blob: ebb90c8fa39132c4a914a747c0a0f4679465fff3 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Documentation: Workflow summary for histogram data processing:
* For more details on FIFO, please see system/media/audio_utils; doxygen
* TODO: add this documentation to doxygen once it is further developed
* 1) writing the data to a buffer
* onWork
* Called every period length (e.g., 4ms)
* Calls LOG_HIST_TS
* LOG_HIST_TS
* Hashes file name and line number
* calls NBLOG::Writer::logHistTS once
* NBLOG::Writer::logHistTS
* calls NBLOG::Writer::log on hash and current timestamp
* time is in CLOCK_MONOTONIC converted to ns
* NBLOG::Writer::log(Event, const void*, size_t)
* Initializes Entry, a struct containing one log entry
* Entry contains the event type (mEvent), data length (mLength),
* and data pointer (mData)
* TODO: why mLength (max length of buffer data) must be <= kMaxLength = 255?
* calls NBLOG::Writer::log(Entry *, bool)
* NBLog::Writer::log(Entry *, bool)
* Calls copyEntryDataAt to format data as follows in temp array:
* [type][length][data ... ][length]
* calls audio_utils_fifo_writer.write on temp
* audio_utils_fifo_writer.write
* calls obtain(), memcpy (reference in doxygen)
* returns number of frames written
* ssize_t audio_utils_fifo_reader::obtain
* Determines readable buffer section via pointer arithmetic on reader
* and writer pointers
*
* 2) reading the data from shared memory
* Thread::threadloop()
* TODO: add description?
* NBLog::MergeThread::threadLoop()
* calls NBLog::Merger::merge
* NBLog::Merger::merge
* for each reader in vector of class NamedReader,
* callsNamedReader::reader()->getSnapshot
* TODO: check whether the rest of this function is relevant
* NBLog::Reader::getSnapshot
* copies snapshot of reader's fifo buffer into its own buffer
* calls mFifoReader->obtain to find readable data
* sets snapshot.begin() and .end() iterators to boundaries of valid entries
* moves the fifo reader index to after the last entry read
* in this case, the buffer is in shared memory. in (3), the buffer is private
*
* 3) reading the data from private buffer
* MediaLogService::dump
* calls NBLog::Reader::dump(int) on instance of subclass mergeReader
* NBLog::Reader::dump(int)
* calls getSnapshot on the current reader
* calls dump(int, size_t, Snapshot)
* NBLog::Reader::dump(int, size, snapshot)
* iterates through snapshot's events and switches based on their type
* (string, timestamp, etc...)
* In the case of EVENT_HISTOGRAM_ENTRY_TS, adds a list of timestamp sequences
* (histogram entry) to NBLog::mHists
* In the case of EVENT_HISTOGRAM_FLUSH, calls drawHistogram on each element in
* the list and erases it
* TODO: when do these events occur?
* NBLog::drawHistogram
* input: timestamp array
* buckets this to a histogram and prints
*
*/
#define LOG_TAG "NBLog"
//#define LOG_NDEBUG 0
#include <algorithm>
#include <climits>
#include <deque>
#include <fstream>
// #include <inttypes.h>
#include <iostream>
#include <math.h>
#include <numeric>
#include <vector>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/prctl.h>
#include <time.h>
#include <new>
#include <audio_utils/roundup.h>
#include <media/nbaio/NBLog.h>
// #include <utils/CallStack.h> // used to print callstack
#include <utils/Log.h>
#include <utils/String8.h>
#include <queue>
#include <utility>
namespace android {
int NBLog::Entry::copyEntryDataAt(size_t offset) const
{
// FIXME This is too slow
if (offset == 0)
return mEvent;
else if (offset == 1)
return mLength;
else if (offset < (size_t) (mLength + 2))
return ((char *) mData)[offset - 2];
else if (offset == (size_t) (mLength + 2))
return mLength;
else
return 0;
}
// ---------------------------------------------------------------------------
/*static*/
std::unique_ptr<NBLog::AbstractEntry> NBLog::AbstractEntry::buildEntry(const uint8_t *ptr) {
const uint8_t type = EntryIterator(ptr)->type;
switch (type) {
case EVENT_START_FMT:
return std::make_unique<FormatEntry>(FormatEntry(ptr));
case EVENT_HISTOGRAM_FLUSH:
case EVENT_HISTOGRAM_ENTRY_TS:
return std::make_unique<HistogramEntry>(HistogramEntry(ptr));
default:
ALOGW("Tried to create AbstractEntry of type %d", type);
return nullptr;
}
}
NBLog::AbstractEntry::AbstractEntry(const uint8_t *entry) : mEntry(entry) {
}
// ---------------------------------------------------------------------------
NBLog::EntryIterator NBLog::FormatEntry::begin() const {
return EntryIterator(mEntry);
}
const char *NBLog::FormatEntry::formatString() const {
return (const char*) mEntry + offsetof(entry, data);
}
size_t NBLog::FormatEntry::formatStringLength() const {
return mEntry[offsetof(entry, length)];
}
NBLog::EntryIterator NBLog::FormatEntry::args() const {
auto it = begin();
// skip start fmt
++it;
// skip timestamp
++it;
// skip hash
++it;
// Skip author if present
if (it->type == EVENT_AUTHOR) {
++it;
}
return it;
}
int64_t NBLog::FormatEntry::timestamp() const {
auto it = begin();
// skip start fmt
++it;
return it.payload<int64_t>();
}
NBLog::log_hash_t NBLog::FormatEntry::hash() const {
auto it = begin();
// skip start fmt
++it;
// skip timestamp
++it;
// unaligned 64-bit read not supported
log_hash_t hash;
memcpy(&hash, it->data, sizeof(hash));
return hash;
}
int NBLog::FormatEntry::author() const {
auto it = begin();
// skip start fmt
++it;
// skip timestamp
++it;
// skip hash
++it;
// if there is an author entry, return it, return -1 otherwise
if (it->type == EVENT_AUTHOR) {
return it.payload<int>();
}
return -1;
}
NBLog::EntryIterator NBLog::FormatEntry::copyWithAuthor(
std::unique_ptr<audio_utils_fifo_writer> &dst, int author) const {
auto it = begin();
// copy fmt start entry
it.copyTo(dst);
// copy timestamp
(++it).copyTo(dst); // copy hash
(++it).copyTo(dst);
// insert author entry
size_t authorEntrySize = NBLog::Entry::kOverhead + sizeof(author);
uint8_t authorEntry[authorEntrySize];
authorEntry[offsetof(entry, type)] = EVENT_AUTHOR;
authorEntry[offsetof(entry, length)] =
authorEntry[authorEntrySize + NBLog::Entry::kPreviousLengthOffset] =
sizeof(author);
*(int*) (&authorEntry[offsetof(entry, data)]) = author;
dst->write(authorEntry, authorEntrySize);
// copy rest of entries
while ((++it)->type != EVENT_END_FMT) {
it.copyTo(dst);
}
it.copyTo(dst);
++it;
return it;
}
void NBLog::EntryIterator::copyTo(std::unique_ptr<audio_utils_fifo_writer> &dst) const {
size_t length = ptr[offsetof(entry, length)] + NBLog::Entry::kOverhead;
dst->write(ptr, length);
}
void NBLog::EntryIterator::copyData(uint8_t *dst) const {
memcpy((void*) dst, ptr + offsetof(entry, data), ptr[offsetof(entry, length)]);
}
NBLog::EntryIterator::EntryIterator()
: ptr(nullptr) {}
NBLog::EntryIterator::EntryIterator(const uint8_t *entry)
: ptr(entry) {}
NBLog::EntryIterator::EntryIterator(const NBLog::EntryIterator &other)
: ptr(other.ptr) {}
const NBLog::entry& NBLog::EntryIterator::operator*() const {
return *(entry*) ptr;
}
const NBLog::entry* NBLog::EntryIterator::operator->() const {
return (entry*) ptr;
}
NBLog::EntryIterator& NBLog::EntryIterator::operator++() {
ptr += ptr[offsetof(entry, length)] + NBLog::Entry::kOverhead;
return *this;
}
NBLog::EntryIterator& NBLog::EntryIterator::operator--() {
ptr -= ptr[NBLog::Entry::kPreviousLengthOffset] + NBLog::Entry::kOverhead;
return *this;
}
NBLog::EntryIterator NBLog::EntryIterator::next() const {
EntryIterator aux(*this);
return ++aux;
}
NBLog::EntryIterator NBLog::EntryIterator::prev() const {
EntryIterator aux(*this);
return --aux;
}
int NBLog::EntryIterator::operator-(const NBLog::EntryIterator &other) const {
return ptr - other.ptr;
}
bool NBLog::EntryIterator::operator!=(const EntryIterator &other) const {
return ptr != other.ptr;
}
bool NBLog::EntryIterator::hasConsistentLength() const {
return ptr[offsetof(entry, length)] == ptr[ptr[offsetof(entry, length)] +
NBLog::Entry::kOverhead + NBLog::Entry::kPreviousLengthOffset];
}
// ---------------------------------------------------------------------------
int64_t NBLog::HistogramEntry::timestamp() const {
return EntryIterator(mEntry).payload<HistTsEntry>().ts;
}
NBLog::log_hash_t NBLog::HistogramEntry::hash() const {
return EntryIterator(mEntry).payload<HistTsEntry>().hash;
}
int NBLog::HistogramEntry::author() const {
EntryIterator it(mEntry);
if (it->length == sizeof(HistTsEntryWithAuthor)) {
return it.payload<HistTsEntryWithAuthor>().author;
} else {
return -1;
}
}
NBLog::EntryIterator NBLog::HistogramEntry::copyWithAuthor(
std::unique_ptr<audio_utils_fifo_writer> &dst, int author) const {
// Current histogram entry has {type, length, struct HistTsEntry, length}.
// We now want {type, length, struct HistTsEntryWithAuthor, length}
uint8_t buffer[Entry::kOverhead + sizeof(HistTsEntryWithAuthor)];
// Copy content until the point we want to add the author
memcpy(buffer, mEntry, sizeof(entry) + sizeof(HistTsEntry));
// Copy the author
*(int*) (buffer + sizeof(entry) + sizeof(HistTsEntry)) = author;
// Update lengths
buffer[offsetof(entry, length)] = sizeof(HistTsEntryWithAuthor);
buffer[sizeof(buffer) + Entry::kPreviousLengthOffset] = sizeof(HistTsEntryWithAuthor);
// Write new buffer into FIFO
dst->write(buffer, sizeof(buffer));
return EntryIterator(mEntry).next();
}
// ---------------------------------------------------------------------------
#if 0 // FIXME see note in NBLog.h
NBLog::Timeline::Timeline(size_t size, void *shared)
: mSize(roundup(size)), mOwn(shared == NULL),
mShared((Shared *) (mOwn ? new char[sharedSize(size)] : shared))
{
new (mShared) Shared;
}
NBLog::Timeline::~Timeline()
{
mShared->~Shared();
if (mOwn) {
delete[] (char *) mShared;
}
}
#endif
/*static*/
size_t NBLog::Timeline::sharedSize(size_t size)
{
// TODO fifo now supports non-power-of-2 buffer sizes, so could remove the roundup
return sizeof(Shared) + roundup(size);
}
// ---------------------------------------------------------------------------
NBLog::Writer::Writer()
: mShared(NULL), mFifo(NULL), mFifoWriter(NULL), mEnabled(false), mPidTag(NULL), mPidTagSize(0)
{
}
NBLog::Writer::Writer(void *shared, size_t size)
: mShared((Shared *) shared),
mFifo(mShared != NULL ?
new audio_utils_fifo(size, sizeof(uint8_t),
mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL),
mFifoWriter(mFifo != NULL ? new audio_utils_fifo_writer(*mFifo) : NULL),
mEnabled(mFifoWriter != NULL)
{
// caching pid and process name
pid_t id = ::getpid();
char procName[16];
int status = prctl(PR_GET_NAME, procName);
if (status) { // error getting process name
procName[0] = '\0';
}
size_t length = strlen(procName);
mPidTagSize = length + sizeof(pid_t);
mPidTag = new char[mPidTagSize];
memcpy(mPidTag, &id, sizeof(pid_t));
memcpy(mPidTag + sizeof(pid_t), procName, length);
}
NBLog::Writer::Writer(const sp<IMemory>& iMemory, size_t size)
: Writer(iMemory != 0 ? (Shared *) iMemory->pointer() : NULL, size)
{
mIMemory = iMemory;
}
NBLog::Writer::~Writer()
{
delete mFifoWriter;
delete mFifo;
delete[] mPidTag;
}
void NBLog::Writer::log(const char *string)
{
if (!mEnabled) {
return;
}
LOG_ALWAYS_FATAL_IF(string == NULL, "Attempted to log NULL string");
size_t length = strlen(string);
if (length > Entry::kMaxLength) {
length = Entry::kMaxLength;
}
log(EVENT_STRING, string, length);
}
void NBLog::Writer::logf(const char *fmt, ...)
{
if (!mEnabled) {
return;
}
va_list ap;
va_start(ap, fmt);
Writer::logvf(fmt, ap); // the Writer:: is needed to avoid virtual dispatch for LockedWriter
va_end(ap);
}
void NBLog::Writer::logvf(const char *fmt, va_list ap)
{
if (!mEnabled) {
return;
}
char buffer[Entry::kMaxLength + 1 /*NUL*/];
int length = vsnprintf(buffer, sizeof(buffer), fmt, ap);
if (length >= (int) sizeof(buffer)) {
length = sizeof(buffer) - 1;
// NUL termination is not required
// buffer[length] = '\0';
}
if (length >= 0) {
log(EVENT_STRING, buffer, length);
}
}
void NBLog::Writer::logTimestamp()
{
if (!mEnabled) {
return;
}
int64_t ts = get_monotonic_ns();
if (ts > 0) {
log(EVENT_TIMESTAMP, &ts, sizeof(ts));
} else {
ALOGE("Failed to get timestamp");
}
}
void NBLog::Writer::logTimestamp(const int64_t ts)
{
if (!mEnabled) {
return;
}
log(EVENT_TIMESTAMP, &ts, sizeof(ts));
}
void NBLog::Writer::logInteger(const int x)
{
if (!mEnabled) {
return;
}
log(EVENT_INTEGER, &x, sizeof(x));
}
void NBLog::Writer::logFloat(const float x)
{
if (!mEnabled) {
return;
}
log(EVENT_FLOAT, &x, sizeof(x));
}
void NBLog::Writer::logPID()
{
if (!mEnabled) {
return;
}
log(EVENT_PID, mPidTag, mPidTagSize);
}
void NBLog::Writer::logStart(const char *fmt)
{
if (!mEnabled) {
return;
}
size_t length = strlen(fmt);
if (length > Entry::kMaxLength) {
length = Entry::kMaxLength;
}
log(EVENT_START_FMT, fmt, length);
}
void NBLog::Writer::logEnd()
{
if (!mEnabled) {
return;
}
Entry entry = Entry(EVENT_END_FMT, NULL, 0);
log(&entry, true);
}
void NBLog::Writer::logHash(log_hash_t hash)
{
if (!mEnabled) {
return;
}
log(EVENT_HASH, &hash, sizeof(hash));
}
void NBLog::Writer::logHistTS(log_hash_t hash)
{
if (!mEnabled) {
return;
}
HistTsEntry data;
data.hash = hash;
data.ts = get_monotonic_ns();
if (data.ts > 0) {
log(EVENT_HISTOGRAM_ENTRY_TS, &data, sizeof(data));
} else {
ALOGE("Failed to get timestamp");
}
}
void NBLog::Writer::logHistFlush(log_hash_t hash)
{
if (!mEnabled) {
return;
}
HistTsEntry data;
data.hash = hash;
data.ts = get_monotonic_ns();
if (data.ts > 0) {
log(EVENT_HISTOGRAM_FLUSH, &data, sizeof(data));
} else {
ALOGE("Failed to get timestamp");
}
}
void NBLog::Writer::logFormat(const char *fmt, log_hash_t hash, ...)
{
if (!mEnabled) {
return;
}
va_list ap;
va_start(ap, hash);
Writer::logVFormat(fmt, hash, ap);
va_end(ap);
}
void NBLog::Writer::logVFormat(const char *fmt, log_hash_t hash, va_list argp)
{
if (!mEnabled) {
return;
}
Writer::logStart(fmt);
int i;
double f;
char* s;
int64_t t;
Writer::logTimestamp();
Writer::logHash(hash);
for (const char *p = fmt; *p != '\0'; p++) {
// TODO: implement more complex formatting such as %.3f
if (*p != '%') {
continue;
}
switch(*++p) {
case 's': // string
s = va_arg(argp, char *);
Writer::log(s);
break;
case 't': // timestamp
t = va_arg(argp, int64_t);
Writer::logTimestamp(t);
break;
case 'd': // integer
i = va_arg(argp, int);
Writer::logInteger(i);
break;
case 'f': // float
f = va_arg(argp, double); // float arguments are promoted to double in vararg lists
Writer::logFloat((float)f);
break;
case 'p': // pid
Writer::logPID();
break;
// the "%\0" case finishes parsing
case '\0':
--p;
break;
case '%':
break;
default:
ALOGW("NBLog Writer parsed invalid format specifier: %c", *p);
break;
}
}
Writer::logEnd();
}
void NBLog::Writer::log(Event event, const void *data, size_t length)
{
if (!mEnabled) {
return;
}
if (data == NULL || length > Entry::kMaxLength) {
// TODO Perhaps it makes sense to display truncated data or at least a
// message that the data is too long? The current behavior can create
// a confusion for a programmer debugging their code.
return;
}
// Ignore if invalid event
if (event == EVENT_RESERVED || event >= EVENT_UPPER_BOUND) {
return;
}
Entry etr(event, data, length);
log(&etr, true /*trusted*/);
}
void NBLog::Writer::log(const NBLog::Entry *etr, bool trusted)
{
if (!mEnabled) {
return;
}
if (!trusted) {
log(etr->mEvent, etr->mData, etr->mLength);
return;
}
size_t need = etr->mLength + Entry::kOverhead; // mEvent, mLength, data[mLength], mLength
// need = number of bytes written to FIFO
// FIXME optimize this using memcpy for the data part of the Entry.
// The Entry could have a method copyTo(ptr, offset, size) to optimize the copy.
// checks size of a single log Entry: type, length, data pointer and ending
uint8_t temp[Entry::kMaxLength + Entry::kOverhead];
// write this data to temp array
for (size_t i = 0; i < need; i++) {
temp[i] = etr->copyEntryDataAt(i);
}
// write to circular buffer
mFifoWriter->write(temp, need);
}
bool NBLog::Writer::isEnabled() const
{
return mEnabled;
}
bool NBLog::Writer::setEnabled(bool enabled)
{
bool old = mEnabled;
mEnabled = enabled && mShared != NULL;
return old;
}
// ---------------------------------------------------------------------------
NBLog::LockedWriter::LockedWriter()
: Writer()
{
}
NBLog::LockedWriter::LockedWriter(void *shared, size_t size)
: Writer(shared, size)
{
}
void NBLog::LockedWriter::log(const char *string)
{
Mutex::Autolock _l(mLock);
Writer::log(string);
}
void NBLog::LockedWriter::logf(const char *fmt, ...)
{
// FIXME should not take the lock until after formatting is done
Mutex::Autolock _l(mLock);
va_list ap;
va_start(ap, fmt);
Writer::logvf(fmt, ap);
va_end(ap);
}
void NBLog::LockedWriter::logvf(const char *fmt, va_list ap)
{
// FIXME should not take the lock until after formatting is done
Mutex::Autolock _l(mLock);
Writer::logvf(fmt, ap);
}
void NBLog::LockedWriter::logTimestamp()
{
// FIXME should not take the lock until after the clock_gettime() syscall
Mutex::Autolock _l(mLock);
Writer::logTimestamp();
}
void NBLog::LockedWriter::logTimestamp(const int64_t ts)
{
Mutex::Autolock _l(mLock);
Writer::logTimestamp(ts);
}
void NBLog::LockedWriter::logInteger(const int x)
{
Mutex::Autolock _l(mLock);
Writer::logInteger(x);
}
void NBLog::LockedWriter::logFloat(const float x)
{
Mutex::Autolock _l(mLock);
Writer::logFloat(x);
}
void NBLog::LockedWriter::logPID()
{
Mutex::Autolock _l(mLock);
Writer::logPID();
}
void NBLog::LockedWriter::logStart(const char *fmt)
{
Mutex::Autolock _l(mLock);
Writer::logStart(fmt);
}
void NBLog::LockedWriter::logEnd()
{
Mutex::Autolock _l(mLock);
Writer::logEnd();
}
void NBLog::LockedWriter::logHash(log_hash_t hash)
{
Mutex::Autolock _l(mLock);
Writer::logHash(hash);
}
bool NBLog::LockedWriter::isEnabled() const
{
Mutex::Autolock _l(mLock);
return Writer::isEnabled();
}
bool NBLog::LockedWriter::setEnabled(bool enabled)
{
Mutex::Autolock _l(mLock);
return Writer::setEnabled(enabled);
}
// ---------------------------------------------------------------------------
const std::set<NBLog::Event> NBLog::Reader::startingTypes {NBLog::Event::EVENT_START_FMT,
NBLog::Event::EVENT_HISTOGRAM_ENTRY_TS};
const std::set<NBLog::Event> NBLog::Reader::endingTypes {NBLog::Event::EVENT_END_FMT,
NBLog::Event::EVENT_HISTOGRAM_ENTRY_TS,
NBLog::Event::EVENT_HISTOGRAM_FLUSH};
NBLog::Reader::Reader(const void *shared, size_t size)
: mShared((/*const*/ Shared *) shared), /*mIMemory*/
mFd(-1), mIndent(0),
mFifo(mShared != NULL ?
new audio_utils_fifo(size, sizeof(uint8_t),
mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL),
mFifoReader(mFifo != NULL ? new audio_utils_fifo_reader(*mFifo) : NULL),
findGlitch(false)
{
}
NBLog::Reader::Reader(const sp<IMemory>& iMemory, size_t size)
: Reader(iMemory != 0 ? (Shared *) iMemory->pointer() : NULL, size)
{
mIMemory = iMemory;
}
NBLog::Reader::~Reader()
{
delete mFifoReader;
delete mFifo;
}
inline static int deltaMs(int64_t ns1, int64_t ns2) {
return (ns2 - ns1) / (1000 * 1000);
}
// Produces a log warning if the timing of recent buffer periods caused a glitch
// Computes sum of running window of three buffer periods
// Checks whether the buffer periods leave enough CPU time for the next one
// e.g. if a buffer period is expected to be 4 ms and a buffer requires 3 ms of CPU time,
// here are some glitch cases:
// 4 + 4 + 6 ; 5 + 4 + 5; 2 + 2 + 10
// TODO: develop this code to track changes in histogram distribution in addition
// to / instead of glitches
void NBLog::Reader::alertIfGlitch(const std::vector<int64_t> &samples) {
//TODO: measure kPeriodLen and kRatio from the data as they may change.
static const int kPeriodLen = 4; // current period length is ideally 4 ms
static const double kRatio = 0.75; // estimate of CPU time as ratio of period length
// DAC processing time for 4 ms buffer
static const int kPeriodTime = static_cast<int>(round(kPeriodLen * kRatio));
static const int kNumBuff = 3; // number of buffers considered in local history
std::deque<int> periods(kNumBuff, kPeriodLen);
for (size_t i = 2; i < samples.size(); ++i) { // skip first time entry
periods.push_front(deltaMs(samples[i - 1], samples[i]));
periods.pop_back();
// TODO: check that all glitch cases are covered
if (std::accumulate(periods.begin(), periods.end(), 0) > kNumBuff * kPeriodLen +
kPeriodLen - kPeriodTime) {
ALOGW("A glitch occurred");
periods.assign(kNumBuff, kPeriodLen);
}
}
return;
}
const uint8_t *NBLog::Reader::findLastEntryOfTypes(const uint8_t *front, const uint8_t *back,
const std::set<Event> &types) {
while (back + Entry::kPreviousLengthOffset >= front) {
const uint8_t *prev = back - back[Entry::kPreviousLengthOffset] - Entry::kOverhead;
if (prev < front || prev + prev[offsetof(entry, length)] +
Entry::kOverhead != back) {
// prev points to an out of limits or inconsistent entry
return nullptr;
}
if (types.find((const Event) prev[offsetof(entry, type)]) != types.end()) {
return prev;
}
back = prev;
}
return nullptr; // no entry found
}
std::unique_ptr<NBLog::Reader::Snapshot> NBLog::Reader::getSnapshot()
{
if (mFifoReader == NULL) {
return std::unique_ptr<NBLog::Reader::Snapshot>(new Snapshot());
}
// make a copy to avoid race condition with writer
size_t capacity = mFifo->capacity();
// This emulates the behaviour of audio_utils_fifo_reader::read, but without incrementing the
// reader index. The index is incremented after handling corruption, to after the last complete
// entry of the buffer
size_t lost;
audio_utils_iovec iovec[2];
ssize_t availToRead = mFifoReader->obtain(iovec, capacity, NULL /*timeout*/, &lost);
if (availToRead <= 0) {
return std::unique_ptr<NBLog::Reader::Snapshot>(new Snapshot());
}
std::unique_ptr<Snapshot> snapshot(new Snapshot(availToRead));
memcpy(snapshot->mData, (const char *) mFifo->buffer() + iovec[0].mOffset, iovec[0].mLength);
if (iovec[1].mLength > 0) {
memcpy(snapshot->mData + (iovec[0].mLength),
(const char *) mFifo->buffer() + iovec[1].mOffset, iovec[1].mLength);
}
// Handle corrupted buffer
// Potentially, a buffer has corrupted data on both beginning (due to overflow) and end
// (due to incomplete format entry). But even if the end format entry is incomplete,
// it ends in a complete entry (which is not an END_FMT). So is safe to traverse backwards.
// TODO: handle client corruption (in the middle of a buffer)
const uint8_t *back = snapshot->mData + availToRead;
const uint8_t *front = snapshot->mData;
// Find last END_FMT. <back> is sitting on an entry which might be the middle of a FormatEntry.
// We go backwards until we find an EVENT_END_FMT.
const uint8_t *lastEnd = findLastEntryOfTypes(front, back, endingTypes);
if (lastEnd == nullptr) {
snapshot->mEnd = snapshot->mBegin = EntryIterator(front);
} else {
// end of snapshot points to after last END_FMT entry
snapshot->mEnd = EntryIterator(lastEnd).next();
// find first START_FMT
const uint8_t *firstStart = nullptr;
const uint8_t *firstStartTmp = snapshot->mEnd;
while ((firstStartTmp = findLastEntryOfTypes(front, firstStartTmp, startingTypes))
!= nullptr) {
firstStart = firstStartTmp;
}
// firstStart is null if no START_FMT entry was found before lastEnd
if (firstStart == nullptr) {
snapshot->mBegin = snapshot->mEnd;
} else {
snapshot->mBegin = EntryIterator(firstStart);
}
}
// advance fifo reader index to after last entry read.
mFifoReader->release(snapshot->mEnd - front);
snapshot->mLost = lost;
return snapshot;
}
// writes sample deltas to file, either truncating or appending
inline void writeHistToFile(const std::vector<int64_t> &samples, bool append) {
// name of file on audioserver
static const char* const kName = (char *)"/data/misc/audioserver/sample_results.txt";
// stores deltas between the samples
std::vector<int64_t> intervals;
for (size_t i = 1; i < samples.size(); ++i) {
intervals.push_back(deltaMs(samples[i - 1], samples[i]));
}
if (intervals.empty()) return;
// Deletes maximum value in a histogram. Temp quick fix.
// FIXME: need to find root cause of approx. 35th element from the end
// consistently being an outlier in the first histogram of a flush
// ALOGW("%" PRId64 "before", (int64_t) *(std::max_element(intervals.begin(), intervals.end())));
intervals.erase(std::max_element(intervals.begin(), intervals.end()));
// ALOGW("%" PRId64 "after", (int64_t) *(std::max_element(intervals.begin(), intervals.end())));
std::ofstream ofs;
ofs.open(kName, append ? std::ios::app : std::ios::trunc);
if (!ofs) {
ALOGW("couldn't open file %s", kName);
return;
}
for (size_t i = 0; i < intervals.size(); ++i) {
ofs << intervals[i] << "\n";
}
ofs.close();
}
void NBLog::Reader::dump(int fd, size_t indent, NBLog::Reader::Snapshot &snapshot)
{
// CallStack cs(LOG_TAG);
#if 0
struct timespec ts;
time_t maxSec = -1;
while (entry - start >= (int) Entry::kOverhead) {
if (prevEntry - start < 0 || !prevEntry.hasConsistentLength()) {
break;
}
if (prevEntry->type == EVENT_TIMESTAMP) {
if (prevEntry->length != sizeof(struct timespec)) {
// corrupt
break;
}
prevEntry.copyData((uint8_t*) &ts);
if (ts.tv_sec > maxSec) {
maxSec = ts.tv_sec;
}
}
--entry;
--prevEntry;
}
#endif
mFd = fd;
mIndent = indent;
String8 timestamp, body;
size_t lost = snapshot.lost() + (snapshot.begin() - EntryIterator(snapshot.data()));
if (lost > 0) {
body.appendFormat("warning: lost %zu bytes worth of events", lost);
// TODO timestamp empty here, only other choice to wait for the first timestamp event in the
// log to push it out. Consider keeping the timestamp/body between calls to copyEntryDataAt().
dumpLine(timestamp, body);
}
#if 0
size_t width = 1;
while (maxSec >= 10) {
++width;
maxSec /= 10;
}
if (maxSec >= 0) {
timestamp.appendFormat("[%*s]", (int) width + 4, "");
}
bool deferredTimestamp = false;
#endif
for (auto entry = snapshot.begin(); entry != snapshot.end();) {
switch (entry->type) {
#if 0
case EVENT_STRING:
body.appendFormat("%.*s", (int) entry.length(), entry.data());
break;
case EVENT_TIMESTAMP: {
// already checked that length == sizeof(struct timespec);
entry.copyData((const uint8_t*) &ts);
long prevNsec = ts.tv_nsec;
long deltaMin = LONG_MAX;
long deltaMax = -1;
long deltaTotal = 0;
auto aux(entry);
for (;;) {
++aux;
if (end - aux >= 0 || aux.type() != EVENT_TIMESTAMP) {
break;
}
struct timespec tsNext;
aux.copyData((const uint8_t*) &tsNext);
if (tsNext.tv_sec != ts.tv_sec) {
break;
}
long delta = tsNext.tv_nsec - prevNsec;
if (delta < 0) {
break;
}
if (delta < deltaMin) {
deltaMin = delta;
}
if (delta > deltaMax) {
deltaMax = delta;
}
deltaTotal += delta;
prevNsec = tsNext.tv_nsec;
}
size_t n = (aux - entry) / (sizeof(struct timespec) + 3 /*Entry::kOverhead?*/);
if (deferredTimestamp) {
dumpLine(timestamp, body);
deferredTimestamp = false;
}
timestamp.clear();
if (n >= kSquashTimestamp) {
timestamp.appendFormat("[%d.%03d to .%.03d by .%.03d to .%.03d]",
(int) ts.tv_sec, (int) (ts.tv_nsec / 1000000),
(int) ((ts.tv_nsec + deltaTotal) / 1000000),
(int) (deltaMin / 1000000), (int) (deltaMax / 1000000));
entry = aux;
// advance = 0;
break;
}
timestamp.appendFormat("[%d.%03d]", (int) ts.tv_sec,
(int) (ts.tv_nsec / 1000000));
deferredTimestamp = true;
}
break;
case EVENT_INTEGER:
appendInt(&body, entry.data());
break;
case EVENT_FLOAT:
appendFloat(&body, entry.data());
break;
case EVENT_PID:
appendPID(&body, entry.data(), entry.length());
break;
#endif
case EVENT_START_FMT:
entry = handleFormat(FormatEntry(entry), &timestamp, &body);
break;
case EVENT_HISTOGRAM_ENTRY_TS: {
HistTsEntryWithAuthor *data = (HistTsEntryWithAuthor *) (entry->data);
// TODO This memcpies are here to avoid unaligned memory access crash.
// There's probably a more efficient way to do it
log_hash_t hash;
memcpy(&hash, &(data->hash), sizeof(hash));
int64_t ts;
memcpy(&ts, &data->ts, sizeof(ts));
const std::pair<log_hash_t, int> key(hash, data->author);
// TODO might want to filter excessively high outliers, which are usually caused
// by the thread being inactive.
mHists[key].push_back(ts);
++entry;
break;
}
// draws histograms stored in global Reader::mHists and erases them
case EVENT_HISTOGRAM_FLUSH: {
HistogramEntry histEntry(entry);
// Log timestamp
// Timestamp of call to drawHistogram, not when audio was generated
const int64_t ts = histEntry.timestamp();
timestamp.clear();
timestamp.appendFormat("[%d.%03d]", (int) (ts / (1000 * 1000 * 1000)),
(int) ((ts / (1000 * 1000)) % 1000));
// Log histograms
setFindGlitch(true);
body.appendFormat("Histogram flush - ");
handleAuthor(histEntry, &body);
for (auto hist = mHists.begin(); hist != mHists.end();) {
if (hist->first.second == histEntry.author()) {
body.appendFormat("%X", (int)hist->first.first);
if (findGlitch) {
alertIfGlitch(hist->second);
}
// set file to empty and write data for all histograms in this set
writeHistToFile(hist->second, hist != mHists.begin());
drawHistogram(&body, hist->second, true, indent);
hist = mHists.erase(hist);
} else {
++hist;
}
}
++entry;
break;
}
case EVENT_END_FMT:
body.appendFormat("warning: got to end format event");
++entry;
break;
case EVENT_RESERVED:
default:
body.appendFormat("warning: unexpected event %d", entry->type);
++entry;
break;
}
if (!body.isEmpty()) {
dumpLine(timestamp, body);
}
}
}
void NBLog::Reader::dump(int fd, size_t indent)
{
// get a snapshot, dump it
std::unique_ptr<Snapshot> snap = getSnapshot();
dump(fd, indent, *snap);
}
void NBLog::Reader::dumpLine(const String8 &timestamp, String8 &body)
{
if (mFd >= 0) {
dprintf(mFd, "%.*s%s %s\n", mIndent, "", timestamp.string(), body.string());
} else {
ALOGI("%.*s%s %s", mIndent, "", timestamp.string(), body.string());
}
body.clear();
}
bool NBLog::Reader::isIMemory(const sp<IMemory>& iMemory) const
{
return iMemory != 0 && mIMemory != 0 && iMemory->pointer() == mIMemory->pointer();
}
void NBLog::Reader::setFindGlitch(bool s)
{
findGlitch = s;
}
bool NBLog::Reader::isFindGlitch() const
{
return findGlitch;
}
// ---------------------------------------------------------------------------
void NBLog::appendTimestamp(String8 *body, const void *data) {
int64_t ts;
memcpy(&ts, data, sizeof(ts));
body->appendFormat("[%d.%03d]", (int) (ts / (1000 * 1000 * 1000)),
(int) ((ts / (1000 * 1000)) % 1000));
}
void NBLog::appendInt(String8 *body, const void *data) {
int x = *((int*) data);
body->appendFormat("<%d>", x);
}
void NBLog::appendFloat(String8 *body, const void *data) {
float f;
memcpy(&f, data, sizeof(float));
body->appendFormat("<%f>", f);
}
void NBLog::appendPID(String8 *body, const void* data, size_t length) {
pid_t id = *((pid_t*) data);
char * name = &((char*) data)[sizeof(pid_t)];
body->appendFormat("<PID: %d, name: %.*s>", id, (int) (length - sizeof(pid_t)), name);
}
String8 NBLog::bufferDump(const uint8_t *buffer, size_t size)
{
String8 str;
str.append("[ ");
for(size_t i = 0; i < size; i++)
{
str.appendFormat("%d ", buffer[i]);
}
str.append("]");
return str;
}
String8 NBLog::bufferDump(const EntryIterator &it)
{
return bufferDump(it, it->length + Entry::kOverhead);
}
NBLog::EntryIterator NBLog::Reader::handleFormat(const FormatEntry &fmtEntry,
String8 *timestamp,
String8 *body) {
// log timestamp
int64_t ts = fmtEntry.timestamp();
timestamp->clear();
timestamp->appendFormat("[%d.%03d]", (int) (ts / (1000 * 1000 * 1000)),
(int) ((ts / (1000 * 1000)) % 1000));
// log unique hash
log_hash_t hash = fmtEntry.hash();
// print only lower 16bit of hash as hex and line as int to reduce spam in the log
body->appendFormat("%.4X-%d ", (int)(hash >> 16) & 0xFFFF, (int) hash & 0xFFFF);
// log author (if present)
handleAuthor(fmtEntry, body);
// log string
NBLog::EntryIterator arg = fmtEntry.args();
const char* fmt = fmtEntry.formatString();
size_t fmt_length = fmtEntry.formatStringLength();
for (size_t fmt_offset = 0; fmt_offset < fmt_length; ++fmt_offset) {
if (fmt[fmt_offset] != '%') {
body->append(&fmt[fmt_offset], 1); // TODO optimize to write consecutive strings at once
continue;
}
// case "%%""
if (fmt[++fmt_offset] == '%') {
body->append("%");
continue;
}
// case "%\0"
if (fmt_offset == fmt_length) {
continue;
}
NBLog::Event event = (NBLog::Event) arg->type;
size_t length = arg->length;
// TODO check length for event type is correct
if (event == EVENT_END_FMT) {
break;
}
// TODO: implement more complex formatting such as %.3f
const uint8_t *datum = arg->data; // pointer to the current event args
switch(fmt[fmt_offset])
{
case 's': // string
ALOGW_IF(event != EVENT_STRING,
"NBLog Reader incompatible event for string specifier: %d", event);
body->append((const char*) datum, length);
break;
case 't': // timestamp
ALOGW_IF(event != EVENT_TIMESTAMP,
"NBLog Reader incompatible event for timestamp specifier: %d", event);
appendTimestamp(body, datum);
break;
case 'd': // integer
ALOGW_IF(event != EVENT_INTEGER,
"NBLog Reader incompatible event for integer specifier: %d", event);
appendInt(body, datum);
break;
case 'f': // float
ALOGW_IF(event != EVENT_FLOAT,
"NBLog Reader incompatible event for float specifier: %d", event);
appendFloat(body, datum);
break;
case 'p': // pid
ALOGW_IF(event != EVENT_PID,
"NBLog Reader incompatible event for pid specifier: %d", event);
appendPID(body, datum, length);
break;
default:
ALOGW("NBLog Reader encountered unknown character %c", fmt[fmt_offset]);
}
++arg;
}
ALOGW_IF(arg->type != EVENT_END_FMT, "Expected end of format, got %d", arg->type);
++arg;
return arg;
}
static int widthOf(int x) {
int width = 0;
while (x > 0) {
++width;
x /= 10;
}
return width;
}
static std::map<int, int> buildBuckets(const std::vector<int64_t> &samples) {
// TODO allow buckets of variable resolution
std::map<int, int> buckets;
for (size_t i = 1; i < samples.size(); ++i) {
++buckets[deltaMs(samples[i - 1], samples[i])];
}
return buckets;
}
static inline uint32_t log2(uint32_t x) {
// This works for x > 0
return 31 - __builtin_clz(x);
}
// TODO put this function in separate file. Make it return a std::string instead of modifying body
/*
Example output:
[54.234] Histogram flush - AudioOut_D:
Histogram 33640BF1
[ 1][ 1][ 1][ 3][54][69][ 1][ 2][ 1]
64| []
32| [] []
16| [] []
8| [] []
4| [] []
2|______________[]__[]__[]______[]____
4 5 6 8 9 10 11 13 15
Notice that all values that fall in the same row have the same height (65 and 127 are displayed
identically). That's why exact counts are added at the top.
*/
void NBLog::Reader::drawHistogram(String8 *body,
const std::vector<int64_t> &samples,
bool logScale,
int indent,
int maxHeight) {
// this avoids some corner cases
if (samples.size() <= 1) {
return;
}
// temp code for debugging the outlier timestamp
const int kMaxMs = 100;
for (size_t i = 1; i < samples.size()-1; ++i) {
const int currDelta = deltaMs(samples[i - 1], samples[i]);
if (currDelta > kMaxMs) {
body->appendFormat("\nlocation: %zu, size: %zu, pos from end: %zu, %d\t", i,
samples.size(), samples.size() - i, currDelta);
}
}
// FIXME: as can be seen when printing the values, the outlier timestamps typically occur
// in the first histogram 35 to 38 indices from the end (most often 35).
// TODO: build histogram buckets earlier and discard timestamps to save memory
std::map<int, int> buckets = buildBuckets(samples);
// TODO consider changing all ints to uint32_t or uint64_t
// underscores and spaces length corresponds to maximum width of histogram
static const int kLen = 40;
std::string underscores(kLen, '-');
std::string spaces(kLen, ' ');
auto it = buckets.begin();
int maxDelta = it->first;
int maxCount = it->second;
// Compute maximum values
while (++it != buckets.end()) {
if (it->first > maxDelta) {
maxDelta = it->first;
}
if (it->second > maxCount) {
maxCount = it->second;
}
}
int height = logScale ? log2(maxCount) + 1 : maxCount; // maxCount > 0, safe to call log2
const int leftPadding = widthOf(logScale ? pow(2, height) : maxCount);
const int colWidth = std::max(std::max(widthOf(maxDelta) + 1, 3), leftPadding + 2);
int scalingFactor = 1;
// scale data if it exceeds maximum height
if (height > maxHeight) {
scalingFactor = (height + maxHeight) / maxHeight;
height /= scalingFactor;
}
body->appendFormat("\n%*s", leftPadding + 11, "Occurrences");
// write histogram label line with bucket values
body->appendFormat("\n%*s", indent, " ");
body->appendFormat("%*s", leftPadding, " ");
for (auto const &x : buckets) {
body->appendFormat("%*d", colWidth, x.second);
}
// write histogram ascii art
body->appendFormat("\n%*s", indent, " ");
for (int row = height * scalingFactor; row >= 0; row -= scalingFactor) {
const int value = logScale ? (1 << row) : row;
body->appendFormat("%.*s", leftPadding, spaces.c_str());
for (auto const &x : buckets) {
body->appendFormat("%.*s%s", colWidth - 1, spaces.c_str(), x.second < value ? " " : "|");
}
body->appendFormat("\n%*s", indent, " ");
}
// print x-axis
const int columns = static_cast<int>(buckets.size());
body->appendFormat("%*c", leftPadding, ' ');
body->appendFormat("%.*s", (columns + 1) * colWidth, underscores.c_str());
body->appendFormat("\n%*s", indent, " ");
// write footer with bucket labels
body->appendFormat("%*s", leftPadding, " ");
for (auto const &x : buckets) {
body->appendFormat("%*d", colWidth, x.first);
}
body->appendFormat("%.*s%s", colWidth, spaces.c_str(), "ms\n");
}
NBLog::Merger::Merger(const void *shared, size_t size):
mShared((Shared *) shared),
mFifo(mShared != NULL ?
new audio_utils_fifo(size, sizeof(uint8_t),
mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL),
mFifoWriter(mFifo != NULL ? new audio_utils_fifo_writer(*mFifo) : NULL)
{}
void NBLog::Merger::addReader(const NBLog::NamedReader &reader) {
// FIXME This is called by binder thread in MediaLogService::registerWriter
// but the access to shared variable mNamedReaders is not yet protected by a lock.
mNamedReaders.push_back(reader);
}
// items placed in priority queue during merge
// composed by a timestamp and the index of the snapshot where the timestamp came from
struct MergeItem
{
int64_t ts;
int index;
MergeItem(int64_t ts, int index): ts(ts), index(index) {}
};
// operators needed for priority queue in merge
// bool operator>(const int64_t &t1, const int64_t &t2) {
// return t1.tv_sec > t2.tv_sec || (t1.tv_sec == t2.tv_sec && t1.tv_nsec > t2.tv_nsec);
// }
bool operator>(const struct MergeItem &i1, const struct MergeItem &i2) {
return i1.ts > i2.ts || (i1.ts == i2.ts && i1.index > i2.index);
}
// Merge registered readers, sorted by timestamp
void NBLog::Merger::merge() {
// FIXME This is called by merge thread
// but the access to shared variable mNamedReaders is not yet protected by a lock.
int nLogs = mNamedReaders.size();
std::vector<std::unique_ptr<NBLog::Reader::Snapshot>> snapshots(nLogs);
std::vector<NBLog::EntryIterator> offsets(nLogs);
for (int i = 0; i < nLogs; ++i) {
snapshots[i] = mNamedReaders[i].reader()->getSnapshot();
offsets[i] = snapshots[i]->begin();
}
// initialize offsets
// TODO custom heap implementation could allow to update top, improving performance
// for bursty buffers
std::priority_queue<MergeItem, std::vector<MergeItem>, std::greater<MergeItem>> timestamps;
for (int i = 0; i < nLogs; ++i)
{
if (offsets[i] != snapshots[i]->end()) {
int64_t ts = AbstractEntry::buildEntry(offsets[i])->timestamp();
timestamps.emplace(ts, i);
}
}
while (!timestamps.empty()) {
// find minimum timestamp
int index = timestamps.top().index;
// copy it to the log, increasing offset
offsets[index] = AbstractEntry::buildEntry(offsets[index])->copyWithAuthor(mFifoWriter,
index);
// update data structures
timestamps.pop();
if (offsets[index] != snapshots[index]->end()) {
int64_t ts = AbstractEntry::buildEntry(offsets[index])->timestamp();
timestamps.emplace(ts, index);
}
}
}
const std::vector<NBLog::NamedReader>& NBLog::Merger::getNamedReaders() const {
// FIXME This is returning a reference to a shared variable that needs a lock
return mNamedReaders;
}
// ---------------------------------------------------------------------------
NBLog::MergeReader::MergeReader(const void *shared, size_t size, Merger &merger)
: Reader(shared, size), mNamedReaders(merger.getNamedReaders()) {}
void NBLog::MergeReader::handleAuthor(const NBLog::AbstractEntry &entry, String8 *body) {
int author = entry.author();
// FIXME Needs a lock
const char* name = mNamedReaders[author].name();
body->appendFormat("%s: ", name);
}
// ---------------------------------------------------------------------------
NBLog::MergeThread::MergeThread(NBLog::Merger &merger)
: mMerger(merger),
mTimeoutUs(0) {}
NBLog::MergeThread::~MergeThread() {
// set exit flag, set timeout to 0 to force threadLoop to exit and wait for the thread to join
requestExit();
setTimeoutUs(0);
join();
}
bool NBLog::MergeThread::threadLoop() {
bool doMerge;
{
AutoMutex _l(mMutex);
// If mTimeoutUs is negative, wait on the condition variable until it's positive.
// If it's positive, wait kThreadSleepPeriodUs and then merge
nsecs_t waitTime = mTimeoutUs > 0 ? kThreadSleepPeriodUs * 1000 : LLONG_MAX;
mCond.waitRelative(mMutex, waitTime);
doMerge = mTimeoutUs > 0;
mTimeoutUs -= kThreadSleepPeriodUs;
}
if (doMerge) {
mMerger.merge();
}
return true;
}
void NBLog::MergeThread::wakeup() {
setTimeoutUs(kThreadWakeupPeriodUs);
}
void NBLog::MergeThread::setTimeoutUs(int time) {
AutoMutex _l(mMutex);
mTimeoutUs = time;
mCond.signal();
}
} // namespace android