle_clone(t.nativeHandle), true));
return true;
}
}
return false;
}
/**
* \brief Convert `IOMX::ComponentInfo` to `IOmx::ComponentInfo`.
*
* \param[out] t The destination `IOmx::ComponentInfo`.
* \param[in] l The source `IOMX::ComponentInfo`.
*/
// convert: IOMX::ComponentInfo -> IOmx::ComponentInfo
inline bool convertTo(IOmx::ComponentInfo* t, IOMX::ComponentInfo const& l) {
t->mName = l.mName.string();
t->mRoles.resize(l.mRoles.size());
size_t i = 0;
for (auto& role : l.mRoles) {
t->mRoles[i++] = role.string();
}
return true;
}
/**
* \brief Convert `IOmx::ComponentInfo` to `IOMX::ComponentInfo`.
*
* \param[out] l The destination `IOMX::ComponentInfo`.
* \param[in] t The source `IOmx::ComponentInfo`.
*/
// convert: IOmx::ComponentInfo -> IOMX::ComponentInfo
inline bool convertTo(IOMX::ComponentInfo* l, IOmx::ComponentInfo const& t) {
l->mName = t.mName.c_str();
l->mRoles.clear();
for (size_t i = 0; i < t.mRoles.size(); ++i) {
l->mRoles.push_back(String8(t.mRoles[i].c_str()));
}
return true;
}
/**
* \brief Convert `OMX_BOOL` to `bool`.
*
* \param[in] l The source `OMX_BOOL`.
* \return The destination `bool`.
*/
// convert: OMX_BOOL -> bool
inline bool toRawBool(OMX_BOOL l) {
return l == OMX_FALSE ? false : true;
}
/**
* \brief Convert `bool` to `OMX_BOOL`.
*
* \param[in] t The source `bool`.
* \return The destination `OMX_BOOL`.
*/
// convert: bool -> OMX_BOOL
inline OMX_BOOL toEnumBool(bool t) {
return t ? OMX_TRUE : OMX_FALSE;
}
/**
* \brief Convert `OMX_COMMANDTYPE` to `uint32_t`.
*
* \param[in] l The source `OMX_COMMANDTYPE`.
* \return The underlying value of type `uint32_t`.
*
* `OMX_COMMANDTYPE` is an enum type whose underlying type is `uint32_t`.
*/
// convert: OMX_COMMANDTYPE -> uint32_t
inline uint32_t toRawCommandType(OMX_COMMANDTYPE l) {
return static_cast<uint32_t>(l);
}
/**
* \brief Convert `uint32_t` to `OMX_COMMANDTYPE`.
*
* \param[in] t The source `uint32_t`.
* \return The corresponding enum value of type `OMX_COMMANDTYPE`.
*
* `OMX_COMMANDTYPE` is an enum type whose underlying type is `uint32_t`.
*/
// convert: uint32_t -> OMX_COMMANDTYPE
inline OMX_COMMANDTYPE toEnumCommandType(uint32_t t) {
return static_cast<OMX_COMMANDTYPE>(t);
}
/**
* \brief Convert `OMX_INDEXTYPE` to `uint32_t`.
*
* \param[in] l The source `OMX_INDEXTYPE`.
* \return The underlying value of type `uint32_t`.
*
* `OMX_INDEXTYPE` is an enum type whose underlying type is `uint32_t`.
*/
// convert: OMX_INDEXTYPE -> uint32_t
inline uint32_t toRawIndexType(OMX_INDEXTYPE l) {
return static_cast<uint32_t>(l);
}
/**
* \brief Convert `uint32_t` to `OMX_INDEXTYPE`.
*
* \param[in] t The source `uint32_t`.
* \return The corresponding enum value of type `OMX_INDEXTYPE`.
*
* `OMX_INDEXTYPE` is an enum type whose underlying type is `uint32_t`.
*/
// convert: uint32_t -> OMX_INDEXTYPE
inline OMX_INDEXTYPE toEnumIndexType(uint32_t t) {
return static_cast<OMX_INDEXTYPE>(t);
}
/**
* \brief Convert `IOMX::PortMode` to `PortMode`.
*
* \param[in] l The source `IOMX::PortMode`.
* \return The destination `PortMode`.
*/
// convert: IOMX::PortMode -> PortMode
inline PortMode toHardwarePortMode(IOMX::PortMode l) {
return static_cast<PortMode>(l);
}
/**
* \brief Convert `PortMode` to `IOMX::PortMode`.
*
* \param[in] t The source `PortMode`.
* \return The destination `IOMX::PortMode`.
*/
// convert: PortMode -> IOMX::PortMode
inline IOMX::PortMode toIOMXPortMode(PortMode t) {
return static_cast<IOMX::PortMode>(t);
}
/**
* \brief Convert `OMX_TICKS` to `uint64_t`.
*
* \param[in] l The source `OMX_TICKS`.
* \return The destination `uint64_t`.
*/
// convert: OMX_TICKS -> uint64_t
inline uint64_t toRawTicks(OMX_TICKS l) {
#ifndef OMX_SKIP64BIT
return static_cast<uint64_t>(l);
#else
return static_cast<uint64_t>(l.nLowPart) |
static_cast<uint64_t>(l.nHighPart << 32);
#endif
}
/**
* \brief Convert `uint64_t` to `OMX_TICKS`.
*
* \param[in] l The source `uint64_t`.
* \return The destination `OMX_TICKS`.
*/
// convert: uint64_t -> OMX_TICKS
inline OMX_TICKS toOMXTicks(uint64_t t) {
#ifndef OMX_SKIP64BIT
return static_cast<OMX_TICKS>(t);
#else
return OMX_TICKS{
static_cast<uint32_t>(t & 0xFFFFFFFF),
static_cast<uint32_t>(t >> 32)};
#endif
}
} // namespace utils
} // namespace V1_0
} // namespace omx
} // namespace media
} // namespace hardware
} // namespace android
#endif // ANDROID_HARDWARE_MEDIA_OMX_V1_0__CONVERSION_H