blob: d0e133785b3f8139fa162e275188fc94b1980c57 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SERVERS_CAMERA3_STREAM_H
#define ANDROID_SERVERS_CAMERA3_STREAM_H
#include <gui/Surface.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/List.h>
#include "hardware/camera3.h"
#include "Camera3StreamBufferListener.h"
#include "Camera3StreamInterface.h"
namespace android {
namespace camera3 {
/**
* A class for managing a single stream of input or output data from the camera
* device.
*
* The stream has an internal state machine to track whether it's
* connected/configured/etc.
*
* States:
*
* STATE_ERROR: A serious error has occurred, stream is unusable. Outstanding
* buffers may still be returned.
*
* STATE_CONSTRUCTED: The stream is ready for configuration, but buffers cannot
* be gotten yet. Not connected to any endpoint, no buffers are registered
* with the HAL.
*
* STATE_IN_CONFIG: Configuration has started, but not yet concluded. During this
* time, the usage, max_buffers, and priv fields of camera3_stream returned by
* startConfiguration() may be modified.
*
* STATE_IN_RE_CONFIG: Configuration has started, and the stream has been
* configured before. Need to track separately from IN_CONFIG to avoid
* re-registering buffers with HAL.
*
* STATE_CONFIGURED: Stream is configured, and has registered buffers with the
* HAL. The stream's getBuffer/returnBuffer work. The priv pointer may still be
* modified.
*
* Transition table:
*
* <none> => STATE_CONSTRUCTED:
* When constructed with valid arguments
* <none> => STATE_ERROR:
* When constructed with invalid arguments
* STATE_CONSTRUCTED => STATE_IN_CONFIG:
* When startConfiguration() is called
* STATE_IN_CONFIG => STATE_CONFIGURED:
* When finishConfiguration() is called
* STATE_IN_CONFIG => STATE_ERROR:
* When finishConfiguration() fails to allocate or register buffers.
* STATE_CONFIGURED => STATE_IN_RE_CONFIG: *
* When startConfiguration() is called again, after making sure stream is
* idle with waitUntilIdle().
* STATE_IN_RE_CONFIG => STATE_CONFIGURED:
* When finishConfiguration() is called.
* STATE_IN_RE_CONFIG => STATE_ERROR:
* When finishConfiguration() fails to allocate or register buffers.
* STATE_CONFIGURED => STATE_CONSTRUCTED:
* When disconnect() is called after making sure stream is idle with
* waitUntilIdle().
*
* Status Tracking:
* Each stream is tracked by StatusTracker as a separate component,
* depending on the handed out buffer count. The state must be STATE_CONFIGURED
* in order for the component to be marked.
*
* It's marked in one of two ways:
*
* - ACTIVE: One or more buffers have been handed out (with #getBuffer).
* - IDLE: All buffers have been returned (with #returnBuffer), and their
* respective release_fence(s) have been signaled.
*
* A typical use case is output streams. When the HAL has any buffers
* dequeued, the stream is marked ACTIVE. When the HAL returns all buffers
* (e.g. if no capture requests are active), the stream is marked IDLE.
* In this use case, the app consumer does not affect the component status.
*
*/
class Camera3Stream :
protected camera3_stream,
public virtual Camera3StreamInterface,
public virtual RefBase {
public:
virtual ~Camera3Stream();
static Camera3Stream* cast(camera3_stream *stream);
static const Camera3Stream* cast(const camera3_stream *stream);
/**
* Get the stream's ID
*/
int getId() const;
/**
* Get the stream's dimensions and format
*/
uint32_t getWidth() const;
uint32_t getHeight() const;
int getFormat() const;
/**
* Start the stream configuration process. Returns a handle to the stream's
* information to be passed into the HAL device's configure_streams call.
*
* Until finishConfiguration() is called, no other methods on the stream may be
* called. The usage and max_buffers fields of camera3_stream may be modified
* between start/finishConfiguration, but may not be changed after that.
* The priv field of camera3_stream may be modified at any time after
* startConfiguration.
*
* Returns NULL in case of error starting configuration.
*/
camera3_stream* startConfiguration();
/**
* Check if the stream is mid-configuration (start has been called, but not
* finish). Used for lazy completion of configuration.
*/
bool isConfiguring() const;
/**
* Completes the stream configuration process. During this call, the stream
* may call the device's register_stream_buffers() method. The stream
* information structure returned by startConfiguration() may no longer be
* modified after this call, but can still be read until the destruction of
* the stream.
*
* Returns:
* OK on a successful configuration
* NO_INIT in case of a serious error from the HAL device
* NO_MEMORY in case of an error registering buffers
* INVALID_OPERATION in case connecting to the consumer failed
*/
status_t finishConfiguration(camera3_device *hal3Device);
/**
* Cancels the stream configuration process. This returns the stream to the
* initial state, allowing it to be configured again later.
* This is done if the HAL rejects the proposed combined stream configuration
*/
status_t cancelConfiguration();
/**
* Fill in the camera3_stream_buffer with the next valid buffer for this
* stream, to hand over to the HAL.
*
* This method may only be called once finishConfiguration has been called.
* For bidirectional streams, this method applies to the output-side
* buffers.
*
*/
status_t getBuffer(camera3_stream_buffer *buffer);
/**
* Return a buffer to the stream after use by the HAL.
*
* This method may only be called for buffers provided by getBuffer().
* For bidirectional streams, this method applies to the output-side buffers
*/
status_t returnBuffer(const camera3_stream_buffer &buffer,
nsecs_t timestamp);
/**
* Fill in the camera3_stream_buffer with the next valid buffer for this
* stream, to hand over to the HAL.
*
* This method may only be called once finishConfiguration has been called.
* For bidirectional streams, this method applies to the input-side
* buffers.
*
*/
status_t getInputBuffer(camera3_stream_buffer *buffer);
/**
* Return a buffer to the stream after use by the HAL.
*
* This method may only be called for buffers provided by getBuffer().
* For bidirectional streams, this method applies to the input-side buffers
*/
status_t returnInputBuffer(const camera3_stream_buffer &buffer);
/**
* Whether any of the stream's buffers are currently in use by the HAL,
* including buffers that have been returned but not yet had their
* release fence signaled.
*/
bool hasOutstandingBuffers() const;
enum {
TIMEOUT_NEVER = -1
};
/**
* Set the status tracker to notify about idle transitions
*/
virtual status_t setStatusTracker(sp<StatusTracker> statusTracker);
/**
* Disconnect stream from its non-HAL endpoint. After this,
* start/finishConfiguration must be called before the stream can be used
* again. This cannot be called if the stream has outstanding dequeued
* buffers.
*/
status_t disconnect();
/**
* Debug dump of the stream's state.
*/
virtual void dump(int fd, const Vector<String16> &args) const = 0;
/**
* Add a camera3 buffer listener. Adding the same listener twice has
* no effect.
*/
void addBufferListener(
wp<Camera3StreamBufferListener> listener);
/**
* Remove a camera3 buffer listener. Removing the same listener twice
* or the listener that was never added has no effect.
*/
void removeBufferListener(
const sp<Camera3StreamBufferListener>& listener);
protected:
const int mId;
const String8 mName;
// Zero for formats with fixed buffer size for given dimensions.
const size_t mMaxSize;
enum {
STATE_ERROR,
STATE_CONSTRUCTED,
STATE_IN_CONFIG,
STATE_IN_RECONFIG,
STATE_CONFIGURED
} mState;
mutable Mutex mLock;
Camera3Stream(int id, camera3_stream_type type,
uint32_t width, uint32_t height, size_t maxSize, int format);
/**
* Interface to be implemented by derived classes
*/
// getBuffer / returnBuffer implementations
// Since camera3_stream_buffer includes a raw pointer to the stream,
// cast to camera3_stream*, implementations must increment the
// refcount of the stream manually in getBufferLocked, and decrement it in
// returnBufferLocked.
virtual status_t getBufferLocked(camera3_stream_buffer *buffer);
virtual status_t returnBufferLocked(const camera3_stream_buffer &buffer,
nsecs_t timestamp);
virtual status_t getInputBufferLocked(camera3_stream_buffer *buffer);
virtual status_t returnInputBufferLocked(
const camera3_stream_buffer &buffer);
virtual bool hasOutstandingBuffersLocked() const = 0;
// Can return -ENOTCONN when we are already disconnected (not an error)
virtual status_t disconnectLocked() = 0;
// Configure the buffer queue interface to the other end of the stream,
// after the HAL has provided usage and max_buffers values. After this call,
// the stream must be ready to produce all buffers for registration with
// HAL.
virtual status_t configureQueueLocked() = 0;
// Get the total number of buffers in the queue
virtual size_t getBufferCountLocked() = 0;
// Get handout output buffer count.
virtual size_t getHandoutOutputBufferCountLocked() = 0;
// Get handout input buffer count.
virtual size_t getHandoutInputBufferCountLocked() = 0;
// Get the usage flags for the other endpoint, or return
// INVALID_OPERATION if they cannot be obtained.
virtual status_t getEndpointUsage(uint32_t *usage) = 0;
// Tracking for idle state
wp<StatusTracker> mStatusTracker;
// Status tracker component ID
int mStatusId;
private:
uint32_t oldUsage;
uint32_t oldMaxBuffers;
Condition mOutputBufferReturnedSignal;
Condition mInputBufferReturnedSignal;
static const nsecs_t kWaitForBufferDuration = 3000000000LL; // 3000 ms
// Gets all buffers from endpoint and registers them with the HAL.
status_t registerBuffersLocked(camera3_device *hal3Device);
void fireBufferListenersLocked(const camera3_stream_buffer& buffer,
bool acquired, bool output);
List<wp<Camera3StreamBufferListener> > mBufferListenerList;
}; // class Camera3Stream
}; // namespace camera3
}; // namespace android
#endif