blob: 01baf7ee833b0f4efca9caa40d50507742bd900f [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define LOG_TAG "codec2_hidl_hal_audio_enc_test"
#include <android-base/logging.h>
#include <gtest/gtest.h>
#include <stdio.h>
#include <fstream>
#include <algorithm>
#include <codec2/hidl/client.h>
#include <C2AllocatorIon.h>
#include <C2Config.h>
#include <C2Debug.h>
#include <C2Buffer.h>
#include <C2BufferPriv.h>
using android::C2AllocatorIon;
#include <VtsHalHidlTargetTestBase.h>
#include "media_c2_audio_hidl_test_common.h"
#include "media_c2_hidl_test_common.h"
class LinearBuffer : public C2Buffer {
public:
explicit LinearBuffer(const std::shared_ptr<C2LinearBlock>& block)
: C2Buffer(
{block->share(block->offset(), block->size(), ::C2Fence())}) {}
};
static ComponentTestEnvironment* gEnv = nullptr;
namespace {
class Codec2AudioEncHidlTest : public ::testing::VtsHalHidlTargetTestBase {
private:
typedef ::testing::VtsHalHidlTargetTestBase Super;
public:
::std::string getTestCaseInfo() const override {
return ::std::string() +
"Component: " + gEnv->getComponent().c_str() + " | " +
"Instance: " + gEnv->getInstance().c_str() + " | " +
"Res: " + gEnv->getRes().c_str();
}
// google.codec2 Audio test setup
virtual void SetUp() override {
Super::SetUp();
mDisableTest = false;
ALOGV("Codec2AudioEncHidlTest SetUp");
mClient = android::Codec2Client::CreateFromService(
gEnv->getInstance().c_str());
ASSERT_NE(mClient, nullptr);
mListener.reset(new CodecListener(
[this](std::list<std::unique_ptr<C2Work>>& workItems) {
handleWorkDone(workItems);
}));
ASSERT_NE(mListener, nullptr);
for (int i = 0; i < MAX_INPUT_BUFFERS; ++i) {
mWorkQueue.emplace_back(new C2Work);
}
mClient->createComponent(gEnv->getComponent().c_str(), mListener,
&mComponent);
ASSERT_NE(mComponent, nullptr);
std::shared_ptr<C2AllocatorStore> store =
android::GetCodec2PlatformAllocatorStore();
CHECK_EQ(store->fetchAllocator(C2AllocatorStore::DEFAULT_LINEAR,
&mLinearAllocator),
C2_OK);
mLinearPool = std::make_shared<C2PooledBlockPool>(mLinearAllocator,
mBlockPoolId++);
ASSERT_NE(mLinearPool, nullptr);
mCompName = unknown_comp;
struct StringToName {
const char* Name;
standardComp CompName;
};
const StringToName kStringToName[] = {
{"aac", aac},
{"flac", flac},
{"opus", opus},
{"amrnb", amrnb},
{"amrwb", amrwb},
};
const size_t kNumStringToName =
sizeof(kStringToName) / sizeof(kStringToName[0]);
// Find the component type
std::string comp = std::string(gEnv->getComponent());
for (size_t i = 0; i < kNumStringToName; ++i) {
if (strcasestr(comp.c_str(), kStringToName[i].Name)) {
mCompName = kStringToName[i].CompName;
break;
}
}
mEos = false;
mCsd = false;
mFramesReceived = 0;
if (mCompName == unknown_comp) mDisableTest = true;
if (mDisableTest) std::cout << "[ WARN ] Test Disabled \n";
getInputMaxBufSize();
}
virtual void TearDown() override {
if (mComponent != nullptr) {
if (::testing::Test::HasFatalFailure()) return;
mComponent->release();
mComponent = nullptr;
}
Super::TearDown();
}
// callback function to process onWorkDone received by Listener
void handleWorkDone(std::list<std::unique_ptr<C2Work>>& workItems) {
for (std::unique_ptr<C2Work>& work : workItems) {
if (!work->worklets.empty()) {
workDone(mComponent, work, mFlushedIndices, mQueueLock,
mQueueCondition, mWorkQueue, mEos, mCsd,
mFramesReceived);
}
}
}
enum standardComp {
aac,
flac,
opus,
amrnb,
amrwb,
unknown_comp,
};
bool mEos;
bool mCsd;
bool mDisableTest;
standardComp mCompName;
uint32_t mFramesReceived;
int32_t mInputMaxBufSize;
std::list<uint64_t> mFlushedIndices;
C2BlockPool::local_id_t mBlockPoolId;
std::shared_ptr<C2BlockPool> mLinearPool;
std::shared_ptr<C2Allocator> mLinearAllocator;
std::mutex mQueueLock;
std::condition_variable mQueueCondition;
std::list<std::unique_ptr<C2Work>> mWorkQueue;
std::shared_ptr<android::Codec2Client> mClient;
std::shared_ptr<android::Codec2Client::Listener> mListener;
std::shared_ptr<android::Codec2Client::Component> mComponent;
protected:
static void description(const std::string& description) {
RecordProperty("description", description);
}
// In encoder components, fetch the size of input buffer allocated
void getInputMaxBufSize() {
int32_t bitStreamInfo[1] = {0};
std::vector<std::unique_ptr<C2Param>> inParams;
c2_status_t status = mComponent->query(
{}, {C2StreamMaxBufferSizeInfo::input::PARAM_TYPE}, C2_DONT_BLOCK,
&inParams);
if (status != C2_OK && inParams.size() == 0) {
ALOGE("Query MaxBufferSizeInfo failed => %d", status);
ASSERT_TRUE(false);
} else {
size_t offset = sizeof(C2Param);
for (size_t i = 0; i < inParams.size(); ++i) {
C2Param* param = inParams[i].get();
bitStreamInfo[i] = *(int32_t*)((uint8_t*)param + offset);
}
}
mInputMaxBufSize = bitStreamInfo[0];
}
};
void validateComponent(
const std::shared_ptr<android::Codec2Client::Component>& component,
Codec2AudioEncHidlTest::standardComp compName, bool& disableTest) {
// Validate its a C2 Component
if (component->getName().find("c2") == std::string::npos) {
ALOGE("Not a c2 component");
disableTest = true;
return;
}
// Validate its not an encoder and the component to be tested is audio
if (component->getName().find("decoder") != std::string::npos) {
ALOGE("Expected Encoder, given Decoder");
disableTest = true;
return;
}
std::vector<std::unique_ptr<C2Param>> queried;
c2_status_t c2err =
component->query({}, {C2PortMediaTypeSetting::input::PARAM_TYPE},
C2_DONT_BLOCK, &queried);
if (c2err != C2_OK && queried.size() == 0) {
ALOGE("Query media type failed => %d", c2err);
} else {
std::string inputDomain =
((C2StreamMediaTypeSetting::input*)queried[0].get())->m.value;
if (inputDomain.find("audio/") == std::string::npos) {
ALOGE("Expected Audio Component");
disableTest = true;
return;
}
}
// Validates component name
if (compName == Codec2AudioEncHidlTest::unknown_comp) {
ALOGE("Component InValid");
disableTest = true;
return;
}
ALOGV("Component Valid");
}
// Set Default config param.
bool setupConfigParam(
const std::shared_ptr<android::Codec2Client::Component>& component,
int32_t nChannels, int32_t nSampleRate) {
std::vector<std::unique_ptr<C2SettingResult>> failures;
C2StreamSampleRateInfo::input sampleRateInfo(0u, nSampleRate);
C2StreamChannelCountInfo::input channelCountInfo(0u, nChannels);
std::vector<C2Param*> configParam{&sampleRateInfo, &channelCountInfo};
c2_status_t status =
component->config(configParam, C2_DONT_BLOCK, &failures);
if (status == C2_OK && failures.size() == 0u) return true;
return false;
}
// LookUpTable of clips and metadata for component testing
void GetURLForComponent(Codec2AudioEncHidlTest::standardComp comp, char* mURL) {
struct CompToURL {
Codec2AudioEncHidlTest::standardComp comp;
const char* mURL;
};
static const CompToURL kCompToURL[] = {
{Codec2AudioEncHidlTest::standardComp::aac,
"bbb_raw_2ch_48khz_s16le.raw"},
{Codec2AudioEncHidlTest::standardComp::amrnb,
"bbb_raw_1ch_8khz_s16le.raw"},
{Codec2AudioEncHidlTest::standardComp::amrwb,
"bbb_raw_1ch_16khz_s16le.raw"},
{Codec2AudioEncHidlTest::standardComp::flac,
"bbb_raw_2ch_48khz_s16le.raw"},
{Codec2AudioEncHidlTest::standardComp::opus,
"bbb_raw_2ch_48khz_s16le.raw"},
};
for (size_t i = 0; i < sizeof(kCompToURL) / sizeof(kCompToURL[0]); ++i) {
if (kCompToURL[i].comp == comp) {
strcat(mURL, kCompToURL[i].mURL);
return;
}
}
}
void encodeNFrames(const std::shared_ptr<android::Codec2Client::Component>& component,
std::mutex &queueLock, std::condition_variable& queueCondition,
std::list<std::unique_ptr<C2Work>>& workQueue,
std::list<uint64_t>& flushedIndices,
std::shared_ptr<C2BlockPool>& linearPool,
std::ifstream& eleStream, uint32_t nFrames,
int32_t samplesPerFrame, int32_t nChannels,
int32_t nSampleRate, bool flushed = false,
bool signalEOS = true) {
typedef std::unique_lock<std::mutex> ULock;
uint32_t frameID = 0;
uint32_t maxRetry = 0;
int bytesCount = samplesPerFrame * nChannels * 2;
int32_t timestampIncr =
(int)(((float)samplesPerFrame / nSampleRate) * 1000000);
uint64_t timestamp = 0;
while (1) {
if (nFrames == 0) break;
uint32_t flags = 0;
std::unique_ptr<C2Work> work;
// Prepare C2Work
while (!work && (maxRetry < MAX_RETRY)) {
ULock l(queueLock);
if (!workQueue.empty()) {
work.swap(workQueue.front());
workQueue.pop_front();
} else {
queueCondition.wait_for(l, TIME_OUT);
maxRetry++;
}
}
if (!work && (maxRetry >= MAX_RETRY)) {
ASSERT_TRUE(false) << "Wait for generating C2Work exceeded timeout";
}
if (signalEOS && (nFrames == 1))
flags |= C2FrameData::FLAG_END_OF_STREAM;
if (flushed) {
flags |= SYNC_FRAME;
flushed = false;
}
work->input.flags = (C2FrameData::flags_t)flags;
work->input.ordinal.timestamp = timestamp;
work->input.ordinal.frameIndex = frameID;
{
ULock l(queueLock);
flushedIndices.emplace_back(frameID);
}
char* data = (char*)malloc(bytesCount);
ASSERT_NE(data, nullptr);
eleStream.read(data, bytesCount);
ASSERT_EQ(eleStream.gcount(), bytesCount);
std::shared_ptr<C2LinearBlock> block;
ASSERT_EQ(C2_OK, linearPool->fetchLinearBlock(
bytesCount, {C2MemoryUsage::CPU_READ,
C2MemoryUsage::CPU_WRITE},
&block));
ASSERT_TRUE(block);
// Write View
C2WriteView view = block->map().get();
if (view.error() != C2_OK) {
fprintf(stderr, "C2LinearBlock::map() failed : %d", view.error());
break;
}
ASSERT_EQ((size_t)bytesCount, view.capacity());
ASSERT_EQ(0u, view.offset());
ASSERT_EQ((size_t)bytesCount, view.size());
memcpy(view.base(), data, bytesCount);
work->input.buffers.clear();
work->input.buffers.emplace_back(new LinearBuffer(block));
work->worklets.clear();
work->worklets.emplace_back(new C2Worklet);
free(data);
std::list<std::unique_ptr<C2Work>> items;
items.push_back(std::move(work));
// DO THE DECODING
ASSERT_EQ(component->queue(&items), C2_OK);
ALOGV("Frame #%d size = %d queued", frameID, bytesCount);
nFrames--;
timestamp += timestampIncr;
frameID++;
maxRetry = 0;
}
}
TEST_F(Codec2AudioEncHidlTest, validateCompName) {
if (mDisableTest) return;
ALOGV("Checks if the given component is a valid audio component");
validateComponent(mComponent, mCompName, mDisableTest);
ASSERT_EQ(mDisableTest, false);
}
class Codec2AudioEncEncodeTest
: public Codec2AudioEncHidlTest,
public ::testing::WithParamInterface<std::pair<bool, int32_t>> {
};
TEST_P(Codec2AudioEncEncodeTest, EncodeTest) {
ALOGV("EncodeTest");
if (mDisableTest) return;
char mURL[512];
strcpy(mURL, gEnv->getRes().c_str());
GetURLForComponent(mCompName, mURL);
bool signalEOS = GetParam().first;
// Ratio w.r.t to mInputMaxBufSize
int32_t inputMaxBufRatio = GetParam().second;
// Setting default sampleRate
int32_t nChannels = 2;
int32_t nSampleRate = 44100;
switch (mCompName) {
case aac:
nChannels = 2;
nSampleRate = 48000;
break;
case flac:
nChannels = 2;
nSampleRate = 48000;
break;
case opus:
nChannels = 2;
nSampleRate = 48000;
break;
case amrnb:
nChannels = 1;
nSampleRate = 8000;
break;
case amrwb:
nChannels = 1;
nSampleRate = 16000;
break;
default:
ASSERT_TRUE(false);
}
int32_t samplesPerFrame =
((mInputMaxBufSize / inputMaxBufRatio) / (nChannels * 2));
ALOGV("signalEOS %d mInputMaxBufSize %d samplesPerFrame %d", signalEOS,
mInputMaxBufSize, samplesPerFrame);
if (!setupConfigParam(mComponent, nChannels, nSampleRate)) {
std::cout << "[ WARN ] Test Skipped \n";
return;
}
ASSERT_EQ(mComponent->start(), C2_OK);
std::ifstream eleStream;
uint32_t numFrames = 16;
eleStream.open(mURL, std::ifstream::binary);
ASSERT_EQ(eleStream.is_open(), true);
ALOGV("mURL : %s", mURL);
ASSERT_NO_FATAL_FAILURE(
encodeNFrames(mComponent, mQueueLock, mQueueCondition, mWorkQueue,
mFlushedIndices, mLinearPool, eleStream, numFrames,
samplesPerFrame, nChannels, nSampleRate, false,
signalEOS));
// If EOS is not sent, sending empty input with EOS flag
if (!signalEOS) {
ASSERT_NO_FATAL_FAILURE(
waitOnInputConsumption(mQueueLock, mQueueCondition, mWorkQueue, 1));
ASSERT_NO_FATAL_FAILURE(
testInputBuffer(mComponent, mQueueLock, mWorkQueue,
C2FrameData::FLAG_END_OF_STREAM, false));
numFrames += 1;
}
// blocking call to ensures application to Wait till all the inputs are
// consumed
ASSERT_NO_FATAL_FAILURE(
waitOnInputConsumption(mQueueLock, mQueueCondition, mWorkQueue));
eleStream.close();
if (mFramesReceived != numFrames) {
ALOGE("Input buffer count and Output buffer count mismatch");
ALOGE("framesReceived : %d inputFrames : %u", mFramesReceived, numFrames);
ASSERT_TRUE(false);
}
if ((mCompName == flac || mCompName == opus || mCompName == aac)) {
if (!mCsd) {
ALOGE("CSD buffer missing");
ASSERT_TRUE(false);
}
}
ASSERT_EQ(mEos, true);
ASSERT_EQ(mComponent->stop(), C2_OK);
}
// EncodeTest with EOS / No EOS and inputMaxBufRatio
// inputMaxBufRatio is ratio w.r.t. to mInputMaxBufSize
INSTANTIATE_TEST_CASE_P(EncodeTest, Codec2AudioEncEncodeTest,
::testing::Values(std::make_pair(false, 1),
std::make_pair(false, 2),
std::make_pair(true, 1),
std::make_pair(true, 2)));
TEST_F(Codec2AudioEncHidlTest, EOSTest) {
description("Test empty input buffer with EOS flag");
if (mDisableTest) return;
ASSERT_EQ(mComponent->start(), C2_OK);
typedef std::unique_lock<std::mutex> ULock;
std::unique_ptr<C2Work> work;
{
ULock l(mQueueLock);
if (!mWorkQueue.empty()) {
work.swap(mWorkQueue.front());
mWorkQueue.pop_front();
} else {
ALOGE("mWorkQueue Empty is not expected at the start of the test");
ASSERT_TRUE(false);
}
}
ASSERT_NE(work, nullptr);
work->input.flags = (C2FrameData::flags_t)C2FrameData::FLAG_END_OF_STREAM;
work->input.ordinal.timestamp = 0;
work->input.ordinal.frameIndex = 0;
work->input.buffers.clear();
work->worklets.clear();
work->worklets.emplace_back(new C2Worklet);
std::list<std::unique_ptr<C2Work>> items;
items.push_back(std::move(work));
ASSERT_EQ(mComponent->queue(&items), C2_OK);
uint32_t queueSize;
{
ULock l(mQueueLock);
queueSize = mWorkQueue.size();
if (queueSize < MAX_INPUT_BUFFERS) {
mQueueCondition.wait_for(l, TIME_OUT);
}
}
ASSERT_EQ(mEos, true);
ASSERT_EQ(mComponent->stop(), C2_OK);
}
TEST_F(Codec2AudioEncHidlTest, FlushTest) {
description("Test Request for flush");
if (mDisableTest) return;
typedef std::unique_lock<std::mutex> ULock;
char mURL[512];
strcpy(mURL, gEnv->getRes().c_str());
GetURLForComponent(mCompName, mURL);
// Setting default configuration
mFlushedIndices.clear();
int32_t nChannels = 2;
int32_t nSampleRate = 44100;
int32_t samplesPerFrame = 1024;
switch (mCompName) {
case aac:
nChannels = 2;
nSampleRate = 48000;
samplesPerFrame = 1024;
break;
case flac:
nChannels = 2;
nSampleRate = 48000;
samplesPerFrame = 1152;
break;
case opus:
nChannels = 2;
nSampleRate = 48000;
samplesPerFrame = 960;
break;
case amrnb:
nChannels = 1;
nSampleRate = 8000;
samplesPerFrame = 160;
break;
case amrwb:
nChannels = 1;
nSampleRate = 16000;
samplesPerFrame = 160;
break;
default:
ASSERT_TRUE(false);
}
if (!setupConfigParam(mComponent, nChannels, nSampleRate)) {
std::cout << "[ WARN ] Test Skipped \n";
return;
}
ASSERT_EQ(mComponent->start(), C2_OK);
std::ifstream eleStream;
uint32_t numFramesFlushed = 30;
uint32_t numFrames = 128;
eleStream.open(mURL, std::ifstream::binary);
ASSERT_EQ(eleStream.is_open(), true);
ALOGV("mURL : %s", mURL);
ASSERT_NO_FATAL_FAILURE(
encodeNFrames(mComponent, mQueueLock, mQueueCondition, mWorkQueue,
mFlushedIndices, mLinearPool, eleStream, numFramesFlushed,
samplesPerFrame, nChannels, nSampleRate));
std::list<std::unique_ptr<C2Work>> flushedWork;
c2_status_t err =
mComponent->flush(C2Component::FLUSH_COMPONENT, &flushedWork);
ASSERT_EQ(err, C2_OK);
ASSERT_NO_FATAL_FAILURE(
waitOnInputConsumption(mQueueLock, mQueueCondition, mWorkQueue,
(size_t)MAX_INPUT_BUFFERS - flushedWork.size()));
uint64_t frameIndex;
{
//Update mFlushedIndices based on the index received from flush()
ULock l(mQueueLock);
for (std::unique_ptr<C2Work>& work : flushedWork) {
ASSERT_NE(work, nullptr);
frameIndex = work->input.ordinal.frameIndex.peeku();
std::list<uint64_t>::iterator frameIndexIt =
std::find(mFlushedIndices.begin(), mFlushedIndices.end(),
frameIndex);
if (!mFlushedIndices.empty() &&
(frameIndexIt != mFlushedIndices.end())) {
mFlushedIndices.erase(frameIndexIt);
work->input.buffers.clear();
work->worklets.clear();
mWorkQueue.push_back(std::move(work));
}
}
}
mFlushedIndices.clear();
ASSERT_NO_FATAL_FAILURE(
encodeNFrames(mComponent, mQueueLock, mQueueCondition, mWorkQueue,
mFlushedIndices, mLinearPool, eleStream,
numFrames - numFramesFlushed, samplesPerFrame,
nChannels, nSampleRate, true));
eleStream.close();
err =
mComponent->flush(C2Component::FLUSH_COMPONENT, &flushedWork);
ASSERT_EQ(err, C2_OK);
ASSERT_NO_FATAL_FAILURE(
waitOnInputConsumption(mQueueLock, mQueueCondition, mWorkQueue,
(size_t)MAX_INPUT_BUFFERS - flushedWork.size()));
{
//Update mFlushedIndices based on the index received from flush()
ULock l(mQueueLock);
for (std::unique_ptr<C2Work>& work : flushedWork) {
ASSERT_NE(work, nullptr);
frameIndex = work->input.ordinal.frameIndex.peeku();
std::list<uint64_t>::iterator frameIndexIt =
std::find(mFlushedIndices.begin(), mFlushedIndices.end(),
frameIndex);
if (!mFlushedIndices.empty() &&
(frameIndexIt != mFlushedIndices.end())) {
mFlushedIndices.erase(frameIndexIt);
work->input.buffers.clear();
work->worklets.clear();
mWorkQueue.push_back(std::move(work));
}
}
}
ASSERT_EQ(mFlushedIndices.empty(), true);
ASSERT_EQ(mComponent->stop(), C2_OK);
}
} // anonymous namespace
int main(int argc, char** argv) {
gEnv = new ComponentTestEnvironment();
::testing::AddGlobalTestEnvironment(gEnv);
::testing::InitGoogleTest(&argc, argv);
gEnv->init(&argc, argv);
int status = gEnv->initFromOptions(argc, argv);
if (status == 0) {
int status = RUN_ALL_TESTS();
LOG(INFO) << "C2 Test result = " << status;
}
return status;
}